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ABSTRACT: 

Marine diesel engines, which provide main power source for ships, mainly contribute to air 

pollution in ports and coastal areas. Thus there is an increasing demand on tightening the emission 

standards for marine diesel engines, which necessitates the research on various emission reduction 

strategies. This review covers emission regulations and emission factors (EFs), environmental 

effects and available emission reduction solutions for marine diesel engines. Not only the 

establishment of the emission control areas (ECAs) in the regulations but also many experiments 

show high concerns about the sulfur limits in fuels, sulfur oxides (SOx) and nitrogen oxides (NOx) 

emissions. Research results reveal that NOx emissions from marine diesel engines account for 50% 

of total NOx in harbors and coastal regions. Sulfur content in fuel oil is an important parameter 

index that determines the development direction of emission control technologies. Despites some 

issues, biodiesel, methanol and liquefied nature gas (LNG) play their important roles in reducing 
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emissions as well as in replacing fossil energy, being promising fuels for marine diesel engines. 

Fuel-water emulsion (FWE) and exhaust gas recirculation (EGR) are effective treatment option for 

NOx emissions control. Common rail fuel injection is an effective fuel injection strategy to achieve 

simultaneous reductions in particulate matter (PM) and NOx. Selective catalytic reduction (SCR) 

and wet scrubbing are the most mature and effective exhaust aftertreatment methods for marine 

diesel engines,  which show 90% De-NOx efficiency and 95% De-SOx efficiency. It can be 

concluded that the integrated multi-pollutant treatment for ship emissions holds great promise. 
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1. Introduction 

Marine transportation has the advantages of large carrying capacity, high safety and low 

operating cost compared to other transportations. However, in spite of these advantages, massive 

NOx, PM and SOx emissions emitted from marine diesel engines cause serious environmental 

pollutions in ports and coastal areas [1-3]. Due to the characteristics of high mobility, large area and 

long duration of ship activities, the impact on the environment and human health is intensified [4]. 

Additionally, compared to automotive fuels, the quality of marine fuels is poor, which contributes to 

escalated emissions. For example, heavy fuel oil (HFO) for propulsion of the ocean-going ships, is 

the lowest-grade of oil [5], and can produce high exhaust emissions [6]. Marine diesel engines emit 

approximately 20 million tonnes of NOx, 10 million tonnes of SOx and 1 million tonnes of PM 

every year [7]. Moreover, there is growing concern about greenhouse gas (GHG) emissions from 

ship engines [8, 9]. NOx, sulfur dioxide (SO2), and carbon dioxide (CO2) emitted by ships account 

for 15%, 4-9%, and 2.7% of global anthropogenic pollution, respectively [10]. With the growth of 



shipping industry and business activities, more gaseous and particle emissions from maritime 

transportation will be discharged in the forthcoming years.  

To address this issue, the International Maritime Organization (IMO) has implemented the 

Regulations for the Prevention of Air Pollution from Ships (MARPOL 73/78 Annex VI). 

Governments have also introduced regional ship emission standards. In recent years, the European 

Union (EU) and the United States (US) have updated their respective inland river ship emission 

standards, and China has also promulgated the national standard for ship engine emission control 

for the first time. The controlled emissions include not only NOx, PM, SOx, carbon monoxide (CO), 

hydrocarbon (HC) and methane (CH4), but also particle number (PN)[10]. 

On the other hand, there is an increasing demand for energy because of the increase of 

shipping activities. The annual crude oil used in marine diesel engines is approximately 60 million 

barrels [12]. Hence, considering the non-renewability of fossil fuels, it has become essential to seek 

alternate fuels to meet the demand of shipping market. At present, the main alternate fuels 

commercially available for marine diesel engines include biodiesel, natural gas and methanol. 

Among them, biodiesel has several advantages such as renewability, compatibility of existing 

engines, low toxicity and environmentally friendly [13-15]. Biodiesel can be directly used for ship 

propulsion without modifying the engine structure. Use of biodiesel is capable of decreasing PM 

emission, but NOx emission may increase [16,17]. Anyway, biodiesel is considered as a most 

promising and attractive alternative [5,18]. Methanol is a technically feasible option for reducing 

ship emissions and there does not exist major problems in the supply chain [19]. Similar to 

methanol, natural gas can reduce both NOx emission and PM emission [20,21]. It is also easy to see 

that lower sulfur content is a common feature of these clean fuels. In fact, the application of these 



alternative fuels in marine diesel engines contributes to alleviating energy shortage as well as 

emissions. 

In order to deal with increasingly stringent emission regulations, three strategies for emission 

reductions are available for marine diesel engines: fuel technologies, in-cylinder purification and 

exhaust gas aftertreatment[22]. In fuel technologies, the clean fuels in different proportions are 

delivered to intake ports or cylinders for combustion and if necessary, some additives are added to 

fuels [23-25]. As for in-cylinder purification, combustion optimization, addition of water and EGR 

are adopted. Exhaust gas aftertreatment can effectively reduce emissions whereas there is almost no 

penalty in the engine power and fuel economy. Among them, SCR is used to decrease NOx 

emission and Diesel particulate filter (DPF) is used to remove PM emission. In addition, a scrubber 

installed on a large ship as an aftertreatment device, can effectively remove SOx emissions [26-28].  

The above emission control technologies are not used in isolation. The choices depend on 

many factors, such as the emission levels of old diesel engines and newly produced diesel engines, 

emission regulations, classification of engine use, costs and environmental effects. Nevertheless the 

combination and integration of multiple emission reduction technologies provide promising 

strategies to meet stricter emission regulations. This has great significance for global and regional 

pollutant prevention and control, and has remarkable social and ecological environmental benefits. 

In this paper, the emission factors, environmental effects and control technologies for marine diesel 

engines are reviewed and presented. The purpose of this paper is to provide some information 

related to air pollution from marine diesel engines and emission reduction strategies for researchers, 

engineers and ship owners. 

2. Emissions from marine diesel engines 



  In this section, firstly, the current emission regulations for marine diesel engines are listed. 

Then, the results of emission levels of marine diesel engines and the effects on environmental 

pollution are presented. Besides, regulations and emissions levels of ship diesel engines and road 

diesel engines are briefly compared. 

2.1. Emission regulations 

Shipping transportation is considered to be a crucial source to global environmental pollution. 

Therefore, it is necessary to regulate and implement international maritime emission standards. In 

the MARPOL, the limits for NOx emissions are presented graphically in Fig.1. The NOx emission 

limits apply to both used and new marine diesel engines. The Tier I and Tier II limits are global, but 

the Tier III standards only apply to NOx ECAs. Additionally, the sulphur content in fuels must be 

limited because it can greatly increase SOx and PM emissions. The sulphur content limit of marine 

fuels in SOx emission control areas (SECAs) decreased from 1.5% to 1% and to 0.1% in 2015, and 

the maximum value globally declined from 4.5% to 3.5% and to 0.5% in 2020[29]. 

 

Fig.1. MARPOL Annex VI NOx emission limits after 2000 (Tier I), after 2011 (Tier II) and after 
2016 (Tier III) [29]. 

  Apart from IMO conventions, other maritime organisations, such as the US Environment 

Protection Agency (EPA), the EU and Ministry of Environmental Protection of China, have also set 

maritime regulations on the reduction of exhaust emissions.  
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In the EPA’s regulation, ship engines are divided into three categories according to 

displacement per cylinder. Category 1 and Category 2 marine diesel engines are used as the 

propulsion power in many kinds of vessels at and around ports. Category 3 includes large diesel 

engines for ocean-going ships. Tables 1-3 show the allowed limits of exhaust emissions according 

to EPA Tier 3-4 for Categories 1 and 2 engines. New category 3 engines are needed to meet Tier 1-3 

NOx emission standards. 

