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ABSTRACT

Despite the frequent use of model averaging in many disciplines from weather forecasting to health

outcomes, it is not yet an idea often considered in travel behaviour or choice modelling. The idea

behind model averaging is that a single model can be created by calculating contribution weights

for a set of candidate models, depending on their relative performance, thus creating an ‘average’.

There are different ways of doing this, with a clear distinction between looking at the overall per-

formance of each model or by doing this at the level of individual agents or observations. In this

paper, we demonstrate that a relatively straightforward adaptation of latent class models can be

used for the latter approach and show how this can be an effective method for travel behaviour

modelling. We identify two key opportunities for model averaging. The first is the situation where

an analyst faces the difficult choice between a number of advanced models, all with some desirable

properties. The second is the situation where advanced models cannot be used due to the size of

the data and/or choice sets. Our tests demonstrate that in both cases, model averaging using a se-

quential latent class framework results in a consistent improvement in model fit for both estimation

and in forecasting with subsets of validation samples. Additionally, we demonstrate that model av-

eraging can be used to obtain more reliable elasticities and welfare measures by averaging across

outputs obtained from the set of candidate models. In terms of actual implementation of model av-

eraging, we present a simple expectation-maximisation (EM) algorithm which can deal with very

large numbers of candidate models within the same model averaging structure, unlike the typical

case with classical estimation approaches for latent class.

1. INTRODUCTION

Travel behaviour modelling, and choice modelling in particular, places great emphasis on model

specification, with studies often comparing and contrasting several mutually exclusive model struc-

tures on the same data. These comparisons are carried out on the basis of mathematical fit to the

data, theoretical consistency with underlying hypotheses, and reasonableness of the substantive

model outputs. This process often does not lead to a clear “winner”, and analysts need to make a

highly consequential decision on which structure to put forward as the final model. Even in situa-

tions where one model is “superior” to the others overall, it is quite reasonable to expect that this

model may be inferior to some of the rejected models for at least a non-trivial subpart of the data.

Other fields have tended to avoid this winner-take-all approach in model selection by using

techniques commonly referred to as model averaging or ensemble methods. These can be used to

allow a modeller to establish a single model by calculating relative contribution weights for a set

of candidate models, with the underlying idea of allowing multiple competing structures to con-

tribute to the final model/results. Within health, Bayesian model averaging has been successfully

used to improve the prediction of who is at risk of a stroke (Volinsky et al., 1997) or a coronary

event (Wang et al., 2004), and to understand the relation between arsenic levels and cancer rates

(Morales et al., 2006). Bayesian model averaging is used regularly in medical statistics (Hoeting

et al., 1999), ecology (Wintle et al., 2003) and biology (Posada and Buckley, 2004). Addition-

ally, ensembles are often used to combine neural networks (Gazder and Ratrout, 2015; Moretti

et al., 2015). Model averaging is often used for pooling forecasts from different models. This is
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particularly common for meteorological forecasting, with model averaging having been used to

predict the surface temperature of the ocean (Raftery et al., 2005) and also wind speeds (Sloughter

et al., 2010). It is also used in other fields for tasks such as predicting levels of economic inflation

(Wright, 2009). A key advantage of model averaging is that the structures that contribute to the

model average can be very different from each other, using diverse methods, and even be produced

by different sets of researchers.

The use of model averaging in choice modelling is far more limited, despite some promis-

ing work. Rose et al. (2009) for example demonstrate how model averaging can be used in the

generation of efficient stated choice experiments. Furthermore, there has also been work com-

paring the use of different model averaging procedures for the allocation of model weights for

multinomial and ordered logit models, with Zhao et al. (2019) developing a method based on

cross-validation. Other alternatives include asymptotically optimal model averaging Wan et al.

(2014) (which has been extended for use in MACML-estimated multinomial probit models by Ba-

tram and Bauer 2017) and Bayesian model averaging over multinomial logit models (Sevcikova

and Raftery, 2013). However, despite the variety of methods for model averaging and the fact that

it can combine the benefits from a number of models into one model, it is not yet common practice

within choice modelling.

The lack of previous applications of model averaging in transport behaviour research specifi-

cally may in part be due to a lack of understanding about model averaging methods. Firstly, model

averaging may be perceived to be a complex undertaking as analysts may not understand that a

joint estimation of the overall model is not required. Secondly, the decision on the approach used

for determining the weights of individual models to the overall structure may be seen as arbitrary.

This is a perfectly understandable concern in the situation where model averaging is carried out

using sample level (aggregate) measures of fit, i.e. assigning model weights based on aggregate

model measures such as AIC or BIC1. Finally, the main use of model averaging in other fields has

been for prediction and there has thus far not been an emphasis on the fact that standard outputs

such as elasticities and welfare measures can still be provided after the use of model averaging.

This paper addresses all three of the issues above by relying on a sequential latent class ap-

proach for model averaging. Individual model structures are estimated on the full sample and their

individual-level contributions to the overall sample level likelihood are then used in a latent class

structure that only estimates class allocation probabilities. The sequential nature of the approach

addresses the concern about complexity. The reliance on individual-level probabilities within a

latent class model means that no arbitrary decisions are required on how weights should be cal-

culated, instead making use of maximum likelihood estimation. A key benefit of this approach is

that models that work well for subgroups of decision-makers but offer poor overall performance

can still contribute to the model average. Finally, the class allocation probabilities produced by the

sequential latent class structure can then also be used to produce weighted averages of other model

outputs such as willingness-to-pay measures or elasticities.

We consider two key cases that occur frequently within travel behaviour modelling for which

there is clear scope for the introduction of this type of model averaging. The first is to apply model

1Akaike and Bayesian Information Criterion, respectively.
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averaging across multiple candidate models that all have advantages and disadvantages, where

there is no clear cut case for choosing which is best. One obvious example of this is in the choice

of distribution(s) within mixed logit models (Guo and Wilson, 2007; Hess, 2010; Tjiong, 2015). A

second and rather different context in which the benefits of implementing model averaging are clear

is in the case of very large-scale applications, either with large datasets or large choice sets. In these

cases, the use of complex models may not be possible for computational reasons, and combining

several simpler models may have benefits. Obvious examples of this includes choice modelling

applications where we aim to predict both travel mode and destination (Fox, 2015; Outwater et al.,

2015) or choice modelling in the context of big data (Zannat and Choudhury, 2019; Tang et al.,

2020).

The remainder of this paper is organised as follows. First, we present a methodology section

demonstrating how we apply model averaging with sequential latent class models and demonstrate

how to produce outputs such as elasticities from model averaging. This is followed by three sep-

arate sections with empirical work on three different datasets. The final section summarises our

findings and presents directions for future research.

2. METHODOLOGY

In this section, we discuss how model averaging can be carried out using a simple sequential latent

class approach. We look separately at estimation and application.

2.1. Model averaging in estimation

Let us assume that we have a dataset containing the choices made by N different individuals, where

individual n makes Tn separate choices, with Tn ≥ 1.

To apply model averaging, we first determine a set of M different candidate models that are

suitable for the data at hand. These differences between the models can arise for a variety of rea-

sons. In the simplest form, they could relate to the specification of the value functions (such as

utility), for example using different socio-demographic interactions, different treatments of non-

linearity, or different specifications of random heterogeneity. The differences could be more fun-

damental than that, with differences in the actual model structure, for example looking at different

models from the family of Generalised Extreme Value (GEV) models. Finally, the models could

be based on different behavioural paradigms, for example looking at random utility maximisation,

random regret minimisation, etc.

In the most standard approach, a single analyst (or team of analysts) will then estimate the M

different models on the data. This is not an actual requirement of model averaging, with the pos-

sibility that the different models are contributed by different teams, which is an inherent strength

of the approach as this can lead to a more heterogeneous set of inputs into the model averaging

process.
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Ignoring the possibility of non-parametric models2, the estimation of each one of the M mod-

els will involve finding the values for the parameters of that model which maximise the likelihood

of the choices C in the data. We would have that, for model m:

Lm (C | Ωm) =
N

∏
n=1

Lm (Cn | Ωm) (1)

where Cn is the set of choices for individual n. The specific functional form for Lm (Cn | Ωm) will

vary across models3.

At convergence, model m will give us a set of estimates Ω̂m for the vector Ω, such that:

Ω̂m = argmax
Ω∈Θ

Lm (C | Ωm) , (2)

where Θ is the set of real numbers. Estimation will yield M sets of vectors of optimal parameters,

i.e. Ω̂m for model m, as well as M measures of mathematical fit to the data, i.e. Lm

(
C | Ω̂m

)
for

model m, obtained by using Ω̂m in Equation 1.

In its simplest form, model averaging would involve computing weights for each of the M

models as a function of the relative differences across models in Lm

(
C | Ω̂m

)
, or some other mea-

sure of model fit. This however looks only at fit at the sample level, and ignores the possibility that

different models will work differently well for individual people in a sample population.

In the sequential latent class approach, we instead rely on the likelihood at the level of in-

dividual decision-makers. In particular, we have that, at the estimated set of parameters Ωm, the

likelihood of the observed choices for person n, using model m, is given by Lm

(
Cn | Ω̂m

)
. We

group together the estimates from the M different models, giving Ω̂ =
〈

Ω̂1, . . . ,Ω̂M

〉
. The likeli-

hood function for the model averaging structure is then given by:

LMA

(
C | π,Ω̂

)
=

N

∏
n=1

M

∑
m=1

πm,n Lm

(
Cn | Ω̂m

)
, (3)

where πm,n is an estimated weight for model m for person n, ∑
M
m=1 πm,n = 1 and 0 ≤ πm,n ≤ 1.

With πn =
〈
π1,n, . . . ,πM,n

〉
representing the weights for person n, we have that π = 〈π1, . . . ,πN〉.

2Such models can also be used in model averaging of the type described here if they can provide likelihoods at the

individual level, but their presence in the model average will preclude the calculation of other possible outputs, such

as willingness-to-pay measures, although the same also applies for some parametric models, if they are not grounded

in the appropriate behavioural paradigm.
3For example, if model m is of the mixed logit type, we would have Lm (Cn | Ωm) =∫

βm
∏

Tn
t=1 Pm

(
j∗n,t | βm

)
fm (βm | Ωm)dβm. In this example, we have that Pm

(
j∗n,t | βm

)
gives the probability of

the observed choice j∗n,t for decision maker n in choice situation t, conditional on using model m which would be of

the Multinomial Logit type, where the parameters βm are distributed according to fm (βm | Ωm).
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In many applications of model averaging, πn would be the set to be the same ∀n, though it is easily

possible to link πn to characteristics of person n in estimation.

Of course, the likelihood of the model averaging structure in Equation 3 is dependent on the

vector Ω̂. This combines the estimates from the M different models contributing to the model

average. Crucially, in estimation of the model averaging structure, these parameters are kept fixed

at the estimates from the individual models, hence the ̂ notation, and only π is estimated.

