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Abstract—Traditional interferometric synthetic aperture radar 

(InSAR) denoising methods normally try to estimate the phase 

fringes directly from the noisy interferogram. Since the statistics 

of phase noise are more stable than the phase corresponding to 

complex terrain, it could be easier to estimate the phase noise. In 

this paper, phase noises rather than phase fringes are estimated 

first, and then they are subtracted from the noisy interferometric 

phase for denoising. The denoising convolutional neural network 

(DnCNN) is introduced to estimate phase noise and then a 

modified network called IPDnCNN is constructed for the problem. 

Based on the IPDnCNN, a novel interferometric phase noise 

reduction algorithm is proposed, which can reduce phase noise 

while protecting fringe edges and avoid the use of filter windows. 

Experimental results using simulated and real data are provided 

to demonstrate the effectiveness of the proposed method.  

 
Index Terms—Interferometric synthetic aperture radar, Phase 

noise reduction; Denoising convolutional neural network. 

 

I. INTRODUCTION 

YNTHETIC Aperture Radar Interferometry (InSAR) is an 

all-time and all-weather remote-sensing technique and can 

be used for generating digital elevation models (DEMs) or 

detecting surface deformation [1], [2]. However, phase noise 

cannot be avoided due to the existence of thermal noise, 

temporal decorrelation, spatial decorrelation, and mis-

coregistration, etc., which increases the difficulty of phase 

unwrapping and reduces the accuracy of DEM and deformation 

reconstruction [3]. Consequently, noise reduction is crucial for 

improving the quality of SAR interferograms before phase 

unwrapping [4]. 

Traditional phase noise reduction approaches are usually 

divided into two categories: spatial-domain filtering and 

transform-domain filtering. In spatial-domain filtering, local 

phase estimation methods are widely used. Classic boxcar 

filters estimate the parameters over a rectangular sliding 

window and require the samples to be homogeneous [5]. The 

algorithms proposed in [6], [7] are based on the noise subspace 

and the projection of the signal subspace. The subspace of noise 

is obtained from a local window after coarse co-registration, 

and the window size may influence its performance. Meanwhile, 

it is difficult to estimate the signal subspace dimension in 

regions with low coherence. The complex-valued Markov 

random field filter (MRF) is employed in [8],[9] to estimate the 

noise-free phase term by minimizing the energy function in a 

local window. The energy function is further developed in [10] 

based on a joint probability and the phase value is computed 

with a genetic algorithm. Nevertheless, some complicated areas 

could be over-smoothed due to the fixed local window for MRF 

methods. A common issue with these local phase estimation 

methods is that they have difficulty in adapting to different 

features with the fixed window size.  

The Lee filter is designed to achieve a balance between 

residual noise and detail information loss [5], where a window 

with the adjustable size and direction is employed according to 

the local gradient of the interferogram. However, this method 

only calculates 16 discrete orientations, which brings distortion 

to curved fringes. Following the Lee filter, the Intensity-Driven 

Adaptive-Neighborhood (IDAN) method carries out a complex 

multi-look operation on an adaptive neighborhood [11], where 

the adaptive-window filters can achieve a tradeoff between 

noise reduction and detail preservation. However, noise 

reduction is not effective because the adjacent pixels are limited 

within the local window.  

To overcome the limitation of estimating the phase in a local 

window, non-local phase estimation is proposed [12], [13], 

which suppresses noise while preserving textures utilizing 

weighted averaging of similar pixels, with phase similarity 

calculated by a matching window. In [14], a refined non-local 

filter is proposed, which measures the similarity between the 

central pixel and the remaining pixels in the matching window 

by a normalized probability density function. However, non-

local methods cannot provide accurate similarity estimation in 

highly sloped terrains because a fixed-size matching window is 

used to capture the varied fringe curvature [15].  

On the other hand, the transform domain filtering approach 

mainly includes the wavelet transform and the frequency 

transform. In [16], a complex wavelet interferometric phase 

filter (WInPF) is implemented utilizing the discrete wavelet 

packet transform decomposition to extract and amplify the 

useful signal in the interferogram. There are several adapted 

versions of the WInPF, such as those studied in [17], [18], 
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where by employing the Wiener filter or simultaneous detection 

and estimation techniques, better performance is achieved in 

filtering complicated areas. The phase information and noise 

can be more easily separated in the wavelet domain, but the 

wavelet domain filters greatly depend on the scales of wavelet 

decomposition and the threshold of wavelet coefficients.  