Table 1. EPA Tier 3 standards for marine diesel category 1 commercial engines and diesel 
recreational engines[30]. 

Power (P) Displacement (D) NOx+HC PM Date 

kW dm3 per cylinder g/kWh g/kWh  

P<19 D<0.9 7.5(7.5) a 0.40(0.40) a 2009 

19≤P<75 D<0.9 
7.5(7.5) a 0.30(0.30) a 2009 

4.7(4.7) a 0.30(0.30) a 2014 

75≤P<3700 

D<0.9 5.4(5.8) a 0.14(0.15) a 2012 

0.9≤D<1.2 5.4(5.8) a 0.12(0.14) a 2013 

1.2≤D<2.5 5.6(5.8) a 0.11(0.12) a 2014 

2.5≤D<3.5 5.6(5.8) a 0.11(0.12) a 2013 

3.5≤D<7 5.6(5.8) a 0.11(0.11) a 2012 
a The numbers in parentheses apply to high power density (>35 kW/dm3) engines and diesel recreational engines. 
Table 2. EPA Tier 3 standards for marine diesel category 2 engines [29]. 
Power (P) Displacement (D) NOx+HC PM Date 

kW dm3 per cylinder g/kWh g/kWh  

P<3700 

7≤D<15 6.2 0.14 2013 

15≤D<20 7.0 0.27 2014 

20≤D<25 9.8 0.27 2014 

25≤D<30 11.0 0.27 2014 

Table 3. EPA Tier 4 standards for marine diesel category 1/2 engines[29]. 
Power (P) NOx HC PM Date 

kW g/kWh g/kWh g/kWh  

P≥3700 
1.8 0.19 0.12 2014 

1.8 0.19 0.06 2016 

2000≤P<3700 1.8 0.19 0.04 2014 

1400≤P<2000 1.8 0.19 0.04 2016 

600≤P<1400 1.8 0.19 0.04 2017 



By contrast, except CO limit of 21.1 g/kWh, US EPA & California Emission Standards for 

heavy-duty onroad CI engines effective in 2015 are more stringent, with HC, NOx and PM 

emission limits of 0.19, 0.03 and 0.014 g/kWh respectively [31]. 

EU emission standards for off-road or non-road mobile machinery (NRMM) have evolved 

from Stage II to V. The new emission standard State V, the tightest in the world, comes into effect in 

January 2018-January 2020 for different engine types. Compared with Stage III A standards, EU 

Stage V regulations adopted stricter emission limits for engines used in inland waterway vessels, 

shown in Table 4. It is worth noting that the Stage V regulation differing from other marine 

regulations adopted PN emission limit for engines in inland waterway vessels. 

Table 4. EU stage V emission standards for engines in inland waterway vessels [32]. 
Power (P) CO HC NOx PM PN Date 

kW g/kWh 1/kWh  

19≤P<75 5.00 4.70 a 0.30 - 2019 

75≤P<3700 

5.00 5.40 a 0.14 - 2019 

3.50 1.00 2.10 0.10 - 2019 

3.50 0.19 1.80 0.015 1×1012 2020 
a HC+NOx 

In EU VI emission standards for heavy-duty onroad diesel engines, the limit of CO, HC, NOx, 

PM and PN is 1.5, 0.13, 0.40, 0.01 g/kWh and 8.0×1011
 1/kWh respectively [33]. Obviously, 

emission standards for marine engines are much more relaxed than those for onroad heavy-duty 

diesel engines used in trucks and buses. 

To cut down pollutant emissions from marine engines, China has formulated and adopted some 

regulatory initiatives, such as China I/II Standards, IMO Annex VI Standards and domestic 

Emission Control Areas. China I/II Standards are shown in Tables 5 and 6. China I/II Standards 

apply to propulsion and auxiliary engines installed in inland and coastal vessels. Chinese 

oceangoing vessels and foreign vessels operating within Chinese waters are subject to the IMO 



Annex VI. Starting from September 1, 2018, all diesel engines installed on-board Chinese-flagged 

ships and imported ships applying for domestic trade in the domestic ECAs are required to conform 

to the Annex VI Tier II NOx emission limits. From March 1, 2020, a carriage ban for fuel oils 

containing more than 0.5% sulfur will be enforced for all ships without an exhaust gas cleaning 

system (scrubber) [34]. A 0.1% sulfur limit will also apply to ships entering inland waterways and 

Hainan Island [34].  

Table 5. China I emission standards for marine engines [34]. 
Power (P) Displacement (D) CO NOx+HC CH4

a PM Date 
kW dm3 per cylinder g/kWh  

P≥37 D<0.9 5.0 7.5 1.5 0.40 

2018 

 0.9≤D<1.2 5.0 7.2 1.5 0.30 
 1.2≤D<5 5.0 7.2 1.5 0.20 
 5≤D<15 5.0 7.8 1.5 0.27 

P<3300 15≤D<20 
5.0 8.7 1.6 0.50 

P≥3300 5.0 9.8 1.8 0.50 
 20≤D<25 5.0 9.8 1.8 0.50 
 25≤D<30 5.0 11.0 2.0 0.50 

a Applicable to NG (including dual fuel, DF) engines only. 
Table 6. China II emission standards for marine engines[34]. 

Power (P) Displacement 
(D) 

CO NOx+HC CH4
a PM Date 

kW dm3 per cylinder g/kWh  

P≥37 D<0.9 5.0 5.8 1.0 0.30 

2021 

 0.9≤D<1.2 5.0 5.8 1.0 0.14 

 1.2≤D<5 5.0 5.8 1.0 0.12 

P<2000 

5≤D<15 

5.0 6.2 1.2 0.14 

2000≤P<3700 5.0 7.8 1.5 0.14 

P≥3700 5.0 7.8 1.5 0.27 

P<2000 

15≤D<20 

5.0 7.0 1.5 0.34 

2000≤P<3300 5.0 8.7 1.6 0.50 

P≥3300 5.0 9.8 1.8 0.50 

P<2000 
20≤D<25 

5.0 9.8 1.8 0.27 

P≥2000 5.0 9.8 1.8 0.50 

P<2000 
25≤D<30 

5.0 11.0 2.0 0.27 

P≥2000 5.0 11.0 2.0 0.50 

a Applicable to NG (including dual fuel) engines only 



In comparison to marine engines, China VI emission standards for on-road heavy-duty engines 

are much stricter, and adopted the same limits of CO, HC, NOx, PM and PN as the EU VI emission 

standards [35]. Besides, China VI emission standards for heavy-duty engines also set the NH3 limit 

of 10 ppm [35]. 

It can be seen that the European Union, the United States and China standards cover the four 

basic pollutants CO, HC, NOx and PM. It is worth noting that the EU NRMM Stage V also 

specifically proposed PN control. Compared to China Stage II, both NRMM Stage V and EPA Tier 

4 have further tightened the HC, NOx and PM limits. In addition, China Stage I and Stage II 

separately proposed CH4 emission limits with a range of 1.0-2.0g / kWh. In comparison, the current 

Chinese standards have the most stringent restrictions on CH4 emissions from inland watercraft. 