This last point provides the key contrast between the sequential latent class approach used

for model averaging and the typical simultaneous approach used in standard latent class applica-

tions. In the latter, an analyst simultaneously estimates the class allocation parameters (πm,n) and

the parameters driving the within class probabilities. In model averaging, individual models are

estimated for the entire sample, and then the weights for these models are estimated, conditional

on the parameters obtained during the individual model estimations. Model averaging is thus a

sequential rather than simultaneous process. This is clearly computationally much easier, but also

in fact allows a situation where the individual models come from different teams of analysts. In

fact, the estimation of the weights in Equation 3 does not require the parameters of the individ-

ual models, or even the mathematical formulation of the probabilities for individual models, but

simply relies on the person-specific likelihoods obtained with the individual models. Model aver-

aging will offer a model fit that is bounded below by the fit of the best fitting of the M individual

models. Model averaging will almost inevitably lead to a lower model fit than the estimation of a

simultaneous structure, but of course the general situation is one where this simultaneous structure

is often difficult or impossible to estimate.

A further difference arises in that, in a simultaneous latent class model, it is generally the

case that the same overall model structure is used in different classes, though this is by no means

necessary (cf. Hess et al., 2012). In model averaging, a different model specification, in terms of

model structure and/or e.g. utility specification, is required for the different models as the separate

estimation of the same structure for different m would of course yield the same fit and parameter

estimates.

Model averaging such as discussed here can be carried out using any package capable of latent

class estimation, where for all models, we use Apollo (Hess and Palma, 2019). Latent class models

are well known to have complex likelihood function that can lead to problems with convergence

to poor local optima. While this issue is alleviated to some extent with the sequential latent class

approach used in model averaging, care is still required, and we advocate the use of an expectation-

maximisation (EM) approach rather than using classical estimation. For a detailed discussion of

EM algorithms, see Train (2009, ch. 14). In our case, we rely on a class allocation model without

covariates, i.e. πm,n = πm, ∀n, making the use of an EM approach especially straightforward. In

particular, the following iterative process is used:

1. Definition of starting model weights πm, where we set these to πm = 1
M
, ∀m.
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2. Calculate likelihood of the model, using equation 3 and store this as L1, i.e.

L
(1)
MA

(
C | π,Ω̂

)
=

N

∏
n=1

M

∑
m=1

πm Lm

(
Cn | Ω̂m

)
(4)

3. Calculate posterior model weights for each individual conditional on the model specific like-

lihoods for that individual, using:

hm,n =
πmLm

(
Cn | Ω̂m

)

∑
M
m=1 πmLm

(
Cn | Ω̂m

) (5)

4. Update the model weights as follows:

πm =
∑

N
n hm,n

∑
N
n ∑

M
m=1 hm,n

(6)

5. Calculate likelihood of the model with new model weights, using equation 3 and store this

as L2

6. If L2 − L1 is less than a predefined limit (we chose 10−5), convergence has been reached.

Otherwise, return to step 2 with the new values for π

We use a two-stage implementation of this algorithm. After completing the original algorithm,

there is a possibility of some models being retained in the model averaging with very low weights,

i.e. not contributing in any meaningful manner. We eliminate any models that obtain less than a

1% share in the first round, and repeat the above algorithm until convergence a second time with

the reduced set of models.

2.2. Model averaging in application

To use model averaging in application, we rely on the estimates for the model averaging weights,

i.e. π̂ obtained by maximising Equation 3, i.e.:

π̂ = argmax
π∈Θ

L̂MA

(
C | π,Ω̂

)
, (7)

where this itself is conditional on the estimates Ω̂ obtained by optimising the M individual models.

In application, we use π̂ =
〈
π̂1, . . . , π̂N

〉
and Ω̂. If π̂ is generic, i.e. not linked to the char-

acteristics of individual decision-makers, we have π̂n = π̂ ∀n, and the application to a sample dif-

ferent from that used in estimation does not necessitate any additional steps. If π̂ is a function of

characteristics of the decision-makers, i.e. πn = f (γ̂,zn), where γ̂ is estimated during the model

averaging, then individual-level weights simply need to be computed for the application sample of

decision makers.
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The most obvious use of model averaging in application concerns forecasting of choices. Let

Pm

(
jn | Sn,Ω̂m

)
give the probability of individual n choosing a specific alternative j out of a choice

set Sn, conditional on model m, where Sn describes the characteristics of the alternatives faced by

person n, where these could be different from the levels used in estimation. The calculation of

Pm

(
jn | Sn,Ω̂m

)
is thus equivalent to making a forecast of a choice probability with a single model

m. We can then compute the probability of this alternative j under model averaging as:

PMA

(
jn | Sn, π̂n,Ω̂

)
=

M

∑
m=1

π̂m,n Pm

(
jn | Sn,Ω̂m

)
, (8)

and an analyst can then for example use these weighted predictions in sample enumeration.

When producing forecasts, we thus use the actual model averaging structure for the forecasts,

combining predictions from individual models and averaging across those, using the weights ob-

tained by Equation 7. Elasticities and other measures related to changes in demand thus need to be

calculated on the basis of these weighted predictions, rather than by looking at changes in demand

from individual models. To explain this further, imagine a situation where we want to study the

impact of a change in a given attribute. In our notation, this would lead to a new definition of

the choice set, say S′n, rather than Sn. To study the impact of this change, say on the demand for

alternative j at the sample level, we would look at the predicted change in demand, relative to the

original demand, i.e.:

∆ j =
∑

N
n=1

(
PMA

(
jn | S′n, π̂n,Ω̂

)
−PMA

(
jn | Sn, π̂n,Ω̂

))

∑
N
n=1

(
PMA

(
jn | S′n, π̂n,Ω̂

))

=
∑

N
n=1

(
∑

M
m=1 π̂m,n Pm

(
jn | S′n,Ω̂m

)
−∑

M
m=1 π̂m,n Pm

(
jn | Sn,Ω̂m

))

∑
N
n=1

(
∑

M
m=1 π̂m,n Pm

(
jn | S′n,Ω̂m

)) .

(9)

The reader will note that this is different from using the weighted average of the relative changes,

i.e.:

∆ j =
M

∑
m=1

π̂m,n

∑
N
n=1

(
Pm

(
jn | S′n,Ω̂m

)
−Pm

(
jn | Sn,Ω̂m

))

∑
N
n=1 Pm

(
jn | Sn,Ω̂m

) . (10)

Equation 9 is looking at the change in demand predicted by the final model averaging structure,

while Equation 10 looks at the weighted average of predicted changes across the individual model

components. The former measure is the one in line with the notion of model averaging.

Aside from predictions, the other key post estimation output of a choice model is the compu-

tation of marginal rates of substitution (MRS), which, if the denominator is a cost sensitivity, give

us willingness-to-pay (WTP) measures. Let Wm

(
n | Sn,Ω̂m

)
be some model output for individual

n and choice set Sn, conditional on model m and the estimated parameters for that model4. It is

4In many cases, the dependence on Sn will not apply and is only shown here for the sake of generality.
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then similarly possible to compute a model average version of this output, using:

WMA

(
n | Sn, π̂n,Ω̂

)
=

M

∑
m=1

π̂m,nWm

(
jn | Sn,Ω̂m

)
, (11)

Any measures such as WTP thus need to be calculated first for the individual models before being

averaged across models. The calculation will likely differ across models and may involve simu-

lation for some of the models if they incorporate random heterogeneity. If this is the case, it is

advisable to use the entire distributions in model averaging rather than just relying on the moments

from individual models if some non-normal distributions are included.

The key advantage of this process is that the calculation of these predictions or derived mea-

sures is informed by the results of a number of different models, and is thus potentially more robust

to mis-specification of the individual models. It is similarly possible to compute variances for the

outputs of Equation 8 and 11, though we rely only on the mean outputs in the present paper.

3. APPLICATION TO SP ROUTE CHOICE DATA

Our first application makes use of a typical stated preference (SP) dataset, where our focus for

model averaging is on combining the results from multiple Mixed Multinomial Logit (MMNL)

models making different assumptions about the shape of distribtions for random heterogeneity in

sensitivities across respondents. There is extensive literature on the choice of distributions and it

is often clear that different specifications yield relatively similar fit but often substantially different

model outputs, making the choice of a final distribution difficult for analysts (Börjesson et al.,

2012; Hess et al., 2017), while the use of non-parametric distributions is still beyond the reach of

most modellers despite seminal innovations on this approach (Fosgerau and Mabit, 2013).

3.1. Data

The dataset that we consider involves public transport commuters living in the UK each making

ten choices between three alternatives in a SP survey. A total of 368 participants completed the

survey resulting in 3,680 choices. Each choice task includes an invariant reference trip (with the

attribute values collected before the decision-maker completes the SP questions) and two hypo-

thetical alternatives with attribute values that are pivoted around those of the reference trip. In the

scenarios, each alternative was described by six attributes: travel time (in minutes), fare (in £), rate

of crowded trips (frequency of having to stand out of 10 trips), rate of delays (frequency of delays

out of 10 trips), the average length of delays (across delayed trips) and the provision of a delay

information service (either not available, available at a small cost of £0.30 per journey, or available

for free). Full details of the dataset are given by Hess and Stathopoulos (2013).



Hancock, Hess, Daly and Fox 9

3.2. Specification of individual components and model averaging

In our MMNL models, the utility (net of the extreme value error term) for alternative i in choice

task t for individual n is specified as:

Vint = δi +βn,T T ·T Tint +βn,LF · log(Fint)+βn,CR ·CRint +βn,RD ·RDint

+βn,AD ·ADint +βn,ED ·EDint +βn,CI ·CIint +βn,FI ·FIint .
(12)

In this specification, we include alternative specific constants (ASC) for alternatives 1 and 2, i.e. δ1

and δ2, i.e. fixing δ3 = 0. We use the continuous attributes of travel time (TT), the natural logarithm

of fare (F) given earlier findings about non-linear response, crowding (CR), rate of delays (RD)

and average delays (AD). In addition, we include a new variable of expected delay (ED), which

is the interaction between RD and AD. Finally, the delay information attribute is dummy coded,

where we set the base of no information service to zero, and estimate an effect for the charged

information service (CI) and the free information service (FI).

We estimate M = 16 different models on this data. In each model, the ASCs are kept fixed

across respondents, i.e. not random. The eight marginal utility (β ) coefficients are allowed to vary

randomly across respondents. Our focus in testing the distributional assumptions (and thus the use

of model averaging) is on the first four attributes, where we look at all 16 possible combinations

of negative lognormal and negative loguniform distributions, i.e. distributions where the logarithm

of the negative of the parameter follows a normal or uniform distribution. For example, in speci-

fication 1, all four are negative lognormal (LN-), in specification 2, the rate of delays is negative

loguniform (LU-), and the other three are negative lognormal, etc. For the remaining four attributes

(ED, AD, CI, FI), we always use lognormal distributions. For ED and AD, the use of a negative

lognormal distributions is an obvious choice, given the undesirable nature of these attributes. Pre-

liminary tests also showed that respondents preferred the absence of a delay information service to

a charged one, so that a negative lognormal distribution was used for CI, and a positive lognormal

(LN+) distribution for FI.