For the frequency domain methods, the Goldstein filter 

suppresses phase noise by enhancing the main frequency 

components, but its performance is affected by the window size 

and filter parameter [19]. A modification is proposed in [20] to 

construct a filtering parameter dependent on the coherence 

value to keep more texture details in the interferogram. 

However, a biased coherence estimation result usually leads to 

an inaccurate estimation of the filtering parameter. To solve this 

problem, the filtering parameter is modified using an optimal 

nonlinear model with homogenous regions and a bootstrapping 

technique [21], or using a combination of correlation and multi-

look factors [22], [23]. These extended Goldstein filters 

preserve phase fringes well, but frequency domain filtering still 

suppresses high-frequency components of fringes, resulting in 

the loss of fringe details. 

In order to further enhance the fringe edge-preserving ability, 

E. Trouve proposed a local frequency compensation filtering 

algorithm [24]. The local fringe frequency (LFF) is removed in 

each local window, and then the residual phase is smoothed. 

Finally, the removed fringe frequency is added to the filtered 

residual phase to generate the filtered interferogram [25]. In 

[26], an adaptive multiresolution technique was proposed to 

modify the LFF estimation by setting a threshold to eliminate 

the “bad LFF values” which have a large difference compared 
to its neighboring pixels. It provides better protection for phase 

fringes, but it is still hard to estimate the fringe frequency for 

highly sloped terrain. In [27], multi-frequency data is used to 

achieve an accurate LFF in abruptly changing terrain and the 

Goldstein filter is applied to the residual phase. In [28], the local 

fringe frequency is removed before Goldstein filtering and the 

filter parameters are then optimized, which improves edge 

preservation. Nevertheless, the performance of local frequency 

compensation filters relies on frequency estimation accuracy, 

which is heavily influenced by phase noise and window size. 

Window size selection is an important issue for traditional 

noise reduction methods. A large window denoises better at the 

cost of losing details such as edges, vice versa [29]. However, 

it is difficult to select a suitable window for all pixels of the 

interferogram due to the diversity of terrain. Although the 

adaptive-window filter can be used according to the coherence 

or other criterions, it only reaches a tradeoff between noise 

reduction and edge preservation. So the performance 

improvement from adaptive window is limited for complicated 

terrains. Fortunately, the phase noise statistics are more stable 

than the phase fringes since noise is almost from the same types 

of error sources, and thus estimation of phase noise could be 

easier than estimating phase fringes in areas with complicated 

terrains [30]. Therefore, in this work, we intend to estimate the 

phase noise first and then subtract it from the noisy phase to 

obtain the denoised one. 

In recent years, convolutional neural networks (CNNs) has 

been developing rapidly and widely applied to image noise 

reduction [31]. CNNs have a powerful mapping approximation 

capability and can extract the noise characteristics from 

massive training data [32], [33]. For noise reduction in optical 

images, a large-scale multi-layer perceptron model is adopted 

in [34] with superior performance to traditional methods such 

as block-matching and 3-D filtering (BM3D) in image detail 

retention [35]. The denoising convolutional neural network 

(DnCNN) proposed in [36] can quickly and steadily remove 

optical image noises. In addition, sparse encoding [37], 

Trainable Nonlinear Reaction Diffusion (TNRD) [38], and self-

coder [39] have achieved good results in optical image 

denoising through phase training. Among these methods, 

DnCNN is more effective in removing Gaussian noise from 

optical images. 

In this paper, a new approach to remove the interferometric 

phase noise via a modified DnCNN is presented. The original 

DnCNN is modified to adapt to interferometric phase noise 

estimation and the denoised phase is obtained by removing the 

estimated noise from the original noisy interferogram. In the 

proposed method, the number of samples used for noise training, 

300000 here, is huge and all pixels of noisy interferogram are 

exploited in phase noise estimation with the well-trained 

network. Therefore, it can effectively suppress noise while 

preserving phase fringe edges. 

The remainder of this paper is organized as follows. The 

interferometric phase denoising method based on the modified 

DnCNN is proposed in Section II. Experimental results based 

on both simulated and real SAR data are presented in Section 

III, where the results are compared with those of slope adaptive 

filtering and improved Goldstein filtering algorithms. 