2.2. Ship EFs 

  EFs have been used to compile inventories of air pollutants and quantify the influences of 

emissions on regional air quality and human health. For ships, there are usually two kinds of 

emission factors: fuel-based and power-based. Ship EFs are determined by measuring the emissions 

from engine exhaust pipes or from gaseous plumes of ship emissions in real world. EFs of gaseous 

and particulate pollutants from ships for various purposes have been studied by many researchers.  

Because engine emission sampling methods on board in real world are the same as those on the 

engine bench in the lab, on-board ship EFs are close to bench test engine EFs under the same engine 

operation conditions. Cooper [36] measured emissions from 22 auxiliary engines with the 

maximum power of 720 to 2675 kW on board six ships at berth and found that the EFs for NOx, 

HC and CO varied considerably between the different engine models and loads. Schrooten et al. [37] 

estimated EFs for the main engines and auxiliaries according to ship type and size class. The NOx 



EFs for the main engines from Spain are shown in Table 7. These results are helpful to air quality 

assessments in coastal areas. Zhang et al. [38] reported that NOx and PM EFs of 25.8g/kWh and 

2.09 g/kWh respectively for the two low-engine-power vessels were higher than that for the 

high-engine-power vessels. A similar situation was also observed that fishing boats at low loads 

always had higher EFs for CO, PM and NO2 [39]. It is worth noting that the unit of EFs is very 

important and it is the g/kWh (or specific emissions) that shows the trends. Huang et al. [40] 

reported that EFs of a large cargo vessel were higher during maneuvering than during cruising. 

During cruising, the distance-based EFs of the gaseous and PM increased with increasing vessel 

speed. The fuel-based average EFs of organic pollutants including PAHs and n-alkanes in PM from 

various vessels were also reported by [41].  

Different from above sampling from engine exhaust pipes, sampling from the gaseous plumes 

can also be used to determine the EFs. Alfödy et al. [42] measured SO2, NOx and PM emissions in 

the plumes of the passing ships. The results showed an obviously increasing trend for SO2 EFs with 

the increase of the engine power. A decreasing NOx emission factor was observed with the increase 

of the crankshaft speed. Lack et al. [43] showed the decrease of shipping SO2 EFs from 49 g (kg 

fuel)−1 to 4.3 g (kg fuel)−1 when the fuel sulfur decreased from 3.15% to 0.07%. Beecken et al. [44] 

measured EFs of SO2, NOx and PM of 300 ships in the Gulf of Finland and Neva Bay area. The 

results indicated a bi-modal distribution of the SO2 EFs with an average of 4.6g (kg fuel)−1in the 

lower mode and 18.2 g (kg fuel)−1in the higher mode and a mono-modal distribution of the NOx 

EFs with an average of 58 g (kg fuel)−1. Fig. 2 shows the frequency distribution of EFs for SO2, 

NOx and PM.  

 



Table 7 NOx emission factors per vessel type and size class for Spain [37]. 

NOx (g/kWh) Size (m) 2000 2005 2010 2020 2030 

Bulk carrier 
<150 15.7 15.4 14.5 13.7 13.1 

≥150 17.3 16.6 15.8 14.9 14.2 

Chemical tanker 
<150 14.5 14.3 13.4 12.8 12.3 

150–250 16.6 16.0 15.4 14.5 13.9 

>250 17.3 16.4 15.7 14.7 14.1 

Container ship 

<150 14.2 14.1 13.0 12.6 12.6 

150–250 16.6 15.7 14.8 14.2 14.1 

>250 16.6 15.8 14.8 14.3 14.2 

General cargo 

<150 14.3 14.6 14.1 13.1 12.2 

150–250 17.6 17.5 17.1 15.6 14.1 

>250 17.6 17.6 17.1 15.6 14.1 

LG tanker 
<150 14.2 14.2 13.3 12.6 12.2 

≥150 17.3 16.5 15.8 14.9 14.2 

Oil tanker 
<150 14.5 14.2 12.8 12.4 12.5 

150–250 17.1 16.0 14.8 14.2 14.1 

>250 17.2 16.1 14.9 14.3 14.2 

Ro–Ro cargo 

<150 14.1 14.1 13.2 12.5 12.1 

150–250 14.4 14.5 13.9 13.4 13.0 

>250 13.5 13.7 13.1 12.6 12.4 

 

     



 
Fig. 2 Frequency distribution of emission factors for SO2, NOx and PM [44]. 

 

2.3. Effect on environment 

Both primary pollutants from ships and secondary pollutants generated by primary pollutants 

discharged into the environment under the influence of physicochemical factors have adverse 

impacts on the environment. The concentrations of pollutants due to ships and their contribution to 

atmospheric pollutants have been investigated by many researchers. 

Unidentified vessels in the Pearl River Delta of China contributed to almost half of the overall 

ship gaseous emissions [45]. In the port of Leixões of Portugal, the docked ships contributed to 

more than 50% for NOX concentration, while the ships in transit contributed below 1% [46]. 

Svindland [47] reported that the average annual SO2 emissions from a feeder vessel in a pre- and 

post ECAs regulation were 4.243 and 0.449 g per TEU-km respectively. In contrast, SO2 emissions 

of road transport sharply decreased by more than 94% due to the use of ultra low sulphur fuels (10 

ppm sulfur content maximum). In a port site in Shanghai, ship emissions account for 36.4% of SO2 

[48].  



Because nitric oxide (NO) emissions from ships can be quickly converted to NO2 if there is 

sufficient ozone existing and NO2 is one of the major air pollutants causing health concerns, many 

researches have been conducted to determine the effect of shipping NOx emissions on atmospheric 

NO2. Ramacher et al. [49] simulated NO2 concentrations from local shipping in three Baltic Sea 

harbour cities, as shown in Fig.3. They found that the maximum urban area affected by shipping 

NO2 emission with the concentration of above 5 μgm−3 reached up to 17.42 km2. Karl et al. [50] 

reported that the contribution of ship emissions to annual average NO2 was above 40% over the 

Baltic Sea, 22–28% for the entire Baltic Sea region and 16–20% in the coastal land areas. In the 

Red Sea, due to maritime emissions, the NO2 concentration spatially varied from 4.03×1014 to 

41.39×1014 molecules/cm2[51]. 

Besides the above-mentioned gaseous pollutants, PM from ships, especially fine particles 

(PM2.5) have a negative environmental impact. In the northern EU area, the highest PM2.5 emissions 

from ships were located in the near coast of the Netherlands, in the English Channel, near the 

southeastern UK and along the busiest shipping lines in the Danish Straits and the Baltic Sea [52]. 

In urban Shanghai, ships contributed 20-30% (2-7μgm−3) to all PM2.5 within 15 kilometers of 

coastal and riverside while emissions from ships in the inland off the costal line contributed 0.5-2 

μg m-3 to the PM2.5 [53]. 

Ozone (O3) in the atmosphere on the surface of the earth is produced by the photochemical 

reaction between NOx and volatile organic compounds (VOCs). Because it plays a key role in the  

photochemical smog formation, O3 has attracted attention of researchers. In the Yangtze River Delta 

region of China, O3, greatly affected by the ship emissions, had a high concentration of 50 μg m-3 in 



the ship track region [54]. Over the Baltic Sea, because of ship emissions, annual mean O3 

concentrations were 15%–25% higher than over land [50].  

 

Fig.3 NO2 annual mean concentrations and contribution of local shipping to annual mean NO2 

concentration [49]. 

The chemical mechanism of ozone formation has been extensively studied [55-58]. In brief, it 

involves a NOx cycle and a ROx cycle. In the NOx cycle, NO2 is split int NO and atomic oxygen 

which will then combine with O2 to form O3. In the ROx cycle, the ROx radicals (RO, RO2, HO2 

and OH) mainly from unsaturated VOCs oxidize NO to NO2 which will then lead to formation of 

O3 by the NOx cycle.  