The model fits for the 16 different MMNL models are given in Table 1, where the correspond-

ing model parameter estimates are given in the Appendix, in Table A15. The best fitting model

across the different specifications is version 15, which has negative loguniform distributions for

fare, time and crowding. Table 1 also shows the percentage of individuals whose choices are best

described by each model (labelled as ‘Best model for x% of respondents’ in Table 1). The model

using negative lognormal distributions for all parameters actually has the worst sample level fit but

obtains the best fit for more individual participants than any other model. This, together with the

small overall differences between the sample level model fits supports the hypothesis of different

models working differently well for different individuals and means that there is clear scope for

model averaging.

We next apply model averaging across the 16 mixed logit models, i.e. estimating the 16 model

specific weights using the EM algorithm discussed earlier. The use of model averaging results in a

5With both lognormal and loguniform distributions, the analyst estimates the parameters for the distribution of the

logarithm of the marginal utility coefficient (possibly of the negative of that coefficient). In Table A1, we then show

par1 and par2, where e.g. for the first block of parameters, these are for the distribution of log(−βn,T T ).
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TABLE 1 : Log-likelihoods for 16 MMNLs with different combinations of distributions for the UK dataset

Model
Type of distribution Overall Best model for MA

Time Fare Crowding Rate of delays Log-likelihood x% of respondents Share

1 LN- LN- LN- LN- -3,034.16 13.59% 7.59%

2 LN- LN- LN- LU- -3,030.67 5.16% 0.00%

3 LN- LN- LU- LN- -3,019.60 4.62% 0.00%

4 LN- LN- LU- LU- -3,015.35 4.35% 0.00%

5 LN- LU- LN- LN- -3,027.83 7.34% 0.00%

6 LN- LU- LN- LU- -3,015.46 8.42% 8.16%

7 LN- LU- LU- LN- -3,001.06 3.80% 0.00%

8 LN- LU- LU- LU- -2,996.96 4.35% 3.26%

9 LU- LN- LN- LN- -2,982.40 6.79% 1.90%

10 LU- LN- LN- LU- -2,983.74 8.15% 16.17%

11 LU- LN- LU- LN- -2,980.24 5.43% 14.87%

12 LU- LN- LU- LU- -2,990.15 6.25% 0.00%

13 LU- LU- LN- LN- -2,982.85 4.08% 0.00%

14 LU- LU- LN- LU- -2,978.60 5.43% 9.54%

15 LU- LU- LU- LN- -2,963.14 7.07% 36.19%

16 LU- LU- LU- LU- -2,985.48 5.16% 2.33%

Model averaging -2,945.47
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log-likelihood of -2,945.47, which as expected, is better than that of any of the individual models.

No formal statistical test is used here as it is not a process of simultaneously estimating all the

parameters for all the models on a single dataset. The model averaging process retained 9 out of

the 16 models, and their weights are shown in the ’MA share’ column in Table 1. We see that

the model with the best individual log-likelihood obtains the largest share but we in addition see

non-trivial shares for a substantial subset of other models. Crucially, this includes model 1, which

had the worst sample level fit, but also the largest share of respondents where this model produced

the best fit out of all 16 models. This confirms that model averaging can be a successful approach

for incorporating results from models that work well for only a subset of individuals.

TABLE 2 : Estimation and holdout sample results for model averaging for the UK dataset

Estimation Sample Holdout Sample

Model averaging Most contributing MMNLs MA LL Model averaging MMNL MA LL

LL Version LL Share Improvement LL LL Improvement

Full -2,945.47

15 -2,963.14 36.19% 17.67

n/a

10 -2,983.74 16.17% 38.27

11 -2,980.24 14.87% 34.77

14 -2,978.60 9.54% 33.13

6 -3,015.46 8.16% 69.99

Holdout 1 -2,326.82

11 -2,355.35 20.42% 28.53

-624.81

-631.51 6.70

10 -2,350.06 18.17% 23.24 -637.22 12.41

13 -2,353.99 14.29% 27.17 -628.67 3.86

2 -2,389.52 10.56% 62.70 -652.93 28.12

14 -2,347.18 9.75% 20.36 -629.08 4.27

Holdout 2 -2,382.56

12 -2,405.45 24.68% 22.89

-558.21

-561.54 3.33

9 -2,421.76 19.19% 39.20 -565.16 6.95

16 -2,407.67 18.44% 25.11 -564.02 5.81

6 -2,423.79 14.35% 41.23 -573.01 14.81

3 -2,437.56 11.10% 55.01 -571.94 13.73

Holdout 3 -2,326.41

16 -2,355.67 17.44% 29.26

-621.63

-626.38 4.76

8 -2,355.90 15.00% 29.49 -630.66 9.03

15 -2,353.65 13.76% 27.25 -628.59 6.96

13 -2,369.48 12.43% 43.07 -627.18 5.56

1 -2,412.55 12.07% 86.14 -632.62 10.99

Holdout 4 -2,333.89

8 -2,362.21 24.18% 28.32

-614.88

-621.61 6.73

9 -2,361.90 20.38% 28.01 -635.30 20.42

3 -2,376.59 18.87% 42.70 -628.50 13.62

15 -2,371.26 10.27% 37.37 -614.83 -0.05

12 -2,370.15 8.52% 36.26 -628.56 13.68

Holdout 5 -2,346.93

15 -2,378.26 22.70% 31.33

-586.73

-595.39 8.66

6 -2,388.22 22.50% 41.29 -596.86 10.13

12 -2,396.10 10.86% 49.17 -601.15 14.43

9 -2,391.96 8.49% 45.03 -592.52 5.79

11 -2,381.30 7.20% 34.37 -596.67 9.94

We also test to see whether the results from model averaging are overfitting by using out-of-

sample validation. To do this, we first split the dataset into five subsets of 80% of the data, where,

for each subset, we first repeat the exact same process as described above for the full sample,

i.e. estimating the parameters for all 16 mixed logit models and then estimating the weights for

these models using a latent class structure. In the next step, we calculate the log-likelihood on the

remaining 20% of the data, i.e. our hold-out sample, using the 16 separate models as well as the

model averaging structure, each time with the parameters obtained from estimation on the 80%
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sample. The results of this process are shown in Table 2, where, for brevity, we only ever show the

fits for the five most contributing MMNLs in model averaging on the estimation data.

Across all five holdout runs, we see that model averaging obtains a better fit in estimation,

where this is of course in line with expectation. Note that across the five different subsets, four

different combinations of distributions result in the best model fit (models 14, 12, 15, 9 and 15, re-

spectively, across the different subsets). This highlights the difficult task of choosing distributions,

with a different “optimal” specification arising even across these datasets which share the majority

of the sample. As in the full sample, we again see that models which do not fit well at the sample

level can still contribute to the model average, with the best fitting model only twice receiving the

largest share across the five subsets, and with 13 out of the 16 models appearing at least once in the

top five contributors to the model average. Additionally, no single model is the largest contributor

to model averaging in more than one holdout subset. Crucially, the MMNL model that offers the

best performance in estimation is not the one with the best performance in the holdout sample in

three out of five cases, while the performance on the holdout sample is always superior for the

model averaging model compared to the best fitting MMNL model on the estimation data. This

highlights that model averaging is potentially more robust to overfitting than using a single model

structure.

3.3. Computation of outputs from model averaging

In this section, we look at value of travel time as well as values for changing the amount of crowd-

ing and the rate of delays. We first use the estimates from each of the 16 MMNL models to obtain

model-specific values6 for the value of travel time (VTT, £/hour), value of crowding (VCR, amount

paid in £ for 1/10 less crowded trips) and value of the rate of delays (VDE, amount paid in £ for

1/10 less delayed trips).

In our models, the individual coefficients follow random distributions, and as a result, so do

the monetary valuations. We use the full distributions from the individual models in model averag-

ing, i.e. we do not simply take the weighted average of moments of the distributions but produce

an overall set of draws with an unequal distribution of draws from the individual distributions, rep-

resenting the weights of each model. To explain this further, the distribution of the WTP in model

averaging is represented by R draws, where in our case, we set R= 106. As model 1 has a weight of

7.2% in model averaging, 0.072 ·R draws will be produced from model 1 to contribute to the set of

R draws. The means and standard deviations of the WTP measures for each model and the model

average are given in Table 3. In comparison with the estimates obtained if we had simply used the

best fitting mixed logit model (MMNL-15, highlighted in Table 3), results from model averaging

suggest that the willingness to pay for changes in travel time and the rate of delays are lower by

3.9% and 8.5%, respectively. The opposite is true for changes in the number of crowded trips, for

which model averaging produces a valuation that is 10.8% higher than that for MMNL-15. Model

averaging also produces a much wider standard deviation for the value of crowding, by a factor of

62.6%.

6Note that as we use a logarithmic transformation for the cost attribute, we multiply values by 3, as this is the

average cost of chosen alternatives (to the nearest pound).
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TABLE 3 : Welfare measures obtained from the UK models

Model MA Share Log-likelihood
VTT VCR VDE

mean sd mean sd mean sd

1 7.6% -3,034.16 3.3901 6.8120 0.2913 0.7249 0.2653 0.9255

2 0.0% -3,030.67 3.3323 5.8661 0.3209 0.9212 0.2440 0.7226

3 0.0% -3,019.60 3.0992 5.5377 0.3807 1.2754 0.2310 0.6749

4 0.0% -3,015.35 3.3816 6.5317 0.3964 1.3673 0.2738 0.8196

5 0.0% -3,027.83 3.1945 4.7553 0.3662 1.2518 0.2579 0.8680

6 8.2% -3,015.46 3.1130 4.3986 0.4405 2.8656 0.2281 0.4376

7 0.0% -3,001.06 3.6717 6.2209 0.3752 0.8128 0.2975 1.0523

8 3.3% -2,996.96 2.9446 4.2261 0.3195 0.6953 0.1851 0.4678

9 1.9% -2,982.40 3.8090 7.6200 0.2973 0.8028 0.2048 0.5058

10 16.2% -2,983.74 3.9449 8.0836 0.3383 0.9637 0.2309 0.5933

11 14.9% -2,980.24 3.8708 8.4069 0.4052 1.3764 0.2279 0.6246

12 0.0% -2,990.15 3.9624 9.2506 0.3299 0.9689 0.2652 0.7720

13 0.0% -2,982.85 3.6243 5.7299 0.3053 0.8823 0.2565 1.0757

14 9.5% -2,978.60 3.6119 5.8889 0.3103 0.8760 0.1932 0.3483

15 36.2% -2,963.14 3.8910 6.6145 0.3025 0.6279 0.2596 0.7941

16 2.3% -2,985.48 3.6906 6.4057 0.3250 0.6588 0.1988 0.4331

Model Averaging -2,945.47 3.7405 7.0017 0.3352 1.0208 0.2374 0.6727



Hancock, Hess, Daly and Fox 14

4. APPLICATION TO RP MODE CHOICE DATA

We next test model averaging on revealed preference (RP) datasets, which can be more complex,

both in terms of number of individuals and the size of the choice set. As a result, the models

that can be applied often have to be simpler in structure as more complex models such as mixed

logit quickly become computationally infeasible. Model averaging avoids these computational

problems by creating a more complex model by averaging across a number of simpler models. A

key interest in large scale modelling is the specification of the utility function, notably in terms

of linearity assumptions (Daly, 2010; Stathopoulos and Hess, 2012), and this is the focus of our

second application.