Conclusions are drawn in Section IV. 

II. PRINCIPLE OF MODIFIED INTERFEROMETRIC PHASE NOISE 

REDUCTION METHOD 

Traditional denoising methods normally estimate the 

interferometric fringes directly from the noisy interferogram 

with the pixels in a window. However, it is difficult to extract 

all of the fringes accurately especially for a complicated terrain 

interferogram with low coherence or low signal-to-noise ratio 

(SNR). As mentioned earlier, a new strategy is adopted in this 

work, where noise is estimated first and then removed from the 

image. Given the strong mapping approximation ability of CNN, 

it is suitable for processing low-SNR interferograms with heavy 

phase noise. Therefore, estimation of noise is achieved by 

modifying a DnCNN in this paper. 

A. DnCNN Denoising Network [36] 

DnCNN is modified from the VGG network [40] for image 

denoising. VGG is a typical CNN architecture proposed by the 

Visual Geometry Group of Oxford at ILSVRC 2014 based on 

the Alexnet network. Compared with the Alexnet network, 

VGG uses several groups of small convolution filters with a 

size of 3×3 instead of larger convolution filters. Under the 

condition of the same receptive field, the network expression 

capability is improved by increasing the network depth.  
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Fig. 1.  The structure of DnCNN. 

 

 
Fig. 2.  The structure of IPDnCNN. 

 

DnCNN removes all of the pooling layers in a VGG network, 

learns the noise distribution, and combines batch normalization 

(BN) for fast training and better denoising. It sets the depth of 

the network according to the patch size used in the most 

advanced denoising algorithms [36]. The network structure of 

DnCNN is shown in Fig. 1. Assuming that the original image 

size is N N c  , the corresponding output is noise with the 

same size. c  is the number of channels, i.e., 1c   in grey case 

and 3c   in color case. The size of the convolution filter is 

3 3 , the number of feature maps is 64, and the size of the 

receptive field is (2 1) (2 1)d d    for a depth of d . 

Denote the noisy image by y , the clean image by x , and the 

noise by n . Then, the input of the DnCNN model is y x n  . 

Unlike most denoising networks, such as multi-layer perceptron 

(MLP) [34], which trains the mapping function ( )F y x  to 

estimate the clean image directly, the DnCNN uses the residual 

learning method to estimate noise by training the mapping 

function ( )G y n , and then obtain a clean image by applying 

( )x y G y  . The loss function in the DnCNN is the mean 

squared error of the noise 

 
( ) ( ) ( ) 2

1

1
( ) ( ( ) ( ))

2

N
i i i

i

J G y y x
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               (1) 

where   is the trainable parameters to be learned, 
( )i

x and 
( )i

y  

are the -i th  clean image and noisy image, respectively, and 
( )( )i

G y  is the noise trained by the -i th  noisy image.  

B. Interferometric Phase Denoising Network Based on 

DnCNN  

Interferometric noise is considered as additive complex 

Gaussian in complex interferogram [5], which makes it suitable 

for denoising with the residual learning strategy [36]. However, 

significant errors occur when DnCNN, the classic optical image 

denoising network, is directly used to process the 

interferometric phase. By modifying DnCNN, an 

interferometric phase denoising network (IPDnCNN) is 

designed to suppress phase noise in a more robust way. The 

network structure of IPDnCNN is shown in Fig. 2, where sine 

and cosine values of phase are used as the input of the network 

and two more layers are added. Due to the wrapping 

characteristic of the interferometric phase, if we use the 

interferometric phase value as the input of the network directly, 

the fringe edge tends to be judged as noise, which leads to 

unstable network training and poor denoising result. To avoid 

the instability of the fringe edge on network training, IPDnCNN 

uses sine and cosine values of the interferometric phase as input 

to the network. Fig. 3 displays a cross-section of several fringes 

 17 layers  
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together with its sine and cosine values. As can be seen, phase 

jumps appear in the fringe edges. These jumps are similar to the 

characteristics of phase noise. Meanwhile, sine and cosine 

values are continuous even at fringe edges; thus, they won't be 

confused with the noise in network training. 

 
Fig. 3.  Inputs of DnCNN and IPDnCNN. 