3. Emission reduction technologies 

In this section, the three aspects of emissions reduction strategies for marine diesel engines 

including fuel technologies, combustion improvement and post-treatment, are presented and 

discussed. 



3.1. Clean alternative fuels 

Ship fuels, such as HFO and marine diesel oil (MDO), have high sulfur and ash contents, high 

viscosity and density. The high sulfur content in fuels can cause a large amount of PM and SOx 

emissions from ship engines [59, 60]. Some clean fuels including biodiesel, methanol and LNG are 

considered as appropriate alternative fuels for propulsion of non-ocean-going ships and can reduce 

engine emissions due to low or no sulfur content. The properties of alternatives fuels and traditional 

fossil fuels are listed in Table 8. 

Table 8 Properties of biodiesel, methanol, LNG, HFO, MDO and diesel [5, 61, 62, 63, 64]. 

Property Biodiesel Methanol LNG HFO MDO Diesel 
Density at 15 °C (kg/m3) 890 795 443.5 934.8 <900 847 

Viscosity at 40 °C (mm2/s) 4-6 0.58 - 24.27(100 °C) <11 2.72 

Cetane number 50 3  >20 >35 51 

Ash content (%) - - - 0.042 <0.01 <0.01 

Calorific value (MJ/kg) 37.5 20.26 50 41.62 42 42.5 

Oxygen mass fraction (%) 11 50 - 0.65 - 0 

Sulphur (ppm) <10 - - <500000 <200000 <350 

 

3.1.1. Biodiesel 

Biodiesel contains about 11% oxygen and has a trivial amount of sulphur and high centane 

number. Biodiesel can be applied to diesel engines in a simple way by blending with any proportion 

of diesel. In spite of disadvantage of high production cost, biodiesel could be a good option for 

reducing diesel engine emissions (mainly SOx and particulate) in shipping sectors.  

Emission tests of various marine diesel engines with biodiesel have been conducted by many 

researchers. Nikolic et al. [65] conducted an experiment on a low-speed two-stroke engine fueled by 

7% and 20% blends of biodiesel with diesel and found a 30-70% reduction in SO2 emission, a 

26-72% decrease in NOx and a 28-64% decrease in CO. The use of pure biodiesel in two small 

four-stroke marine craft diesel engines also showed a decrease in NOx emissions and an increase in 



CO emissions at light loads [66]. Gysel et al. [67] found a 4% reduction in NOx emissions and a 10% 

increase in CO emissions from a marine vessel with the blend. The reduction in NOx emissions of 

biodiesel blend was also reported in two four-stroke six-cylinder supercharged marine auxiliary 

diesel engines [68-70]. However, the use of biodiesel in some multi-cylinder marine diesel engines 

yielded higher NOx emissions [61-74]. 

Because high oxygen content in biodiesel can promote the oxidation of soot particles, diesel 

engines with biodiesel generally show a reduction in PM mass and PN. Khan et al.[75] used algae 

biodiesel in a marine vessel and found an overall reduction of 25% in PM2.5. Ushakov et al. [76] 

conducted an experiment on a heavy-duty diesel engine with fish oil fuel and reported that total 

particle concentration and overall PM mass were reduced 67% and 79% respectively. The similar 

result on the decrease of PM mass and PN when B10 was used in a marine diesel propulsion engine 

was reported [77]. However, there are reported changes in particle number size distributions i.e. 

biodiesel can lead to increase of the nucleation mode particles and reduction in the accumulation 

particles. Nabi and Hustand [78] conducted diesel engine experiments with MGO-Jatropha 

biodiesel blend and reported an obviously decreasing PN in the accumulation mode but an 

increasing PN in the nucleation mode. The similar finding was reported by Tan et al. [79]. 

3.1.2 Methanol 

Methanol is an oxygenated and sulfur-free fuel. Because it is can be produced from a wide 

range of sources such as coal, natural gas and biomass [80], it is not a problem for methanol 

production. A major challenge, however, is immiscibility of methanol with diesel. Therefore, engine 

modification including injection systems, fuel tanks and piping is required when methanol is used in 

a marine diesel engine. Safe storage of methanol on ships is also a concern due to the low flash 



point. There are two main methods by which methanol can be used in diesel engines: the premixed 

dual fuel [81-83], and the methanol-diesel blend with additives or fuel mixing tools [84-86].  

Methanol is regarded as a technically viable option to reduce emissions from shipping [87].  

Brynolf et al. [88] reported that methanol from natural gas as ship fuel would significantly improve 

the overall environmental performance as well as methanol derived from biomass. Gilbert et al. [89] 

found that methanol had a lower NOx emission factor (3 g/kWh) and a higher life-cycle GHG 

emission than the conventional fuels. Zincir et al. [90] found that partially premixed combustion of 

methanol in a marine engine at low speeds achieved lower NOx emissions ranged from 0.3 to 1.4 

g/kWh than the NOx Tier III limits, zero SOx emissions and almost zero PM emissions. Ammar [91] 

found more than 75% reductions in NOx, SOx and PM emissions respectively from a 

methanol-diesel dual fuel engine installed on a cellular container ship. Paulauskiene et al. [92] 

reported that a blend with 10% biomethanol and 20% biodiesel was the most suitable alternative 

fuel for marine applications. 

3.1.3. LNG 

LNG is mainly composed of methane and has several advantages over other fossil fuels, 

including higher thermal efficiency and lower specific energy consumption, lower sulphur and 

carbon content. This makes it suitable for use as ship fuels. As of 1 May 2018 the world fleet totaled 

253 LNG-fuelled vessels, growing by 36% over the past one year [93]. In terms of diesel engine 

propulsion system, two-stroke low speed DF diesel engines and medium speed four-stroke low 

pressure DF engines are the most commonly used in LNG-fuelled ships [94-96]. The representative 

low pressure gas injection system and high pressure injection system installed on two-stroke low 

speed diesel engines were developed by Wärtsilä and MAN respectively [97]. Accordingly, there 

are two modes for injecting gas into the combustion chamber, including a pressure below 1.6 MPa 



[98], and high pressures of 25–30 MPa [99]. When used in four-stroke low speed engines, gas is 

injected into the intake port and ignited by a pilot injection of liquid fuel. The power of the engines 

is within the range of 720 kW to 17.55MW manufactured by Wärtsilä, MAN and MAK [96].  

There are many studies on the environmental analysis of emissions of marine diesel engines 

using LNG. Banawan et al. [100] reported that a shift from diesel oil to DF (LNG/diesel) in a ship’s 

main engine showed emissions reductions of 72 % for NOx, 91% for SOx, 10% for CO2 and 85% 

for PM. A statistical analysis for two stroke diesel engines using HFO to LNG showed the decrease 

by LNG in average EFs of NOx, SOx, CO2 and PM by 86%, 98%, 11% and 96% respectively[101]. 

Anderson et al. [102] measured the emissions from a LNG powered ship with four DF engines of 

30400 kW at different loads. They found that EFs of NOx, CO2, PN and PM for LNG were 

obviously lower than the values for marine fuel oils while CO and HC EFs were higher. Li et al. 

[103] also observed similar results of emissions from a high-speed marine DF diesel engine. 

Besides good environmental effects, LNG as a ship fuel also shows attractiveness in terms of cost 

effectiveness [100, 104]. Despites disadvantages of LNG such as flammability, methane slip and 

bunkering, the high thermal efficiency, good environmental benefit and favorable price make it a 

sustainable alternative to traditional fuels to be used in a marine DF diesel engine. 