4.1. Data

The second dataset that we use for model averaging comes from a Household Travel Survey (HTS-

06) that was carried out in Sydney between 2004 and 2006 (Bureau of Transport Statistics, 2012).

For this dataset, seven possible modes are considered (car driver (CD), car passenger (CP), taxi

(TX), walk (WK), bicycle (BK), train (TR) or bus (BS)) and a large number of destination zones are

defined (2,277 travel zones). For the purposes of this paper, we consider 5,173 home-work tours,

where we focus on mode choice only. Level of service and attraction measures were assembled for

each alternative such that attribute values could be derived for in-vehicle travel time, cost, access

time, waiting times for public transport modes (time until next service and time until subsequent

service) and distance. Details of the parameters used for the models for this dataset are given in

Table A2, and readers are invited to refer to Fox (2015) for a full description of the data and its

components, and also a discussion of the use of attraction measures.

4.2. Specification of individual components and model averaging

We group the attributes such that we have four parameter types: cost sensitivities (where there

are three different income groups, βcost , βcost2 and βcost3), in-vehicle travel time (IVT) sensitivities

(bus (βbus-time), car (βcar-time), train (βtrain-time), bus connection for train (βrail-bus-connect-time)), other

time (OT) sensitivities (access time (βaccess-time), time until next service (βfirst-wait), time until sub-

sequent service (βsecond-wait)) and distance sensitivities (car (βcp-dist), walking (βwk-dist) and bike

(βbk-dist) distances). We additionally have a number of socio-demographic measures included in

the specification of the models, which are based on a model for both mode and destination (which

is detailed in Table 4.11 of Fox 2015). The model used involves a complex utility specification,

where full details of this are shown in Table A2. We then try linear and logarithmic specifications

for the parameters by attribute type, using the four groups outlined above. This leads to 16 differ-

ent combinations of linear and logarithmic transformations of attributes, and gives us the model

results displayed in Table 4, with the model estimates given in Tables A3 and A4.

The best performing individual model (model 3) uses linear costs, in-vehicle travel times and

distances but a logarithmic transformation for other travel times. When applying model averaging

across the 16 simpler models, this model obtains 66.6% of the allocation, where the improvement

from model averaging over this model is 21 log-likelihood units. However, 4 other models are



Hancock, Hess, Daly and Fox 15

TABLE 4 : Results from combinations of linear and logarithmic transformations of attributes on

the Sydney HTS-06 mode choice data

Model
Attribute treatment Overall Best model for MA

Cost IVT OT Distance Log-likelihood x% of respondents Share

1 linear linear linear linear -2,784.74 5.18% 0.00%

2 linear linear linear log -2,803.43 5.48% 0.00%

3 linear linear log linear -2,771.52 6.50% 66.60%

4 linear linear log log -2,792.17 9.95% 0.00%

5 linear log linear linear -2,806.83 4.26% 0.00%

6 linear log linear log -2,814.47 4.68% 5.83%

7 linear log log linear -2,800.51 3.25% 0.00%

8 linear log log log -2,804.25 8.41% 1.34%

9 log linear linear linear -2,801.99 4.14% 0.00%

10 log linear linear log -2,799.90 1.57% 0.00%

11 log linear log linear -2,791.18 5.46% 0.00%

12 log linear log log -2,792.10 2.89% 6.69%

13 log log linear linear -2,839.87 6.06% 0.00%

14 log log linear log -2,823.12 6.44% 19.53%

15 log log log linear -2,838.38 5.60% 0.00%

16 log log log log -2,818.69 8.61% 0.00%

Model averaging -2,750.48

also included in the final set from model averaging. Notably, the second largest share goes to

model 14, which is an opposite to model 3, in that it has a logarithmic transformation for cost,

in-vehicle travel times and distances but not for other travel times. This model is in fact the third

worst fitting model at the sample level and the high weight in model averaging again shows how

a model that works well for some people but badly overall can obtain a high weight in model

averaging. Consequently, the joint model established from model averaging is far less sensitive to

outliers, which only have a strong impact if they are not well described by any of the contributing

models. Notably, model 4, which is the best model for the largest percentage of respondents, and

also performs relatively well at the sample level, does not get a share. This is likely a result of it

being similar in structure but inferior in overall model fit to model 3.

Again, we trial model averaging across models run on the full dataset as well as models run on

80% estimation subsets and 20% validation subsets (See Table 5). Across all five holdout samples,

model 3 again performs best in estimation. This is very different from the case of the mixed logit

examples discussed earlier. However, in line with previous results, we again find that estimation

and holdout model fits are consistently improved by averaging across the 5 models retained by

model averaging.
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TABLE 5 : Model averaging log-likelihoods across the attribute treatment combinations for esti-

mation and holdout samples for the Sydney HTS-06 mode choice data

Estimation Holdout Sample

Model averaging Most contributing MMNLs MA LL Model averaging MMNL MA LL

LL Version LL Share Improvement LL LL Improvement

Full -2,750.48

3 -2,771.52 66.60% 21.04

n/a

14 -2,823.12 19.53% 72.64

12 -2,792.10 6.69% 41.62

6 -2,814.47 5.58% 63.99

8 -2,804.25 1.34% 53.77

Holdout 1 -2,216.40

3 -2,230.51 70.67% 14.11

-538.90

-544.80 5.90

14 -2,278.31 19.68% 61.91 -549.82 10.91

12 -2,249.97 6.23% 33.57 -545.95 7.05

16 -2,272.48 2.18% 56.08 -550.71 11.80

1 -2,243.81 1.25% 27.41 -545.27 6.36

Holdout 2 -2,145.19

3 -2,162.17 62.44% 16.98

-610.57

-614.94 4.37

12 -2,174.79 15.54% 29.60 -623.56 12.99

6 -2,198.73 10.74% 53.54 -623.58 13.01

14 -2,212.04 6.04% 66.84 -617.86 7.29

4 -2,172.02 3.62% 26.83 -626.51 15.94

Holdout 3 -2,198.76

3 -2,215.39 56.26% 16.64

-556.64

-561.49 4.85

14 -2,257.75 12.84% 58.99 -569.38 12.74

6 -2,252.54 12.51% 53.78 -566.65 10.01

11 -2,228.74 7.92% 29.98 -567.16 10.52

1 -2,221.77 4.12% 23.01 -569.47 12.83

Holdout 4 -2,212.34

3 -2,229.62 52.51% 17.29

-546.13

-548.73 2.60

14 -2,270.23 13.40% 57.89 -563.16 17.04

6 -2,250.48 12.19% 38.14 -556.84 10.71

8 -2,246.49 6.82% 34.15 -549.18 3.05

4 -2,239.66 3.98% 27.33 -551.99 5.86

Holdout 5 -2,208.77

3 -2,230.61 51.57% 21.84

-549.23

-553.30 4.08

14 -2,255.60 27.24% 46.83 -561.25 12.02

11 -2,236.46 9.48% 27.69 -558.46 9.23

16 -2,250.30 7.83% 41.53 -555.52 6.29

6 -2,261.23 3.88% 52.46 -559.30 10.07
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4.3. Computation of outputs from model averaging

For the Sydney study, we can compare the value of time measures for different groups of individ-

uals as we have three cost coefficients in each model for three different annual income categories

(1st: < $26k AUD, 2nd: $26-36.4k AUD, 3rd: > $36.4k AUD). We first obtain the value of travel

time from all of the candidate models. As some of the models use logarithmic transformations

for costs and times, we multiply these measures by a representative cost ($5.48) and divide by a

representative time (49 minutes), as required. These outputs are detailed in Table 6.

We see that, whilst the different models have fairly similar model fit, the values of travel time

vary significantly, both across models and modes. The effect of income, however, is fairly consis-

tent, with individuals of a higher income prepared to pay more to reduce time spent travelling. The

differences between models are very significant, with the results from some models suggesting that

individuals have valuations that are up to 10 times larger than the findings for other models. This

makes the selection of one of the models a highly consequential decision. The results from model

averaging, however, appear reasonable, with the added confidence that they combined results from

a number of models that each offer comparable performance in explaining the choices in the data.

Elasticities are a key output from choice models, particularly for those estimated on RP data.

We now look at the implications of model averaging in this context. Given that elasticities from

different models can be very contrasting, a further use of model averaging is that it can be used to

derive a single elasticity from an ‘average’ model. For the Sydney data, we calculate the elasticity

for tours for all modes in response to a increase in the cost of car. This is a particularly relevant

example, as elasticities from models with a logarithmic transform for cost are often too low, whilst

linear cost models are often too high (Fox et al., 2009). In particular, let Tj,base car cost be the

predicted number of tours by mode j at the base costs for car in the data, and let Tj,1.01·car cost be

the predicted number of tours by mode j after a 1% increase in car costs. Both these quantities

would be obtained by using Equation 8. The elasticity would then be calculated as :

ETj,car cost = log(
Tj,1.01·car cost

Tj,base car cost

)/ log(1.01). (13)

The tour elasticities in response to car costs are shown for the 16 different models tested in

Table 7. It is noticeable that, whilst many of the elasticities across the different models are similar,

the values estimated for train, bus and walking vary more substantially. In line with the results of

Fox et al. (2009), we see less of an impact on the share for car driver for models with a logarithmic

transformation of costs (models 9-16). Consequently, more trips are transferred to train and bus

under models 1-8, for which elasticity values are up to double those estimated by models 9-16. It

is worth noting that as only mode choice is estimated here, the car elasticities observed are lower

than those from models predicting mode and destination choice for this data (see Fox 2015). Whilst

model averaging gives a larger share to linear cost models, lower elasticities for train and bus are

found for the model average when compared with model 3, which is likely to have been used in

the absence of model averaging (e.g. the cross-elasticity for train reduces from 0.2693 to 0.2371).