 

Therefore, with the introduction of sine and cosine values of 

the interferometric phase, the number of channels becomes two 

in the proposed IPDnCNN, i.e., 2c  . Assuming noise 1n  and 

2n  are outputs of the IPDnCNN, the interferometric phase   

is calculated by 

 1(cos( ) (sin( ) ))angle x j x n                           (2) 

where = -1j  and 

1

2

sin( )=sin( )

cos( )=cos( )

x y n

x y n

 
  

                              (3) 

The loss function of IPDnCNN is adopted to learn the 

residual mapping for prediction, which is changed as 
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         (4) 

where ( )

1

i
n  and ( )

2

i
n  are obtained through the mapping

( ) ( )(sin( ),cos( ))i i
G y y . 

For general optical image denoising tasks, DnCNN typically 

sets depth as 17 with a reception field of 35 35 . Since the 

interferometric phase usually has a low SNR, a larger receptive 

field is needed to capture enough spatial information for 

denoising. In order to balance efficiency and performance, the 

depth of IPDnCNN in this work is increased to 19 with a 

receptive field size of 39 39 . Simulation experiments show 
further increase in network depth will increase computational 

cost, but without clear improvement in denoising performance 

[36]. The first layer is a convolution layer with 64 filters of size 

3 3 2  . 64 feature maps are obtained and the rectified linear 
units (Relu) activation is applied for nonlinearity. 64 filters of 

size 3 3 64   are utilized for convolution from the second 

layer to the 18th layer, and the batch normalization technique 

(BN) is used for 64 feature maps to accelerate convergence at 

these 17 layers where Relu activation works. The last layer uses 

two filters of size 3 3 64   to reconstruct two noisy images. 

Then, denoised sine and cosine images are obtained by 

removing the estimated noise from the noisy images, and finally, 

the denoised interferometric phase   is calculated according to 

(2). 

C. Interferometric Phase Denoising Based on IPDnCNN 

Based on IPDnCNN, an interferometric phase denoising 

method is proposed. The phase noise is predicted by the 

network and then removed from the noisy phase to obtain the 

latent clean phase. As shown in Fig. 4, IPDnCNN is mainly 

composed of three steps: firstly, a large amount of training data 

with different noise intensity is prepared; then, the network is 

trained many epochs, including adjustment of parameters and 

other experiments; finally, the denoising network is tested with 

both simulated and real data. 

Interferometric phase data 

simulation

Training 

dataset

Testing 

dataset

Phase noise

Noisy interferometric 

phase

-

Denoised 

interferometric phase

Interferometric phase denoising 

network

 
Fig.4.  The flowchart of IPDnCNN. 

1) Data preparation 

Datasets are particularly critical for deep learning. 

Reasonable training data of IPDnCNN is produced through 

simulation. The training datasets are generated according to the 

observation geometry of InSAR using the real DEM data in 

Lanzhou, China. The simulation parameters are listed in Table 

1. 
TABLE I 

Simulation Parameters 

Parameters Value 

Baseline 600m 

Wavelength 0.05666m 

Near range 630km 

Baseline obliquity angle 10° 

Slant range resolution 1m 

view angle 30° 

 
The process of data preparation is shown in Fig. 5. Firstly, 

the slant distance r  is calculated with DEMs and the satellite 

position. The clean wrapped phase can be expressed as: 

 
2

mod ,  2
r  


   

 
                        (5) 

where   is wavelength, mod( )  operator retains the principal 

value, and the actual phase is wrapped within the period 

( , ]  . 

To train the network for denoising with different noise levels, 

random complex Gaussian noise is added during SAR image 
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simulation [42]. Then, the noisy interferometric phase is 

obtained through a complex conjugate cross-product of two 

SAR images. 

Calculating  range 

difference
Calculating backscattering 

coefficient

SAR complex image 

simulation

DEM Satellite position

Clean non-fuzzy 

phase

Phase wrapping

Complex 

Gaussian noise

SAR  image 

interferometric pair

Clean wrapped 

phase

Noisy wrapped 

phase

Training data

 
Fig. 5.  Process of training data generation. 

Following the steps above, 6000 groups of clean and noisy 

wrapped phases of size 591 591 are generated. To reduce 

overfitting issues during the training process, sufficient training 

data is needed. Augmentation techniques [43] including 

horizontal flip, vertical flip, rotation, and so on, are used to 

expand the training set. The patch size of the DnCNN is 

40 40 . It is increased to 80 80 in our method to capture 

more context information since the interferometric phase 

usually has a low SNR. After these steps, more image patches 

are produced. In this work, 300000 groups of phase patches are 

used as training data and 30000 groups are used as testing data. 