3.2. Addition of water 

Adding water directly or indirectly into the cylinders can reduce NOx emission in exhaust gas 

due to thermal, dilution and chemical effects [105,106]. There are three methods of supplying water 

into the cylinders suitable for controlling NOx emissions in marine diesel engines: intake air 

humidification (IAH)/water injection, direct water injection (DWI) and fuel water emulsion. Table 8 



shows qualitative comparison of water injection technologies. [-],[--],[+]and [++] indicate a 

negative, more negative, positive and more positive effect, respectively. 

Table 8 Evaluation of water based NOx reduction methods [107]. 

 NOx 
reduction 

Effect 
on PM 

Variability of 
water addition 

Effect on 
cold start 

Lubricatin
g oil 
dilution 

Expense 

Inlet manifold water 
injection - -- + none -- - 

DWI-separate nozzle - -- ++ none - -- 

Diesel FWE + ++ -- -- - - 
Stratified 
diesel-water-diesel  
injection 

++ ++ ++ none none -- 

3.2.1. IAH 

In the IAH method, a set of injection water device requires to be installed on an engine to 

humidify the air. In the IAH systems several key parameters need to be considered such as air 

temperature before and after humidification, water droplet size, humidification location, engine load 

and water to fuel (W/F) ratio, because they have significant influence on engine emissions. In order 

to reduce more NOx, the humidity of the air is kept as saturated as possible when it enters the 

engine. If liquid water enters the cylinder with air, cylinder liner corrosion problems may occur. 

Currently this method is widely used in large marine diesel engines. 

Previous researches on IAH have focused on emissions of diesel engines at different humidity. 

Nord [108] observed that NOx decreased by 51% while PM, HC and CO increased in a 6 cylinder 

diesel engine at the intake humidity from 32 to 53 g water/kg dry air. Rahai et al. [109] also 

observed a NOx reduction by 3.7% to 22.5% and increases in PM and CO when the relative 

humidity was increased from 65% to 75% and 95% using a steam generator in a small diesel engine. 

Larbi N and Bessrour J [110] and Asad U et al. [111] also found similar results of NOx reduction 

with the increased humidity. Subramanian [112] concluded that FWE method was more effective in 



simultaneously reducing NO and smoke emissions than injection method. Ni and Wang [113] 

numerically gave the explanation about NOx decrease and soot increase with air humidity from the 

physical and chemical point of view. 

3.2.2. DWI 

The DWI is another method for reducing NOx emission by injecting water directly into the 

cylinder head with a separate nozzle or by alternating fuel and water via a specially designed nozzle 

[107]. The storage space, weight of water and the cost due to engine modification and special 

nozzles are practical concerns for the ship owner/operator. The primary benefit of the DWI is that 

the timing and the mass of the injected water are variable and can be controlled. Bedford et al. [114] 

found that NOx emissions at 44% and 86% of full load decreased by about 46% and 70%, 

respectively. Chadwell and Dingle [115] also found that the DWI could reduce NOx by 42% 

without EGR and up to 82% with EGR. Sarvi et al. [116] found significant reduction in NOx and 

slight decreases in HC, soot and PM by using DWI in a turbo-charged diesel engine.  

3.2.3. FWE 

This method involves injecting a FWE fuel into the cylinders using the original nozzles. FWE 

fuel is prepared by mixing water and diesel fuel or other fuels homogeneously along with 

emulsifying agents using mechanical or ultrasonic emulsifiers. It is crucial for the formation of a 

stable emulsion to ensure smooth running of an engine. The FWE stability is influenced by many 

factors including type and content of emulsifying agents, water content and water droplet size, 

mixing speed and time and dispersion types [117]. The most commonly used emulsifiers are Span 

80, Tween 60 and Tween 80 with the volume of below 4% and the content of water is commonly 

5-30% with droplet size of below 40 μm [118]. 



When the FWE fuel is injected into the combustion chamber, the micro- explosion caused by 

water vaporization takes place because the boiling point of fuel is different from that of water and 

causes secondary atomization of emulsified fuel forming smaller droplets [119]. Thus, the fuel 

combustion is more efficient. Because of vaporization of water, the peak combustion temperature is 

lowered and thus NOx formation is reduced. Most studies on water in diesel emulsion showed NOx 

and PM reductions [112, 120-123]. Some researches showed the increase in CO and HC emissions 

when using FWE fuel compared to diesel fuel [112, 123-125], but there were opposite cases [120, 

126].  

Besides lower pollutant emission and higher combustion efficiency, FWE also has a cost 

advantage over other systems, because the engine structure does not need to be modified. The 

marine diesel engines operating on FWE fuel can reduce emissions and cut down the operating cost. 

However, FWE has a limit of fixed W/F ratio unable to adapt to the requirement of different engine 

operating conditions. As with other water methods, corrosion of the fuel supply system is a concern. 

3.3. EGR 

EGR is a NOx emission reduction technology by recirculating part of exhaust gas back to the 

combustion chamber. After the recycled exhaust and fresh air are mixed, the heat capacity of the 

mixture will increase thus lowering the combustion temperature and reducing NOx emissions. 

Internal EGR and external EGR are two modes of EGR. In the external EGR used in turbocharged 

diesel engines, it is subdivided into low pressure and high pressure loop EGR as shown in Fig.4, 

according to the position of the bypass. In a low pressure loop EGR, practical concerning issues 

include the fouling of diesel exhausts and special EGR pumping arrangement. To ensure that the 

turbine upstream pressure is higher than the boost pressure, a throttle or a venturi tube is employed 



in high pressure loop EGR. A variable geometry turbine is a good solution to supply the desired 

EGR driving pressure [127]. 

The EGR method as well as the water injection method can effectively reduce NOx emission 

of marine diesel engines. Larbi and Bessrour [128] measured emissions from a six-cylinder marine 

diesel engine and reported a NOx emission reduction of 12.3% at the EGR ratio of 10%. 

Verschaeren et al. [129] showed reductions of up to 70% of NOx emissions from a medium speed 

diesel engine with a high-pressure cooled EGR loop. Wang et al. [130] conducted an engine 

experiment in a marine diesel engine with EGR and found that NOx emissions decreased by up to 

76% in the ECAs-EGR modes while CO increased. Zu et al. [131] used a venturi high-pressure 

EGR device in a turbocharged diesel engine and reported that NOx emissions decreased by about 

25% at the EGR rate of about 8%. 

  

(a)                                      (b) 

Fig. 4 Schematic diagram of (a) Low pressure and (b) high pressure loop EGR [127]. 



Recently, there is an attention on the importance of EGR control and the development of 

modelling technique for EGR control. Thangaraja and Kannan [132] addressed the necessity of the 

EGR control for implementing advanced combustion concepts. Nielsen et al. [133] presented a 

control-oriented model for the molar oxygen fraction in large two-stroke marine diesel engines with 

EGR. This nonlinear model achieved EGR closed-loop control at steady-state and transient 

conditions. Thereafter, Nielsen et al. [134,135] developed other EGR control methods for marine 

diesel engines and showed a reduction in smoke during loading transients. Llamas and Eriksson 

[136] also developed an EGR model controller for large marine diesel engines to be used to 

simulate the performance of EGR and various maneuvering scenarios of ships. 