As a result, it appears that the use of model averaging may allow a modeller to avoid the issue of

finding elasticities that are either too high (through the use of linear attributes) or too low (through

the use of logarithmic attributes).
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TABLE 6 : Value of travel times (AUD/hr) obtained from the models for the Sydney choice-only data, across different modes and

income categories (IC1, IC2 and IC3).

Model MA Share Log-likelihood
Car Train Bus Access

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

1 0.00% -2,784.74 9.1016 12.3341 15.3345 2.4234 3.2841 4.0830 7.1952 9.7506 12.1227 3.4965 4.7384 5.8910

2 0.00% -2,803.43 7.7686 10.9756 13.9278 0.1209 0.1709 0.2168 6.1456 8.6827 11.0181 3.4003 4.8040 6.0961

3 66.60% -2,771.52 11.3727 15.2868 19.5670 4.1548 5.5848 7.1484 8.3142 11.1758 14.3049 7.0728 9.5071 12.1690

4 0.00% -2,792.17 9.6828 13.5127 17.6517 1.6983 2.3700 3.0960 7.0546 9.8450 12.8605 7.0814 9.8823 12.9093

5 0.00% -2,806.83 1.0217 1.3098 1.5585 4.9862 6.3921 7.6058 0.2463 0.3157 0.3756 1.8624 2.3876 2.8409

6 5.83% -2,814.47 4.3663 5.8800 7.1572 4.4614 6.0082 7.3132 2.1193 2.8541 3.4741 2.7683 3.7280 4.5378

7 0.00% -2,800.51 2.5881 3.3150 3.9633 4.7048 6.0263 7.2047 0.6388 0.8182 0.9782 5.3473 6.8492 8.1887

8 1.34% -2,804.25 6.8791 9.2047 11.3421 3.8407 5.1392 6.3325 2.9935 4.0055 4.9357 6.8599 9.1790 11.3105

9 0.00% -2,801.99 20.8780 21.9172 21.8958 3.3445 3.5109 3.5075 13.6809 14.3618 14.3478 8.1491 8.5547 8.5464

10 0.00% -2,799.90 11.4625 11.9060 12.0352 0.3142 0.3264 0.3299 7.9094 8.2154 8.3046 4.7990 4.9847 5.0388

11 0.00% -2,791.18 27.1439 28.2111 28.3959 7.4605 7.7538 7.8046 17.2093 17.8859 18.0030 15.8066 16.4281 16.5357

12 6.69% -2,792.10 14.3500 14.7996 15.0593 2.5177 2.5966 2.6421 9.5773 9.8773 10.0507 9.5335 9.8322 10.0048

13 0.00% -2,839.87 3.7963 3.9377 3.9177 11.8119 12.2519 12.1898 -0.5665 -0.5876 -0.5847 4.6492 4.8224 4.7980

14 19.53% -2,823.12 6.4854 6.6814 6.7138 6.7877 6.9928 7.0268 1.9804 2.0403 2.0502 4.0392 4.1612 4.1814

15 0.00% -2,838.38 8.3800 8.5927 8.6020 12.3238 12.6367 12.6504 0.8833 0.9058 0.9068 12.6536 12.9749 12.9889

16 0.00% -2,818.69 10.8960 11.1051 11.2367 6.3306 6.4521 6.5285 3.7380 3.8097 3.8549 10.1099 10.3039 10.4260

Model Averaging -2,750.48 10.1475 12.9421 15.9195 4.5727 5.6780 6.8212 6.7285 8.7224 10.8685 6.3905 8.1426 10.0066
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TABLE 7 : Elasticities for an increase in car cost for the Sydney mode choice models.

Model MA Share Log-likelihood
Tour car cost elasticity

Car Driver Car Passenger Train Bus Bike Walk Taxi

1 0.00% -2,784.74 -0.1084 0.1259 0.2786 0.2339 0.1414 0.0522 0.1414

2 0.00% -2,803.43 -0.0985 0.1147 0.2524 0.2093 0.1682 0.0505 0.1237

3 66.60% -2,771.52 -0.1033 0.1199 0.2693 0.2182 0.1326 0.0471 0.1342

4 0.00% -2,792.17 -0.0958 0.1090 0.2496 0.1993 0.1645 0.0474 0.1181

5 0.00% -2,806.83 -0.1322 0.1455 0.3392 0.2941 0.1689 0.0624 0.1596

6 5.83% -2,814.47 -0.1122 0.1291 0.2850 0.2465 0.1661 0.0562 0.1368

7 0.00% -2,800.51 -0.1290 0.1405 0.3384 0.2776 0.1600 0.0575 0.1515

8 1.34% -2,804.25 -0.1087 0.1207 0.2833 0.2321 0.1553 0.0520 0.1299

9 0.00% -2,801.99 -0.0536 0.0929 0.0944 0.1118 0.1364 0.0992 0.1293

10 0.00% -2,799.90 -0.0766 0.1297 0.1397 0.1627 0.1980 0.1284 0.1791

11 0.00% -2,791.18 -0.0484 0.0846 0.0861 0.0985 0.1235 0.0898 0.1178

12 6.69% -2,792.10 -0.0726 0.1236 0.1339 0.1510 0.1883 0.1212 0.1707

13 0.00% -2,839.87 -0.0628 0.1050 0.1133 0.1316 0.1561 0.1132 0.1458

14 19.53% -2,823.12 -0.0789 0.1307 0.1449 0.1691 0.1988 0.1314 0.1794

15 0.00% -2,838.38 -0.0548 0.0923 0.1003 0.1111 0.1354 0.0995 0.1280

16 0.00% -2,818.69 -0.0708 0.1184 0.1319 0.1476 0.1780 0.1180 0.1623

Model Averaging -2,750.48 -0.0971 0.1228 0.2371 0.2060 0.1515 0.0691 0.1456



Hancock, Hess, Daly and Fox 20

5. APPLICATION TO RP MODE AND DESTINATION CHOICE DATA

5.1. Data

The final dataset comes from the 2012 California Household Travel Survey (California Department

of Transportation, 2013). For this dataset, there are 6,718 choices, with car, bus, rail and air

as mode alternatives and 58 destination zones (the different counties in California). Again, we

have attraction attributes (number of hospitals, employment and other services) for the different

destinations and travel times, travel costs, and distances associated with the different travel modes.

5.2. Specification of individual components and model averaging

We use our California dataset to test model averaging across models looking jointly at mode and

destination choice. We start by using a multinomial logit model (MNL). There are 4 different

modes and 58 different destination zones. The utility for mode i and destination j is given by:

Ui j = δi +βF ·Fi +βT Ti
·T Ti + log

(
exp(szh) ·h j + exp(sze) · e j + exp(szo) ·o j

)
, (14)

where δi is an alternative specific constant,7 Fi and T Ti are the travel fare and time for alternative i,

respectively, βF is the coefficient estimated for travel fare and βT Ti
is the mode-specific coefficient

for travel time. The ‘size’ of destination j is then calculated using coefficients szh, sze and szo for

the relative importance of the number of hospitals (h j), employment (e j) and other services (o j).

A full description of these models is given by Outwater et al. (2015). We next develop four nested

logit models. One key decision for modellers considering destination choice is the definition of the

destination boundaries, which can be arbitrary. In this case study, California could be split into, for

example, 58 counties or 10 regions (See Figure 1).

The four nested logit models make use of the following nesting structures:

1. NLdestination. The use of 58 nests, one for each county, with 10 different nesting parame-

ters, one for each region. Thus counties that are in the same region have the same nesting

parameter, but the alternatives for different counties are not nested together.

2. NLregion. The use of 10 nests, one for each region, with a different nesting parameter for each

region.

3. NLNSEW . The use of 4 nests, with different nesting parameters, where the regions are

grouped according to location: north (1 and 2), east (4 and 6), west (3, 5 and 8) and south

(7, 9 and 10).

4. NLN−S. This model also uses 4 nests, but this time with regions grouped depending on how

far north they are: north (1 and 2), centre-north (3 and 4), centre-south (5 and 6) and south

(7, 8, 9 and 10).

7For δair, a constant is estimated with additional shifts added depending on the travel distance.
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FIGURE 1 : Californian regions and counties (retrieved from CA Government 2020)

Table 8 shows that all four nested logit models give improvements in model fit over the MNL

model, where Table A5 gives the estimated parameters for the five different models. Turning to

model averaging, we see that three of the four NL models are retained, but the MNL model is not

included in the final averaging. The worst fitting NL model, NLNSEW , which provides the best fit

for 10.98% of individuals, does not contribute to the model average. This is a result of the fact

that the only nesting parameter that is significantly different from one is for the north regions. As

this grouping is also in the NLN−S model, the NLNSEW becomes an intermediary model between

MNL and NLN−S. The shares for the three contributing models are approximately in line with the

log-likelihoods of the models: NLregion is the best performing model and also receives the largest

share.

5.3. Computation of outputs from model averaging

For our California data, we can calculate four mode-specific values of travel time from each of the

different models. The results of these models are given in Table 9. In this case, the NLdestination

model provides values that are higher than MNL, whereas the other nested logit models provide

lower values than MNL. The result of using model averaging is that we obtain values that are

closer to MNL, despite this model having been excluded from the averaging. Thus, by using

model averaging, we again avoid more extreme values, with, for example, the best performing
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TABLE 8 : The results from model averaging (MA) across five basic models applied to the Cali-

fornia dataset

Model pars nests free fixed
Overall Gain over Best model for MA

Log-likelihood MNL x% of respondents Share

MNL 14 0 0 0 -23,955.26 0.00 1.15% 0.00%

NLdestination 21 10 7 3 -23,925.90 29.36 6.75% 28.22%

NLregion 17 10 3 7 -23,921.72 33.54 38.86% 41.40%

NLNSEW 15 4 1 3 -23,939.90 15.36 10.98% 0.00%

NLN−S 16 4 2 2 -23,926.94 28.32 42.26% 30.38%

Model averaging -23,904.58 50.68

TABLE 9 : Value of travel time estimates by mode across the different models for the California

data

Model MA Share Log-likelihood
VTT

car bus rail air

MNL 0.00% -23,955.26 14.2597 21.5192 18.5619 6.9961

NLdestination 28.22% -23,925.90 17.0652 22.0728 22.5708 7.4018

NLregion 41.40% -23,921.72 13.5825 20.4702 18.2597 4.5117

NLNSEW 0.00% -23,939.90 13.4850 20.7312 17.7946 6.2388

NLN−S 30.38% -23,926.94 13.4428 20.6955 17.3794 6.0621

MA -23,904.58 14.5229 20.9910 19.2089 5.7983
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model, NL_region, providing a particularly low estimate for air.

We also test different elasticities for the California dataset, where we estimate car cost and

time elasticities for tours by mode, distance travelled by mode, and total distance travelled across

modes. These elasticities are given in Tables 10 and 11.