Four typical training samples are shown in Fig. 6. 

2) Network training 

The sine and cosine values of the noisy interferometric phase 

are input to the network. The output is obtained by subtracting 

sine and cosine values of the clean interferometric phase from 

those of the noisy interferometric phase. 

Some network parameters are set according to the DnCNN 

network to learn the residual map for predicting phase noise. 40 

epochs are trained using the stochastic gradient descent (SGD) 

method. The learning rate is manually adjusted based on 

empirical value according to the DnCNN network. The learning 

rate of the first 30 epochs is set as 0.001 to speed up the 

convergence. The learning rate in the last 10 epochs is 0.0001 

to reduce the final error. Instead of setting a dropout rate to 

prevent overfitting, the BN and residual learning strategy are 

employed to stabilize and enhance the training performance 

[36]. The initial value of the network weight matrix in SGD also 

has a significant impact on the training process. For multi-layer 

networks, the initial values should be random while ensuring 

that the input and output of each hidden layer have the same 

statistical characteristics [41]. In order to speed up the 

convergence, the mini-batch size is set as 32, which means that 

32 interferometric phases are randomly fed into the network 

each time.  

During the training process, the value of the loss function 

given in (4) is observed. The network is said to have converged 

if the value of loss function gradually becomes smaller and 

finally stabilizes. The DnCNN method requires a GPU that is 

able to accommodate the computational load. Based on the 

Hardware Environment of DnCNN, all the experiments are 

implemented on a PC with Intel(R) Core(TM) i5-

5200U@2.2GHz CPU and a Quadro P4000 GPU. The training 

in this experiment took about 3 days. 

3) Network testing 

Using the trained network, the simulated phase data, not 

involved in the training, are used to test the generality of 

IPDnCNN. The sine and cosine values of the noisy phase are 

fed into the trained IPDnCNN through two channels, and then 

the noise is obtained at the output. The interferometric phase 

after denoising is reconstructed according to (2) and (3). The 

performance is evaluated by phase MSE and residual points. 

To test the generalization ability of the trained network, extra 

100 groups of data simulated for different occasions are used to 

evaluate its ability to handle unknown phase noise. The 

coherence value of simulated data is randomly set from 0.03 to 

0.97. Four groups of noisy phases and denoised results are 

provided in Fig. 7. The evaluation results are shown in TABLE 

II. After phase denoising using IPDnCNN, the average number 

of phase residues of 100 denoised images is improved from 

1528 to 13, EPI from 4.119 to 0.957 and MSE from 1.338 to 

0.134. It shows that the trained network performs well in 

handling more general cases.  
TABLE II 

EVALUATION RESULT 

Iterferogram Residues EPI MSE 

Noisy phase 1528 4.119 1.338 

Denoised phase 13 0.957 0.134 
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(a) (b) (c) (d) 

Fig. 6.  Different training samples of clean/noisy interferometric fringe. 

 

    

    

(a) (b) (c) (d) 

Fig. 7.  Four groups of noisy interferometric fringe and denoised result. 

 

 

III. RESULTS AND ANALYSIS  

In this section, both simulated and real interferograms are 

used to demonstrate the performance of the proposed phase 

denoising method. The training data sets are the same as those 

in Section II, which is simulated according to the observation 

geometry of InSAR and the real DEM data. The simulation 

parameters are shown in Table 1. The slope adaptive filter [27] 

and improved Goldstein filter [28] are used for comparison. 

A. Basic experiments 

SAR complex images of mountains, in Lanzhou, China, are 

simulated with the method in [42] and noisy interferometric 

phase with 591 × 591 pixels is produced. The noise-free phase 

is created with the same steps as in Section II. Clean and noisy 

phases are respectively shown in Fig. 8(a) and (b). As can be 

seen in Fig. 8(b), the phase fringes are submerged by noise 

because of low coherence. 

Slope adaptive filter, improved Goldstein filter, DnCNN and 

the proposed IPDnCNN are applied to this simulated dataset. 