3.4. High pressure common rail fuel injection     

High pressure common rail injection technology has been greatly developed in diesel engines 

due to the benefit from reduced emissions and fuel consumption. In a common rail system, arbitrary 

timing and multiple injections are available for NOx reduction. The high injection pressure 

enhances the fuel/air mixing and improves combustion leading to lower NOx and PM emissions.  

The high-pressure common rail fuel injection system has been applied to marine diesel engines, 

such as W32CR engine [137], RT Flex engines [138], MAN 32/44CR engines and MAN 48/60 CR 

engines [139]. These marine diesel engines can be operated with HFO. To meet the requirement of 

low-cost, it is a trend for large-bore marine diesel engines to use HFO in high pressure common rail 

fuel injection systems. Distributed rail unit is also an important direction for high pressure common 

rail fuel injection technology. To avoid the deformation of the common rail at higher operating 

temperature, it is reasonable to separate the common rail into several rail units and to divide the fuel 

supply into several high-pressure pumps, shown in Fig.5. 



    

                                             

             (a) MAN 32/44CR                         (b) MAN 48/60 CR 

Fig. 5 The MAN Diesel & Turbo CR injection system [138]. 

A few researches on high-pressure common rail fuel injection have shown obvious reductions 

in emissions from marine diesel engines. A pilot injection strategy in a two-stroke marine engine 

achieved a NOx reduction of 15% [140]. Imperato et al. [141] conducted a large-bore common rail 

engine experiment and reported that split injection reduced NOx emission by 42% without engine 

efficiency losses and soot increase. Goldsworthy [142] investigated the thermal efficiency and 

exhaust emissions of a heavy duty common rail marine diesel engine with ethanol–water mixtures 

and found that NOx emission decreased significantly with pre-injection and main injection of diesel 

and the injection into the intake air of 93% ethanol/water mixture. Liu et al. [143] investigated 

effects of injection strategies on low-speed marine engines with the dual fuel of natural gas and 

diesel. It was found that the appropriate pilot fuel injection timing and gas injection timing 

simultaneously reduced NOx, HC, CO and soot. However, Imperato et al. [144] reported that the 

pre-injection applied to a single-cylinder large-bore diesel slightly reduced NOx and increased HC, 

CO and soot. 

3.5. Exhaust aftertreatment 

3.5.1. De-NOx 



Current denitration technologies for marine diesels include SCR, lean burn NOx capture 

technology, and low temperature plasma-assisted catalysis technology. They are derived from 

land-based applications. Among them, SCR is the most dominant and mature exhaust gas 

after-treatment technology for controlling NOx emissions from marine diesel engines. The urea–

water solution is injected into the exhaust gas stream, where the reducing agent (NH3) generated by 

urea thermolysis reacts with NOx and O2 to form N2 and H2O. The reaction is favored by the 

presence of catalysts based on metal oxides such as V2O5 and WO3.  

According to the arrangement and configuration in the exhaust pipeline, SCR systems are 

divided into low pressure selective catalytic reduction (LP-SCR) and high pressure selective 

catalytic reduction (HP-SCR), shown in Fig.6. The LP-SCR and HP-SCR system are installed after 

and before the turbine, respectively. HP-SCR can be used for either low- or high-sulfur fuel, but 

LP-SCR is only applicable for fuels with sulfur content of not more than 0.1% due to the corrosion 

to the turbine blades caused by sulphur oxides [145]. Compared with HP-SCR, LP-SCR has higher 

flexibility for the arrangement and less effect on the performance of the diesel engine and the 

turbine. It is noted that HP-SCR has benefits of more compact design and higher exhaust heat 

utilization. Several valves are used to tune the gas flow to meet the requirements of various engine 

operations and emission control modes.  

 



       

(a)LP-SCR                                      (b)HP-SCR 

Fig.6 LP-SCR and HP-SCR system [145]. 

Many simulation and experiment studies on SCR were carried out such as structure design and 

optimization of vaporizer and mixer, spray of urea solution and performance improvement. Du et al. 

[146] simulated the flue gas flow under different size and best deflector arrangement. Zhu et al. 

[147] optimized the structure of HP-SCR system and evaluated its performance. Verschaeren and 

Verhelst [148] investigated the strategies of the higher exhaust temperature to allow stable SCR 

operation. Ryu et al. [149] found that the SCR with a thinner metal catalyst reduced the engine 

exhaust gas pressure by 13%–28%. Ku et al. [150] investigated the effects of various factors on the 

conversion efficiency of urea solution. Besides, the high-efficiency and low-pollution catalysts, 

catalyst deactivation, ammonia leakage, soot blockage are also the focus of SCR research and 

development. 

Many ship experiments and engine bench tests have been conducted on reducing NOx 

emission via the SCR. Lee [151] reported that the marine diesel with the SCR met IMO Tier III 

regulations. Gysel et al. [152] reported that the SCR reduced NOx by ∼92% in a tugboat with two 

marine diesels. Lehtoranta et al. [153] conducted an experiment on a medium-speed marine diesel 

engine with the SCR and found an average reduction of NOx by 86.9% with HFO and 84.4% with 



light fuel oil respectively. The results showed that the metal oxides formed by oxidation of higher 

concentration of metals in HFO enhanced the hydrolysis. Jayaram and Nigam [154] conducted an 

experiment on three auxiliary engines on container vessels and reported that SCR reduced the NOx 

emission factor to 1.4-2.4g/kWh which corresponded to a reduction of 90–91% for HFO and 82–84% 

for marine distillate oil respectively. Zhu et al. [155] reported that the weighted average of NOx 

with low-sulfur exhaust gas was 3.08 g/kWh, lower than that of the IMO Tier III regulation while  

NOx with high-sulfur exhaust gas was 4.17 g/kWh, higher than that of the IMO Tier III regulation. 

3.5.2. PM removal 

Although there is currently no limiting value for PM in international regulations, aftertreatment 

of PM has still received attentions due to the harm of black smoke to human health and the 

environment. PM aftertreatment technologies of marine diesel engines mainly include DPF, diesel 

oxidation catalyst (DOC), continuously regenerating trap (CRT), electrostatic precipitator (ESP) and 

wet washing [156]. However, due to immaturity in PM removal, these technologies have not been 

widely deployed in marine diesel engines. 

DPF is one of the most effective devices for diesel PM removal, which have been widely 

used for diesel automobiles. The DPF has a honeycomb structure filter to remove particles from the 

exhaust gas through inertial collision, physical retention and gravity sedimentation. The PM 

collection efficiency of the DPF is higher than 90% [157,158]. The continuously collected particles 

must be removed periodically. Otherwise the exhaust backpressure will increase, causing a decrease 

of the engine power. Accordingly, periodic DPF regeneration such as external heating, catalytic fuel 

additive, and fuel injection is indispensable [159]. 

When operated with high sulfur fuel such as HFO, the DPF become ineffective due to the 

clogging of filter pores by the coarse particles and catalyst deactivation by poisoning. To avoid filter 



blocking, it was suggested that DPF should be used with less than 0.05% sulfur fuels [160]. Despite 

this, a few tentative researches on DPF regeneration with high sulfur fuel are still ongoing. A diesel 

engine equipped with a DPF with a fuel borne catalyst was tested with high sulfur fuel at 1369 ppm 

[161]. It was found that the soot particles were efficiently filtered and that the filters are effectively 

regenerated during a short term. Kuwahara et al. [162] investigated the DPF regeneration with 

nonthermal-plasma-induced ozone in a marine diesel engine with 750 ppm sulfur fuel. The result 

showed a possibility of continuous regeneration at the exhaust temperature of 300℃. 