TABLE 10 : Tour elasticities from the five different candidate models and model averaging for the

California dataset

Model MA Share Log-likelihood
Car cost tour elasticity Car time tour elasticity

car bus rail air car bus rail air

MNL 0.00% -23,955.26 -0.0184 0.4862 0.4710 0.4589 -0.0374 0.9796 0.9523 0.9369

NLdestination 28.22% -23,925.90 -0.0208 0.5075 0.4833 0.5989 -0.0501 1.2180 1.1697 1.4221

NLregion 41.40% -23,921.72 -0.0197 0.5093 0.4993 0.4955 -0.0380 0.9749 0.9602 0.9582

NLNSEW 0.00% -23,939.90 -0.0189 0.4991 0.4807 0.4714 -0.0362 0.9497 0.9189 0.9086

NLN−S 30.38% -23,926.94 -0.0189 0.4999 0.4782 0.4723 -0.0361 0.9483 0.9122 0.9070

Model averaging -23,904.58 -0.0198 0.5060 0.4885 0.5164 -0.0408 1.0367 1.0056 1.0686

TABLE 11 : Distance elasticities from the five different candidate models and model averaging

for the California dataset

Model
Car cost distance elasticity Car time distance elasticity

car bus rail air total car bus rail air total

MNL -0.0194 0.0521 0.0506 0.0477 -0.0149 -0.0394 0.1047 0.1019 0.0978 -0.0302

NLdestination -0.0180 0.0582 0.0534 0.0626 -0.0129 -0.0436 0.1378 0.1282 0.1492 -0.0313

NLregion -0.0202 0.0550 0.0539 0.0518 -0.0153 -0.0391 0.1049 0.1033 0.1004 -0.0297

NLNSEW -0.0200 0.0534 0.0515 0.0491 -0.0154 -0.0384 0.1013 0.0982 0.0949 -0.0295

NLN−S -0.0200 0.0533 0.0511 0.0492 -0.0154 -0.0383 0.1009 0.0972 0.0948 -0.0294

Model averaging -0.0195 0.0554 0.0529 0.0539 -0.0147 -0.0401 0.1133 0.1083 0.1120 -0.0301

Whilst the elasticities from most of the nested logits are similar to those of the MNL model,

the NLdestination model produces larger deviations. Calculating the elasticities from the model

bringing together three different nesting structures provides suitable values which take into account

the relative performance of the different models (as the NLdestination model performs best), without

giving undue influence to extreme results from any one model.

6. CONCLUSIONS

Despite successful results in a number of fields including health, ecology and economics, model

averaging has yet to make a transition into mainstream choice modelling. In this paper, we demon-

strate that it is very simple to run and that it consistently improves model fit in both estimation and

out-of-sample forecasting. Whilst we apply model averaging through the use of sequential latent

class models, other methods are possible, with Bayesian methods used for model averaging typical

in other disciplines (Wintle et al., 2003; Wang et al., 2004; Raftery et al., 2005). Consequently,

future work could compare different model averaging methods. However, we find that model av-

eraging using a simple sequential latent class structure provides many benefits. To deal with the

issue of convergence to poor local optima, we present a simple expectation-maximisation (EM)
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algorithm which can deal with very large numbers of candidate models within the same model av-

eraging structure, unlike is typically the case with classical estimation approaches for latent class.

We demonstrate that model averaging can be applied across a large number of candidate

models. These models can be very similar, with model averaging proving effective when used

across multiple mixed logit models with various different combinations of distributions for the

parameters. The models can also be more different. With complex models often infeasible to run

when there are hundreds or even thousands of alternatives, model averaging provides a simple and

efficient method for improving models, with consistent improvements in model fit found when

applying it over a number of simpler models based on different utility specifications or nesting

structures.

Additionally, model averaging is less sensitive to outliers, as unlikely choices only have an

impact on the model fit if they are outliers across all models contributing to the model average.

This also means that model averaging is very good at making the most of models which are very

accurate at describing some choices but less accurate for others. Consequently, the best fitting

model may not contribute the most to a model average, or may in fact not contribute at all.

We show that model averaging always provides model fit at least as good as the best fitting

candidate model. We have purposely not conducted statistical tests for these improvements in

fit. Indeed, model averaging should not be seen as a different model which can be compared

to individual structures, such as a simultaneous latent class model with different models in each

class. Indeed, for model averaging, the process only involves calculating a weighted average of the

outputs from individual models and does not involve the reestimation of the parameters from the

individual models, where these always come from individual models estimated on the full sample.

Whilst we only ever consider the use of constants for class allocation, more complex struc-

tures could easily be adopted. For example, the parameterisation of class allocation within model

averaging could be performed very simply by using socio-economic attributes. The use of the EM

algorithm still remains possible, as discussed for discrete mixtures by Train (2009, chapter 14). A

final key advantage of model averaging is that it is very easy to apply. A modeller does not even re-

quire knowledge of the individual models within the classes to apply model averaging. This means

that, for example, an analyst could ask multiple researchers or teams of researchers to develop

models for the same dataset, and then estimate the model averaging across these models, for which

they would only need the underlying log-likelihood contribution for each individual or observation

in the dataset. This would allow an analyst to combine insights from different researchers or teams,

with different skills/background, producing a more robust overall model.
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APPENDIX: CANDIDATE MODEL OUTPUTS

UK data

Table A1 gives the parameter estimates and robust t-ratios for the 16 different mixed logit models

for the UK dataset.

We estimate lognormal or loguniform distributions for each β -coefficient to capture inter-

individual heterogeneity only. Thus, for example, the coefficient for travel fare under a lognormal

distribution is estimated with:

βn,LF =−exp(µlog(−βLF )+σlog(−βLF )) ·ξn,LF , (A1)

where µlog(−βLF ) is the estimated mean for the log of −βLF , σlog(−βLF ) is the corresponding stan-

dard deviation and ξn,LF is an inter-individual level standard normally distributed error term.

Equivalently, the coefficient for travel fare under a loguniform distribution is estimated with:

βn,LF =−exp(alog(−βLF )+blog(−βLF )) ·ξn,LF , (A2)

where alog(−βLF ) and blog(−βLF ) are the estimated offset and range, respectively, for the uniform dis-

tribution of the log of −βLF and ξn,LF is now an inter-individual level standard uniform distributed

error term. To see how to simply estimate these models, please refer to Hess and Palma (2019). In

Table A1, par1 refers to the µlog(−β ) for negative lognormal distributions and alog(−β ) for negative

loguniform distributions, with par2 referring to σlog(−β ) and blog(−β ), respectively. For positive

coefficients, the minus sign is dropped.

Sydney data

For the Sydney dataset, there are a large number of ‘level of service’ attributes as well as socio-

demographic variables that are used in the specification for the utility of the different modes. The

full specification for each mode are given in Table A2.

A number of indicator variables (I) are used to indicate that the parameter is only used in

certain cases. The attributes, which are labelled X , (with the indices for individual and choice

task dropped) can all either be entered into the utility as they are (in which case INC = 1 for cost

attributes, INT = 1 for in-vehicle time attributes, INR = 1 for other time attributes and IND for

distance attributes) or with a logarithmic transformation applied (corresponding to indicators ILC,

ILT , ILR and ILD). The use of either natural or logarithmic transformations of attributes results in

our 16 different model specifications. A number of socio-demographic parameters (ξ ) are also

included along with additional alternative specific constants that are only applied in some cases

(such as ICBD, which corresponds to whether the destination is in the CBD). This results in, for

example, the utility for walking being calculated as:

UWK = δWK

+βwk-dist · IND ·Xslow-dist

+βlog-walk-dist · ILD · log(Xslow-dist)

+δWK-CBD · ICBD,

(A3)
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where δWK is an alternative specific constant for the utility of walking and δWK-CBD is an additional

constant added in the case where ICBD = 1, which is when the destination is in the CBD. βwk-dist

is the marginal utility for walking distance, Xslow-dist, which is used only in models which utilise

natural distances (IND = 1 and ILD = 0). Alternatively, models using a logarithmic transform of

walking distance would have IND = 0 and ILD = 1, resulting in the use of βlog-walk-dist instead. A

full description of the attributes and socio-demographics is given in Section 4.3 of Fox (2015).

California data

For the California dataset, the full parameter estimates for the MNL and four nested logit models

is given in Table A5.
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TABLE A1 : Parameter estimates for the mixed logit models for the UK data

Model number Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Log-likelihood -3,034.16 -3,030.67 -3,019.60 -3,015.35 -3,027.83 -3,015.46 -3,001.06 -2,996.96

est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat.

TT

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -2.83 -23.51 -2.82 -19.67 -2.81 -22.94 -2.78 -20.83 -4.75 -11.50 -4.52 -12.63 -4.64 -11.15 -4.72 -3.53
par2 -0.71 -8.09 -0.59 -4.43 -0.60 -6.77 -0.58 -5.28 3.60 6.22 3.34 6.51 3.55 6.77 3.73 2.20

LF

dist. LN- LN- LN- LN- LU- LU- LU- LU-
par1 1.94 21.18 1.87 14.96 1.96 21.44 1.97 21.33 1.88 17.86 1.93 18.18 2.01 22.17 2.09 23.09
par2 1.04 14.20 1.02 9.12 1.03 14.35 1.09 12.48 0.99 11.40 1.04 12.32 1.06 13.69 1.10 13.26

CR

dist. LN- LN- LU- LU- LN- LN- LU- LU-
par1 -1.38 -8.63 -1.50 -7.43 -6.97 -22.55 -6.33 -24.33 -1.51 -6.92 -1.38 -7.57 -6.56 -22.21 -4.61 -7.76
par2 -0.94 -8.63 1.11 9.93 8.48 24.44 7.72 31.70 1.08 10.25 1.09 10.97 8.09 24.29 5.61 7.43

RD

dist. LN- LU- LN- LU- LN- LU- LN- LU-
par1 -1.80 -4.56 -6.11 -8.97 -1.75 -5.29 -5.26 -5.48 -1.80 -3.32 -4.66 -3.24 -1.65 -2.84 -4.87 -5.40
par2 1.25 4.44 6.88 8.22 1.11 4.65 6.04 5.65 1.00 2.02 5.14 2.77 1.03 1.53 5.66 5.55

AD

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -3.40 -9.20 -3.79 -2.00 -3.58 -6.62 -4.89 -2.94 -3.69 -5.47 -3.91 -6.98 -3.66 -3.70 -3.88 -6.35
par2 0.91 3.09 1.06 0.40 1.13 2.43 1.98 2.76 0.99 1.92 1.28 2.50 1.22 1.22 1.57 5.03