The window size for the former two filters is set as 11 × 11 and 

32 × 32, whereas the DnCNN and IPDnCNN methods do not 

need a filter window. The results are shown in Fig. 9. In each 

group, the left image is the denoised phase, and the right one is 

the phase difference between denoised and clean phases, as well 

as the distribution of residual points. Among them, the purple 

dots represent positive residual points, while the blue points 

represent negative ones. 

   
(a)                                                   (b) 

Fig. 8.  Simulated data: (a) clean phase, (b) noisy phase. 

Clearly, the fringes in Fig. 9 (d) contain less noise than those 

in Fig. 9 (a)–(c), especially in the region with dense 

interferometric fringes. In Fig. 9(a), the slope adaptive filter can 

protect fringe edges better, but leaving more phase residues. In 

Fig. 9(b), the improved Goldstein filter has excessive filtering 

strength in dense fringe areas, leading to broken fringes. In Fig. 

9(c), for the phase-as-input DnCNN method, significant errors 

have resulted in fringe edges because of misjudging the phase 

jumps as noise. It is obvious that there are too many errors when 

DnCNN is applied directly to the interferometric phase. So the 

modifications in IPDnCNN are necessary.  

Comparing the result of the IPDnCNN method in Fig. 9(d) 

with the existing filters, the noise reduction effect is significant, 

and the fringes are much better preserved. From the phase error 

diagrams, it is clear that the IPDnCNN method performs better 

than the other filters. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 9.  Denoised phase and phase error: (a) slope adaptive filter 

with window size 11 × 11, (b) improved Goldstein filter with window 

size 11 × 11, (c) the DnCNN method, (d) the IPDnCNN method. 

 

Fig. 10 displays a cross-section through the denoised phase 

and phase error map in region A. As clearly shown, in this low-

coherence area, the result of the IPDnCNN method is most 

consistent with the original clean phase data. 

 

 
(a) 

 
(b) 

Fig. 10.  Cross-sections: (a) denoised phase, (b) phase error. 

 

In order to quantitatively evaluate the results, mean square 

error (MSE), edge preservation index (EPI) and residues are 

used as the criteria [28]. MSE is to measure the deviation of the 

denoised phase from the clean one, given by 

   2

arg exp ( , ) ( , )
MSE

clean
j i j j i j

M

 



         (6) 

where ( , )i j  represents the denoised phase, ( , )
clean

i j  is the 

clean phase, and M  is the number of pixels. 

EPI is calculated by 

        
        

, 1, , , 1
EPI

, 1, , , 1clean clean clean clean

i j i j i j i j

i j i j i j i j

   

   

    


    




 

(7) 

which is an indicator for performance in fringe and edge 

preservation and a value closer to 1 means a better edge 

preservation result. 

Residues are the pixels where the gradient integral of 

adjacent pixels in a certain direction is not zero. More residues 

bring more difficulties in phase unwrapping, and thus reducing 

residues is one of the main purposes for phase denoising. 

The evaluation results are presented in TABLE III. In this 

dense area, traditional filters using a small filtering window (11

×11) perform better than using a large window (32×32). In 

terms of residues in the interferogram, the slope adaptive filter 

(11×11), improved Goldstein filter (11×11) and the DnCNN 

method have produced reductions of 90.12%, 97.15% and 

84.61%, respectively, while by the IPDnCNN method it is 

99.95%. The phase EPI for the IPDnCNN method is closer to 1 

compared with the other methods, which means that it has a 

better performance in fringe preservation. Moreover, the MSE 

of the IPDnCNN method is the smallest due to an excellent 

phase smoothing performance.  
TABLE III 

EVALUATION RESULTS OF SIMULATED DATA 

Iterferogram Residues EPI MSE 

Clean phase 0 1 0 

Noisy phase 103767 2.3598 2.3416 

Slope adaptive filter (11×11) 10253 1.1548 0.4103 

Slope adaptive filter (32×32) 4910 1.2024 0.4636 

Improved Goldstein filter (11×11) 2954 1.0402 0.9302 

Improved Goldstein filter (32×32) 2261 1.0614 0.9600 

DnCNN method 15970 0.7744 0.6453 

IPDnCNN method 48 0.9998 0.0793 

 

B. Adaptability experiments 

In order to compare the adaptability of different methods 

under different noise levels, 30 additional interferograms with 

different coherence values from 0.38 to 0.83 are tested and the 

MSE of different methods are shown in Fig. 11. It can be seen 

that the proposed method always has the lowest MSE. 