The DOC is a device made from a ceramic or metal catalyst-coated carrier and can oxidize 90% 

HC and CO emissions and soluble organic fraction of PM to form CO2 and H2O [163]. The 

commonly used catalysts in the DOC are precious metal catalysts such as Pt and Pd. However, the 

current DOC technology used in marine diesel engines requires to be operated with low sulfur fuels, 

because high sulfur fuels cause catalyst deactivation by poisoning. Sulfur-resistant catalysts are 

currently a need for the DOC. 

A CRT system, developed by Johnson Matthey Inc., uses a DOC in front of a DPF [164]. The 

CRT can simultaneously reduce PM, CO and HC from diesel engines and consists of two processes. 

In the first process, besides the oxidization of HC and CO, part of NO is converted into NO2 by the 

DOC. In the second process, soot trapped in the DPF was oxidized by NO2 and O2 avoiding filter 

pores being clogged. The CRT can carry out continuous regeneration at most engine loads, instead 

of using a supplemental heat source. The typical CRT system can reduce PM, CO and VOCs by 

more than 85%, 80% and 70% respectively [164]. The result from the 4-cylinder turbocharged 

diesel engine experiment also showed a great decrease in soot mass concentrations and PN at every 

engine loads [165]. To achieve reliable regeneration with lower exhaust temperatures or lower NOx 



to PM ratio in the exhaust gas, a catalyzed  continuously regenerating trap (CCRT), which is the 

upgrading product of the CRT, is developed and is widely used in NRMM. Just like the DPF and 

DOC, the CRT and CCRT are only suitable for marine diesel engines burning low sulfur fuels.  

ESP technology is also an important technology to capture PM from diesel engines. In the 

ESP system, when the exhaust gas flows into the ESP, part of the ions generated by ionizing gases 

charge particles in a high-voltage electrostatic field and the charged particles will migrate to 

collecting plate under the action of electrostatic force. In designing the ESP component, onset 

voltage, sparkover voltage, voltage-current relationship, particle size, dielectric constant and 

residence time need to be taken into account [166]. The ESP has several advantages such as high 

efficiency even for ultrafine particles, low pressure drop with large gas volume, low operating costs 

and high reliability.  

Based on the ESP, the wet ESP, the electrohydrodynamically electrostatic precipitator (EHD 

ESP) and the two stage ESP [167] were successively developed. Saiyasitpanich et al. [168] applied 

the wet ESP to a nonroad diesel engine with 500 ppm sulfur diesel fuel and found that 67–86% of 

mass- and number-based PM were removed. Yamamoto et al. [169] reported that the mass 

collection efficiency of 92.9% within the particle-size range of 30–500 nm was achieved for a 

marine diesel engine equipped with an EHD ESP operated with HFO. Another study of the EHD 

ESP in a small diesel engine using light oil showed the mass collection efficiency of 73.8% for 

particle size of 20–500 nm and the PN collection efficiency of over 90% for particle size of 300–

5000 nm [170]. Kawakami et al. [171] found that the collection efficiency for particle size of 

20-300 nm was over 90% for a diesel engine with a two stage ESP. However, the collection 

efficiency within the particle-size range of below 20 nm was not reported. Unlike the DOC and the 



CRT, the ESP is suitable for diesel engines with high sulfur fuels, especially for large low speed 

marine diesel engines. Despites some disadvantages of ESP such as high capital costs, lower 

collection efficiency for high- and low-resistivity dust, it is a promising technology for PM removal 

of marine diesel engines. 

3.5.3. De-SOx 

The simplest De-SOx method is to use the non-sulfur or low-sulfur content fuel in marine 

diesel engines. However, it is not practical to use these fuels in all ships due to the price gap 

between the low sulfur oil and high sulfur oil (HFO or residual oil). Therefore, besides using 

alternative clean fuels, exhaust aftertreatment methods seem to be more feasible to reduce SOx 

emissions of ships. 

The commonly used De-SOx aftertreatment method is gas scrubbing, namely the exhaust gas 

cleaning system (EGCS), which is divided into the wet type and the dry type. Dry scrubbing was 

restrained in ships due to heavy equipment, instability, large space occupation of scrubbers [172]. 

Wet scrubbing is generally used in marine diesel engines. Wet scrubbing includes open loop system, 

closed loop system and hybrid system [173]. Fig.7 shows the open loop and closed loop EGCS 

arrangement. In the open loop system, the natural alkalinity in the seawater neutralizes SOx. In the 

closed loop system, the alkali liquid formulated from water and sodium hydroxide is used to 

desulfurize exhaust gases and washwater is continuously circulated. The open loop system has 

several advantages such as low operational cost and simple system, but it has poor desulfurization 

efficiency due to low seawater alkalinity and causes sea water pollution. The closed-loop system 

can overcome the defects of the open loop system and is used in any water area with almost zero 

emissions to the ocean. However, the closed loop system has a slightly higher operational cost 



compared with the open loop system. In some instances, a hybrid arrangement is operated in either 

open loop or closed loop modes as required, taking advantages of the open and loop systems, but 

has the disadvantages of high complexity, high capital cost and large space occupation. The optimal 

solution for using the hybrid scrubber is to operate the scrubber in the high-efficiency closed loop 

mode in coastal areas and in the low-efficiency open loop mode in the open sea. 

Caiazzo et al. [174] reported a capture efficiency of up to 93% for SO2 from a marine diesel 

engine with HFO by using the open loop system. Kuang et al. [175] concluded that the 

cascade-scrubbing solution achieved higher desulfurization efficiencies than the single open loop 

solution in a high-speed marine diesel engine. Wärtsilä has developed a full wet scrubber portfolio 

and has more than 704 scrubbers delivered or on order for more than 535 vessels up to the 3rd 

March, 2019 [176]. The closed desulfurization system developed by Wärtsilä was installed on board 

the ‘MS Suula’ with both high sulphur (3.4%) and low sulphur (1.5%) HFO and could achieve more 

than 98% desulfurization efficiency, 30-60% PM removal efficiency and 3-8% denitration 

efficiency at all loads and with all fuels [177]. MAN Diesel & Turbo tested three of the scrubber 

solutions on two-stroke engines in conjunction with some manufacturers and they showed high SOx 

and PM removal efficiency, as given in Table 8. Lehtoranta et al. [28] investigated the emissions 

from a cruise ship with a hybrid sulfur scrubber and a RoPax vessel with an open loop scrubber and 

reported that the scrubbers achieved effective decrease in SOx and low PM levels. However, the 

effect of a scrubber on PN was not unknown. 



 

(a) Open loop 

 

                       (b) Closed loop 

Fig. 7. Open loop and closed loop EGCS arrangement [173]. 

Table 8 Summary of scrubber solutions tested [178]. 

Participants Ship information Scrubber SOx removal /% PM removal/% 

Clean Marine 

MAN Diesel & Turbo 

Banasol 
7S50MC-C 

9MW 
 

73 (95, Salts add.) 35 (80, Salts add.) 

Anlborg Industries 

Alfa Laval 
DFDS 

MAN Diesel & Turbo 

Tor Ficaria 

9L60MC-C 

20MW 

 

100 (NaOH) 79 

APM 

MAN Diesel & Turbo 

Alexander Mærsk 

7S50MC 

9MW 
 

96 (NaOH) 73 



3.5.4. Multi-pollutant removal 

At present, the combination of different control technologies is often used to control 

multi-pollutants from land-based stationary sources. However, due to space restriction, operational 

instability and high cost of ships, the strategy cannot be applied in the ship exhaust pollution control. 