ED

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -4.53 -4.95 -2.80 -5.35 -3.50 -5.39 -2.32 -7.08 -2.94 -4.07 -2.74 -6.86 -3.39 -4.93 -2.47 -7.78
par2 -2.12 -5.71 -1.43 -6.86 -1.64 -5.81 0.20 0.38 -1.48 -6.18 -1.46 -10.20 -1.63 -5.11 -0.33 -2.16

CI

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -2.57 -2.35 -2.46 -2.38 -3.27 -1.05 -7.35 -0.39 -2.21 -3.10 -2.75 -2.67 -2.84 -1.66 -1.79 -3.46
par2 -1.48 -2.71 -1.38 -4.10 -2.08 -1.39 -4.42 -0.46 -1.31 -5.93 -1.49 -4.54 -1.93 -2.09 -0.77 -3.56

FI

dist. LN+ LN+ LN+ LN+ LN+ LN+ LN+ LN+
par1 -0.87 -4.10 -0.78 -3.75 -0.81 -3.52 -0.85 -2.34 -1.12 -2.06 -0.76 -3.29 -0.77 -4.16 -0.76 -3.75
par2 0.29 1.01 0.19 0.42 0.26 0.72 0.49 1.31 -0.79 -1.54 0.35 0.83 0.10 0.20 0.28 0.75

δ1 0.66 8.63 0.69 8.42 0.68 8.41 0.73 8.39 0.69 8.61 0.72 8.98 0.72 8.80 0.76 9.26
δ2 0.25 3.91 0.27 4.04 0.28 4.21 0.29 4.29 0.27 3.98 0.28 4.14 0.29 4.21 0.30 4.23

Model number Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16
Log-likelihood -2,982.40 -2,983.74 -2,980.24 -2,990.15 -2,982.85 -2,978.60 -2,963.14 -2,985.48

est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat.

TT

dist. LU- LU- LU- LU- LU- LU- LU- LU-
par1 -2.81 -22.70 -2.77 -22.36 -2.77 -23.42 -2.79 -23.67 -4.52 -11.73 -4.68 -10.27 -4.73 -9.43 -4.97 -9.79
par2 -0.70 -5.60 -0.68 -5.80 -0.82 -7.47 -0.67 -8.83 3.40 6.04 3.68 6.07 3.79 6.12 4.03 5.71

LF

dist. LN- LN- LN- LN- LU- LU- LU- LU-
par1 0.12 1.06 0.21 1.06 0.11 0.44 0.22 0.28 0.20 1.05 0.27 1.53 0.20 1.14 0.22 1.16
par2 3.76 31.95 3.58 14.52 3.77 11.55 3.70 2.93 3.67 14.49 3.59 15.19 3.75 15.99 3.66 16.24

CR

dist. LN- LN- LU- LU- LN- LN- LU- LU-
par1 -1.54 -7.36 -1.80 -6.06 1.13 4.20 -4.78 -4.78 -1.54 -7.85 -1.46 -8.55 -4.42 -6.15 -4.28 -6.00
par2 1.35 10.48 1.67 7.73 -5.73 -5.63 5.87 4.99 1.25 10.27 1.24 16.18 5.35 5.96 5.25 6.13

RD

dist. LN- LU- LN- LU- LN- LU- LN- LU-
par1 -1.91 -3.61 -4.35 -4.79 -1.82 -5.99 -6.82 -33.42 -2.09 -5.32 -4.06 -4.25 -1.74 -6.27 -5.35 -3.34
par2 1.36 5.38 4.89 4.68 1.40 9.68 7.62 30.34 1.52 7.29 4.38 4.03 1.29 7.47 5.96 3.29

AD

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -3.64 -4.43 -4.73 -9.40 -4.78 -6.59 -7.01 -4.92 -4.03 -4.25 -3.92 -7.26 -4.05 -5.30 -4.54 -3.63
par2 1.24 1.88 -2.74 -10.97 2.20 5.77 2.90 5.32 1.54 3.85 1.54 5.93 1.62 3.52 1.96 3.35

ED

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -3.50 -2.78 -2.74 -6.90 -2.40 -6.30 -2.10 -9.13 -2.59 -4.11 -3.62 -5.89 -3.58 -5.88 -2.45 -4.42
par2 -1.77 -3.72 1.25 7.84 0.59 3.13 0.99 8.75 1.18 4.17 2.54 7.57 -1.91 -7.24 1.25 5.37

CI

dist. LN- LN- LN- LN- LN- LN- LN- LN-
par1 -476.82 -3.36 -4.90 -0.73 -16.90 -2.06 -30.50 -0.64 -3.96 -1.16 -7.43 -1.74 -5.75 -1.97 -240.20 -0.88
par2 -235.40 -3.40 -3.10 -0.85 -9.22 -2.14 -17.90 -0.65 -2.66 -1.46 -4.35 -2.17 -4.09 -2.37 -92.21 -0.88

FI

dist. LN+ LN+ LN+ LN+ LN+ LN+ LN+ LN+
par1 -0.80 -3.11 -0.80 -2.50 -0.72 -3.10 -0.89 -3.23 -0.95 -2.11 -0.89 -3.26 -1.10 -3.41 -0.83 -3.99
par2 -0.43 -1.19 0.37 0.57 -0.12 -0.09 -0.62 -1.82 -0.62 -1.10 -0.65 -2.49 -0.79 -3.50 -0.69 -4.00

δ1 0.74 9.81 0.76 9.47 0.77 9.94 0.77 9.87 0.74 8.94 0.78 9.90 0.79 9.59 0.82 10.44
δ2 0.28 4.19 0.31 4.50 0.31 4.40 0.32 4.45 0.29 4.03 0.29 3.97 0.31 4.27 0.31 4.18
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TABLE A2 : Parameters included in the specifications for the utilities for the different modes in the Sydney data

Parameter Car Driver (CD) Car Passenger (CP) Train (TR) Bus (BS) Bicycle (BK) Walk (WK) Taxi (TX)

δCD 1

δCP 1

δT R 1

δBS 1

δBK 1

δWK 1

δT X 1

βcost1 INC · IIG1
·CD f act ·Xcar-cost INC · IIG1

·CPf act ·Xcar-cost INC · IIG1
·Xtrain-fare INC · IIG1

·Xbus-fare INC · IIG1
·Xtaxi-fare

βcost2 INC · IIG2
·CD f act ·Xcar-cost INC · IIG2

·CPf act ·Xcar-cost INC · IIG2
·Xtrain-fare INC · IIG2

·Xbus-fare INC · IIG2
·Xtaxi-fare

βcost3 INC · IIG3
·CD f act ·Xcar-cost INC · IIG3

·CPf act ·Xcar-cost INC · IIG3
·Xtrain-fare INC · IIG3

·Xbus-fare INC · IIG3
·Xtaxi-fare

βcar-time INT ·Xcar-time INT ·Xcar-time INT ·Xcar-time

βrail-time INT ·Xtrain-time

βbus-time INT ·Xbus-time

βrail-bus-connect-time INT ·Xrailbus-time

βaccess-time INR ·Xrail-walk INR ·Xbus-walk

βfirst-wait INR ·Xfirst-wait INR ·Xfirst-wait

βsecond-wait INR ·Xsecond-wait INR ·Xsecond-wait

βwk-dist IND ·Xslow-dist

βbk-dist IND ·Xslow-dist

βcp-dist IND ·Xcar-dist IND ·Xcar-dist

βlog-cost1 ILC · IIG1
·CD f act · log(Xcar-cost) ILC · IIG1

·CPf act · log(Xcar-cost) ILC · IIG1
· log(Xtrain-fare) ILC · IIG1

· log(Xbus-fare) ILC · IIG1
· log(Xtaxi-fare)

βlog-cost2 ILC · IIG2
·CD f act · log(Xcar-cost) ILC · IIG2

·CPf act · log(Xcar-cost) ILC · IIG2
· log(Xtrain-fare) ILC · IIG2

· log(Xbus-fare) ILC · IIG2
· log(Xtaxi-fare)

βlog-cost3 ILC · IIG3
·CD f act · log(Xcar-cost) ILC · IIG3

·CPf act · log(Xcar-cost) ILC · IIG3
· log(Xtrain-fare) ILC · IIG3

· log(Xbus-fare) ILC · IIG3
· log(Xtaxi-fare)

βlog-car-time ILT · log(Xcar-time) ILT · log(Xcar-time) ILT · log(Xcar-time)
βlog-rail-time ILT · log(Xtrain-time)
βlog-bus-time ILT · log(Xbus-time)

βlog-rail-bus-connect-time ILT · log(Xrailbus-time)
βlog-access-time ILR · log(Xrail-walk) ILR · log(Xbus-walk)
βlog-first-wait ILR · log(Xfirst-wait) ILR · log(Xfirst-wait)

βlog-second-wait ILR · log(Xsecond-wait) ILR · log(Xsecond-wait)
βlog-walk-dist ILD · log(Xslow-dist)
βlog-bike-dist ILD · log(Xslow-dist)
βlog-carP-dist ILD · log(Xcar-dist) ILD · log(Xcar-dist)

ζother-car-user Iother-car-user

ζcompany-cars Icompany-cars

ζmale-driver Imale

ζunder25 Iunder25

ζother-driver Iother-driver

ζhigher-income-rail IIG3

ζft-worker Ift-worker

ζmale-bike Imale

δiz IIZ

δbe f 830 Ibe f 830

δCD-CBD ICBD

δCP-CBD ICBD

δTR-CBD ICBD

δBS-CBD ICBD

δBK-CBD ICBD

δWK-CBD ICBD

δTX-CBD ICBD
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TABLE A3 : Parameter estimates for models 1-8 for the Sydney data

Model number Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Log-likelihood -2,784.74 -2,803.43 -2,771.52 -2,792.17 -2,806.83 -2,814.47 -2,800.51 -2,804.25

Parameter est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat. est. rob.t-rat.