Considering the better MSE of a smaller window for traditional 

filters, the 11 × 11 window size is used in them. 
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Fig. 11.  MSE under different coherence values.  

 

For a detailed comparison, we present the denoised results of 

a low-coherence interferogram (coherence=0.39) and a high-

coherence interferogram (coherence=0.71), as shown in Fig. 12. 

The proposed method suppresses noise effectively even for the 

low coherence case while the conditional filters are worse.  

The evaluation results are shown in TABLE IV. According 

to the results above, the proposed method has the best 

performance on noise reduction (smallest MSE and least 

Residues) as well as fringe preservation (EPI closest to 1).  

. 

 

    

    

(a) (b) (c) (d) 

Fig. 12. Noisy and denoised phase (top: low coherence, bottom: high coherence): (a) noisy phase, (b) slope adaptive filter, (c) improved 

Goldstein filter, (d) the IPDnCNN method. 

 

TABLE.Re. IV 

Evaluation Results of Simulated Data 

Interferogram 
Interferogram with low coherence Interferogram with high coherence 

Residues EPI MSE Residues EPI MSE 

Clean phase 0 1 0 0 1 0 

Noisy phase 1068 2.484 2.048 128 1.591 0.476 

Slope adaptive filter 488 1.103 0.307 0 0.976 0.082 

Improved Goldstein filter 92 1.033 0.765 0 0.990 0.601 

IPDnCNN method 0 1.005 0.069 0 1.003 0.014 

 

C. Experiments with real data 

1) ERS SAR data  

ERS SAR images over the ENTA Volcano in September and 

October 2000 are used as test data. The interferometric phase 

image of size 400 × 400 has dense fringes, and the mean 

coherence value is only 0.537. The interferometric phase and 

the coherence value are shown in Fig. 13. 
 

(a) (b) 
Fig. 13.  ERS Interferogram: (a) interferometric phase, (b) 

coherence coefficient 
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The denoised results by the three methods are shown in Fig. 

14. Each group contains the denoised phase, the enlarged area 

in the red rectangle, and the residue distribution. The 

interferometric fringes in the enlarged area are dense with a low 

coherence value of 0.419. It can be seen that the IPDnCNN 

method has reduced noise significantly while preserving the 

edge, whereas the slope adaptive filter and the improved 

Goldstein filter are less capable of denoising the interferometric 

phase.

 

   

   

   
(a) (b) (d) 

Fig. 14. Denoised results of different methods: (a) slope adaptive filter, (b) improved Goldstein filter, (c) the IPDnCNN method. 

 

To further verify the improvement produced by the 

IPDnCNN method, a cross-section is extracted in region B. As 

shown in Fig. 15, the phase obtained from the IPDnCNN 

method is relatively continuous, while those obtained from the 

other three still show some abnormality caused by residues and 

edge blur. 

 

 
Fig. 15.  Cross-sections through the denoised phase of real data. 

 

A quantitative evaluation is also performed to compare the 

denoised results. Due to the lack of clean phase, only the 

number of residuals and the residual phase standard deviation 

(RPSD) are calculated. The RPSD is carried out after removal 

of the local fringe frequency from the initial interferometric 

phase, and it reflects the smoothness of the residual phase. A 

smaller RPSD means a smoother phase with less noise. It is 

calculated using the following equation  

    2

, ,

RPSD
1

r r

N

i j i j

N

 





                    (8) 

where  ,
r

i j  is the residual phase obtained by removing the 

LFF from denoised phase,  ,
r

i j  is the linear phase ramp in a 

moving window of size 3×3, and N  is the number of pixels in 

the whole image. 

To reduce the possible effect of artifacts, we only evaluated 

the denoising performance in the yellow rectangle. 
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TABLE V 

EVALUATION RESULTS OF REAL DATA 

Iterferogram Residues RPSD 

Noisy phase 1461 1.6586 

Slope adaptive filter 78 1.1230 

Improved Goldstein filter 19 1.0936 

IPDnCNN method 0 1.0694 

 

As shown in Table V, all methods can significantly reduce 

the number of residual points. Residues of the slope adaptive 

filter, improved Goldstein filter and the IPDnCNN method have 

been reduced by 94.6%, 98.7% and 100% respectively. Again, 

the IPDnCNN method gives the best result. For the RPSD 

results, we have a similar observation. 