For this reason, integrated multi-pollutant control technologies for efficient emission control are 

receiving a lot of attentions. 

Because NO is the main NOx component in diesel exhaust, the oxidation absorption method is 

often used to simultaneously remove NOx and SOx. Zhou et al. [179] used a wet scrubbing method 

combined with ozone injection method for De-SOx and De-NOx and found that 93% NOx and 

close to 100% SO2 were simultaneously removed. Boscarato et al. [180] installed a monolithic 

Pt/Al2O3 oxidation catalyst and a seawater scrubber in a 1.5 MW marine engine and this integrated 

configuration achieved significant abatement of emissions. However, this system could hardly 

removel NOx if fuel sulpur is at 2%. Fang et al. [181] used urea+KMnO4 solution to remove SO2 

and NO and reported that SO2 and NO were reduced by 98.78% and 53.05%, respectively. Han et al. 

[182] reported that the wet scrubbing system using the NaClO solution achieved more than 60% 

De-NOx and close to 100% De-SO2. 

The non-thermal plasma (NTP) can be used to control NOx and PM emissions from marine 

diesel engines. Balachandran et al [183, 184] used microwave plasma in a two stoke marine diesel 

engine and found almost 100% removal of NO and 90% removal of PM within the range of 10-365 

nm. The result from a medium speed marine diesel engine with NTP reactors also showed 

significant reductions in NO and PM [185]. Kuwahara et al. [186] used the NTP combined with 



NOx adsorbents in a 1 MW marine diesel engine and reported excellent efficiency for NOx removal. 

However, PM removal test was not conducted. 

Sulfates account for 40-80% of PM in ship exhaust gas [187,188]. Because sulfates are easily 

soluble in water, it is feasible to wash off a part of PM using the wet dust removal technology. In 

addition to reducing most of the SOx, the aforementioned wet scrubbing can also reduce PM mass. 

However, the effect of the wet scrubbing on PN is rarely reported. The capture of ultrafine particles 

from diesel marine engines by the wet scrubbing system should be investigated. 

Supergravity is a new high efficiency chemical process strengthening technology, which has 

the advantages of high mass transfer efficiency, short contact time, small size of equipment. It is 

used in the fields of chemical industry, environmental protection and energy, and can remove NOx, 

SOx, CO2 and PM [189]. Fig.8 shows the three types of the reactors with different gas and liquid 

flow modes for the hypergravity technology. Chen et al. [190] conducted an experiment of air 

pollutant removal in a rotating packed bed and showed emissions reduction for CO2 by 96.3%, SO2 

by 99.4%, NOx by 95.9% and total suspended particulate by 83.4% respectively. However, there is 

currently no report on the application of supergravity technology to the emission control of marine 

diesel engines. In any case, the use of supergravity in control of emissions from marine diesel 

engines, especially low-speed diesel engines, allowing for more time for chemical and physical 

reactions, is worth investigating. 

 



 

Fig.8. Hypergravity reactors with three gas and liquid flow modes: (a) countercurrent flow, (b) 

co-current flow and (c) cross flow [189]. 

3.6. Summary of emission reduction methods 

Although some of automobile engine emission control methods can also be used for 

controlling marine diesel engine emissions, there are differences between them. Ship emission 

control routes still have their own characteristics. Table 9 summarizes the effects of the 

above-mentioned technologies on the reduction of marine diesel engine emissions. Some of them 

have been applied to ships and there are also a few in the research and development and 

experimental stages. When choosing the suitable ship emission reduction routes, several factors 

should be considered, such as ship type and usage, power rating, capital and operational costs, 

adaptability and compliance with the current and future emission regulations. 

 

 

 

 

 

 

 



Table 9 Available methods for reducing ship emissions 

Reduction method 
Potential reduction/% 

Reference 
NOx PM SOx 

Switching to clean fuel 

Biodiesel 
 

5-70 80 70 [65,76] 

Methanol 
 

75 80 90 [90,91] 

LNG 

 

70-85 

 

85-95 

 
95 [100,101] 

Addition of water 

IAH 

 

5-50 - - [108,109] 

DWI 
 

40-70 - - [114,115] 

FWE 50 - - [123,124] 
EGR 

 

10-70 - - [128-130] 

Common rail fuel injection 

 

10-40 40 - [141, 143] 

After-treatment 

SCR 

 

90 - - [152-154] 

DPF 

 

- 90 - [157,158] 

CRT, CCRT 

 

- 90 - [164] 

ESP 

 

- 90 - [169-171] 

Wet scrubbing 

 

- 35-80 95 [178] 

Wet scrubbing+ 
oxidation absorption 

 

50-90 - 95 [179, 181,182] 

NTP 95 90 - [183, 184] 
 

4. Conclusions and future scope 

Marine diesel engines play a significant role in marine transport. However their exhaust 

emissions are less regulated and have caused serious concerns with regards to damages to the 

natural environment and human health. With the ever increasing awareness of the concerns, 

attentions have been paid to alleviate the emissions from the marine sector. The aim of this paper is 



to review the emission standards for marine diesel engines across the world and current status of 

marine diesel engine emissions, and examine various technologies and strategies for reducing ship 

diesel engine emissions that can be used to meet increasingly stringent regulations. The following 

conclusions can be drawn for the emissions control of marine diesel engines. 

1. More stringent emission regulations for marine diesel engine have been formulated, 

including the emission limits (encompassing newly added PN), fuel sulfur content, and 

setting up emission control areas. 

2. There are several ways to determine the ship's EFs, such as in the laboratory or on board, 

and from the exhaust pipes or from the gaseous plumes. Ship EFs (g/kWh) at light-load 

conditions are always higher than those at heavy-load operating modes. 

3. Air pollution from ships has become the main source of pollution in ports, coastal areas and 

some sea areas with dense shipping routes and large ship flows, contributing up to 50% to 

NOx emissions. 

4. Switching traditional marine fuels to clean fuels including biodiesel, methanol and LNG is a 

promising solution for reducing emissions from marine diesel engines. Biodiesel and 

methanol are more suitable for small and medium-sized ships while LNG has been used in 

large ships to achieve good cost-effectiveness. 

5. FWE and EGR are commonly used in marine diesel engines to reduce NOx emissions. 

Common rail fuel injection has been used to large marine diesel engines, showing a 

simultaneous reduction in PM and NOx without sacrificing engine performance. 

6. SCR is the most important and effective exhaust aftertreatment method for controlling 

marine diesel engine NOx emission with a De-NOx efficiency of 90%. The wet scrubbing 



system can achieve 95% De-SOx, which is applied to large two-stroke marine diesel engines 

operated with high sulfur fuels. The current DPF, CRT and CCRT systems are suitable for 

removing PM emissions of marine diesel engines fueled with low sulfur fuels. ESP is a 

potential option for capturing PM from marine diesel engines using high sulphur fuels. 

7. Most of the exhaust aftetreatment techniques are mature but they need to be used with 

appropriate integration and combination to achieve co-reduction of all pollutants and cost 

effective. 

8. Exhaust aftertreatment can be deployed jointly with clean fuels. This paper reviewed 

currently available and in-service alternative fuels (biodiesel, methanol and LNG). 

Ammonia and hydrogen as potential future fuels should be investigated in the future. In 

addition, CRT and CCRT catalyst deactivation by poisoning is an issue that needs to be 

addressed. Then, new sulfur-resistant catalysts, ultra-fine particle treatment technology, and 

integrated treatment technology with cost-effective and automatic control are important 

development direction for ship exhaust emission control. 
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