2) NSAR data  

The interferograms obtained from a reservoir region in 

Shanxi, China, recorded by the NSAR system developed by the 

Nanjing Research Institute of Electronics Technology in March 

2017, are chosen to conduct another experiment. The size of the 

observation area is of 775 × 775 pixels, and the terrain features 

are significantly different from that in the mountain area. The 

left side of this area is the reservoir. The slope of the reservoir 

dam is large, resulting in phase overlap. The amplitude image, 

coherence coefficient, interferometric fringes and denoised 

results are shown in Fig. 16. 

Since the airborne data has high SNR and sparse stripes, all 

three methods have achieved a good noise reduction effect. In 

the low coherence region marked with the red box, the result of 

the IPDnCNN method, as shown in Fig. 16(g), contains less 

noise than that of the other two shown in Fig. 16(e) ~ (f). Fig. 

17 shows a cross-section of the tangent C. It is obvious that the 

denoised phase from the IPDnCNN method is the cleanest and 

most continuous one, while those from the slope adaptive and 

improved Goldstein filters still show many unwanted phase 

jumps.  

Since the signal in the water region is too weak to form 

coherent fringes, this region is excluded during quantitative 

evaluation, and the evaluation results are given in Table VI. 

Similar to the results of ERS data, the proposed method has 

produced the lest residues and smallest RPSD. It not only 

reduces the phase noise more effectively, but also preserves 

local fringe better. 

 

 

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Fig. 16.  NSAR data and the results: (a) optical image; (b) SAR amplitude image, (c) coherence coefficient, (d) interferometric phase, and 

denoised phase with the (e) slope adaptive filter, (f) improved Goldstein filter, (g) IPDnCNN methods. 
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Fig. 17.  Cross-sections through denoised phase of airborne data. 

 

TABLE VI 

EVALUATION RESULTS OF AIRBORNE DATA 

Iterferogram Residues RPSD 

Noisy phase 33627 1.1860 

Slope adaptive filter 263 0.3436 

Improved Goldstein filter 74 0.3407 

IPDnCNN method 22 0.3258 

 

For traditional filtering methods, the phase denoising 

performance is greatly affected by the filter window, which 

cannot make full use of the information contained in the entire 

image. IPDnCNN extracts image features by training massive 

data through a non-linear network structure and estimate phase 

noise with the entire image’s pixels. IPDnCNN not only 

describes the noise more precisely but also makes full use of the 

entire image, so it achieves a clear improvement in residual 

reduction and edge preservation.  

To compare computational costs for the three methods, Table 

VI shows the running time of each experiment in this section 

using different methods on a computer with Intel(R) Core(TM) 

i5-5200U@2.2GHz CPU.  

 

TABLE VI 

RUNNING TIME (S) 

Method 
Simulated 

data 

ERS data Airborn 

data 

Slope adaptive filter 383 322 317 

Improved Goldstein filter 479 0.368 466 

IPDnCNN method 85 48 125 

 

As shown, although data training takes a lot of time, once the 

network is well-trained, the proposed IPDnCNN is more 

efficient than traditional methods. 

CONCLUSIONS 

In this paper, the convolutional neural network is introduced 

to InSAR phase denoising. In contrast to the existing phase 

denoising methods which directly predict the complex phase 

fringes, the proposed method estimates phase noise first and 

then removes them from the noisy interferogram. The proposed 

IPDnCNN is constructed based on DnCNN. Sine and cosine 

values of the interferometric phase are used as the input to the 

network so that it can avoid misjudgment of phase fringe edges 

in noise detection. The loss function is redesigned and network 

training parameters are modified to deal with the phase noise 

reduction problem. Moreover, the proposed IPDnCNN 

increases the patch size and two convolution layers to utilize the 

phase information more effectively. As demonstrated by 

experimental results using both simulated and real SAR data, 

the proposed method has achieved the best performance in 

noise reduction while preserving fringe edges. Like other deep 

learning methods, the data training process is time-consuming, 

but a well-trained network can effectively improve the 

efficiency of data processing. 

In the current work, phase noise and clean phase are used as 

training samples. As part of our future work, we will try to 

improve the IPDnDNN model to divide the InSAR 

interferogram into trip point, noise point, overlap mask point, 

shadow point, and so on, so that the overlap and shadow areas 

can be detected in advance to improve the quality of the 

denoised phase. 
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