δCD 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

δCP -5.0727 -18.62 -4.1064 -12.97 -5.0950 -18.40 -4.0844 -12.78 -5.1631 -18.85 -4.2520 -13.39 -5.1978 -18.74 -4.2868 -13.34

δT R -1.7096 -5.34 -1.8236 -5.77 1.7714 3.46 1.6205 3.19 -3.8044 -7.68 -4.6632 -9.26 -0.5514 -0.96 -1.1924 -2.06

δBS -2.3391 -9.36 -2.4616 -9.97 0.8942 1.98 0.7351 1.64 -2.8671 -8.65 -3.2886 -9.64 0.1470 0.33 -0.0091 -0.02

δBK -6.5355 -10.55 -4.5545 -7.42 -6.4993 -10.59 -4.3984 -7.24 -6.8587 -9.64 -5.6821 -8.24 -7.2621 -10.03 -5.9427 -8.63

δWK -0.6619 -2.81 0.6106 2.44 -0.6068 -2.57 0.7155 2.86 -0.8958 -2.89 -0.1819 -0.52 -1.1147 -3.71 -0.4257 -1.26

δT X -4.6062 -12.72 -3.8605 -9.50 -4.6684 -12.91 -3.8641 -9.60 -4.4546 -13.11 -3.8750 -9.93 -4.5284 -13.44 -3.9461 -10.25

βcost1 -0.0015 -5.56 -0.0014 -5.58 -0.0014 -5.53 -0.0014 -5.64 -0.0017 -6.82 -0.0015 -6.34 -0.0016 -6.86 -0.0014 -6.39

βcost2 -0.0011 -2.72 -0.0010 -2.69 -0.0011 -2.70 -0.0010 -2.73 -0.0013 -3.45 -0.0011 -3.12 -0.0013 -3.46 -0.0011 -3.12

βcost3 -0.0009 -3.74 -0.0008 -3.56 -0.0008 -3.71 -0.0007 -3.59 -0.0011 -4.96 -0.0009 -4.34 -0.0011 -5.05 -0.0009 -4.41

βcar-time -0.0226 -4.84 -0.0182 -4.57 -0.0270 -6.81 -0.0221 -6.40 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βrail-time -0.0060 -1.38 -0.0003 -0.08 -0.0099 -2.44 -0.0039 -1.14 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βbus-time -0.0178 -6.38 -0.0144 -5.90 -0.0197 -7.53 -0.0161 -6.99 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βrail-bus-connect-time -0.0179 -4.60 -0.0148 -4.19 -0.0227 -6.24 -0.0194 -5.83 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βaccess-time -0.0087 -1.23 -0.0080 -1.18 0.0000 NA 0.0000 NA -0.0052 -0.89 -0.0069 -1.05 0.0000 NA 0.0000 NA

βfirst-wait -0.0234 -3.57 -0.0222 -3.44 0.0000 NA 0.0000 NA -0.0203 -3.26 -0.0204 -3.22 0.0000 NA 0.0000 NA

βsecond-wait -0.0387 -6.01 -0.0416 -6.55 0.0000 NA 0.0000 NA -0.0531 -8.26 -0.0547 -8.40 0.0000 NA 0.0000 NA

βwk-dist -0.5494 -12.48 0.0000 NA -0.5656 -12.83 0.0000 NA -0.5369 -8.96 0.0000 NA -0.5799 -9.37 0.0000 NA

βbk-dist -0.1363 -5.24 0.0000 NA -0.1451 -5.47 0.0000 NA -0.1059 -3.75 0.0000 NA -0.1210 -3.87 0.0000 NA

βcp-dist -0.0232 -4.24 0.0000 NA -0.0227 -4.12 0.0000 NA -0.0243 -4.73 0.0000 NA -0.0233 -4.57 0.0000 NA

βlog-cost1 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βlog-cost2 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βlog-cost3 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βlog-car-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.1382 -0.77 -0.5253 -2.52 -0.3367 -1.95 -0.7929 -4.21

βlog-rail-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.6746 -5.36 -0.5367 -4.08 -0.6121 -5.00 -0.4427 -3.55

βlog-bus-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.0333 -0.24 -0.2550 -1.73 -0.0831 -0.59 -0.3451 -2.41

βlog-rail-bus-connect-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.0298 -0.61 -0.0711 -1.38 -0.0701 -1.43 -0.1183 -2.37

βlog-access-time 0.0000 NA 0.0000 NA -0.8140 -6.47 -0.7831 -6.29 0.0000 NA 0.0000 NA -0.6957 -5.51 -0.7907 -6.15

βlog-first-wait 0.0000 NA 0.0000 NA -0.3321 -4.49 -0.3228 -4.40 0.0000 NA 0.0000 NA -0.3479 -4.82 -0.3645 -4.97

βlog-second-wait 0.0000 NA 0.0000 NA -0.4470 -5.03 -0.4812 -5.54 0.0000 NA 0.0000 NA -0.7199 -7.99 -0.7537 -8.33

βlog-walk-dist 0.0000 NA -2.8088 -20.88 0.0000 NA -2.9000 -21.81 0.0000 NA -2.9890 -15.00 0.0000 NA -3.2345 -17.09

βlog-bike-dist 0.0000 NA -1.6460 -10.38 0.0000 NA -1.7641 -11.68 0.0000 NA -1.6301 -7.66 0.0000 NA -1.8652 -9.08

βlog-carP-dist 0.0000 NA -0.5522 -5.94 0.0000 NA -0.5646 -6.09 0.0000 NA -0.5184 -5.59 0.0000 NA -0.5105 -5.57

ζother-car-user -1.5998 -16.57 -1.6225 -16.25 -1.5981 -16.47 -1.6190 -16.11 -1.5982 -16.52 -1.6230 -16.33 -1.5957 -16.42 -1.6216 -16.18

ζcompany-cars 0.7789 6.26 0.8226 6.26 0.7831 6.30 0.8280 6.29 0.7660 6.12 0.8045 6.15 0.7590 6.10 0.7984 6.12

ζmale-driver 0.2223 2.36 0.2411 2.47 0.2199 2.33 0.2391 2.44 0.2506 2.66 0.2650 2.74 0.2569 2.73 0.2708 2.80

ζunder25 -0.4097 -2.85 -0.4205 -2.84 -0.4061 -2.85 -0.4198 -2.86 -0.4380 -3.03 -0.4396 -2.98 -0.4347 -3.04 -0.4403 -3.01

ζother-driver 1.8271 7.16 1.8402 7.27 1.8420 7.07 1.8479 7.22 1.8497 7.18 1.8620 7.31 1.8687 7.14 1.8830 7.29

ζhigher-income-rail -0.0664 -0.48 -0.0417 -0.31 -0.0563 -0.41 -0.0335 -0.25 -0.0836 -0.62 -0.0723 -0.53 -0.0728 -0.54 -0.0626 -0.47

ζft-worker -0.2170 -1.52 -0.2073 -1.47 -0.2117 -1.48 -0.2005 -1.42 -0.2155 -1.53 -0.2187 -1.56 -0.2199 -1.57 -0.2264 -1.61

ζmale-bike 2.2415 4.03 2.1794 4.03 2.2064 4.06 2.1749 4.02 2.2247 4.08 2.2092 4.08 2.2258 4.07 2.2072 4.07

δiz -1.4286 -4.26 0.1355 0.26 -1.3876 -4.12 0.2385 0.44 -1.5558 -4.58 -0.1615 -0.32 -1.6222 -4.84 -0.1489 -0.29

δbe f 830 -0.4531 -4.11 -0.5105 -4.42 -0.4684 -4.22 -0.5311 -4.55 -0.4916 -4.42 -0.4900 -4.25 -0.5014 -4.48 -0.5008 -4.30

δCD-CBD -2.4075 -4.90 -2.5303 -5.13 -2.5094 -5.11 -2.6297 -5.34 -2.3490 -4.72 -2.4597 -4.94 -2.4903 -5.01 -2.5918 -5.22

δCP-CBD -2.1677 -3.97 -2.1278 -3.93 -2.2116 -4.04 -2.1828 -4.03 -2.2353 -4.09 -2.1480 -3.97 -2.3205 -4.25 -2.2225 -4.11

δTR-CBD -0.3645 -0.69 -0.3458 -0.66 -0.5537 -1.06 -0.5480 -1.06 -0.3396 -0.64 -0.3206 -0.61 -0.5927 -1.14 -0.5879 -1.13

δBS-CBD -0.4886 -0.96 -0.4567 -0.90 -0.6904 -1.36 -0.6796 -1.35 -0.5652 -1.11 -0.5658 -1.12 -0.8678 -1.71 -0.8986 -1.78

δBK-CBD -0.3052 -0.56 -0.4338 -0.82 -0.2030 -0.37 -0.3900 -0.73 -0.4203 -0.79 -0.6059 -1.16 -0.4157 -0.78 -0.6295 -1.20

δWK-CBD -1.5208 -2.07 -1.3833 -1.89 -1.5207 -2.04 -1.4084 -1.92 -1.6040 -2.19 -1.5115 -2.09 -1.6606 -2.26 -1.5717 -2.17

δTX-CBD 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA
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TABLE A4 : Parameter estimates for models 9-16 for the Sydney data

Model number Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16

Log-likelihood -2,801.99 -2,799.90 -2,791.18 -2,792.10 -2,839.87 -2,823.12 -2,838.38 -2,818.69

Parameter est rob.t-rat. est rob.t-rat. est rob.t-rat. est rob.t-rat. est rob.t-rat. est rob.t-rat. est rob.t-rat. est rob.t-rat.

δCD 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

δCP -6.3811 -16.61 -5.8252 -14.65 -6.2590 -16.44 -5.7172 -14.53 -6.6764 -17.45 -6.0505 -15.60 -6.5039 -17.29 -5.9128 -15.51

δT R -1.5759 -4.85 -1.5598 -4.92 2.2201 4.43 1.9845 3.98 -4.4540 -9.21 -4.8599 -9.79 -0.8991 -1.54 -1.2894 -2.19

δBS -2.1179 -8.29 -2.1288 -8.43 1.4183 3.27 1.1724 2.72 -3.1994 -8.83 -3.4025 -8.72 0.2082 0.45 0.0645 0.14

δBK -8.1555 -11.48 -6.6286 -9.38 -7.9735 -11.18 -6.3556 -9.17 -9.0417 -11.71 -7.9736 -10.86 -9.2894 -11.68 -8.0438 -10.95

δWK -2.0670 -5.61 -1.3104 -3.36 -1.8665 -5.11 -1.1029 -2.86 -2.7248 -7.20 -2.2540 -5.89 -2.7720 -7.38 -2.3263 -6.21

δT X -5.3919 -13.36 -3.5681 -6.95 -5.5148 -13.57 -3.6413 -7.14 -5.2925 -13.31 -3.7494 -7.49 -5.4969 -13.81 -3.9902 -8.10

βcost1 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βcost2 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βcost3 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βcar-time -0.0269 -6.38 -0.0218 -5.94 -0.0316 -8.70 -0.0259 -8.11 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βrail-time -0.0043 -1.04 -0.0006 -0.16 -0.0087 -2.26 -0.0045 -1.34 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βbus-time -0.0176 -6.55 -0.0150 -6.15 -0.0200 -7.99 -0.0173 -7.56 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βrail-bus-connect-time -0.0190 -5.07 -0.0161 -4.70 -0.0244 -6.91 -0.0213 -6.49 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

βaccess-time -0.0105 -1.46 -0.0091 -1.35 0.0000 NA 0.0000 NA -0.0068 -1.10 -0.0077 -1.20 0.0000 NA 0.0000 NA

βfirst-wait -0.0218 -3.36 -0.0182 -2.90 0.0000 NA 0.0000 NA -0.0160 -2.53 -0.0152 -2.42 0.0000 NA 0.0000 NA

βsecond-wait -0.0471 -8.00 -0.0455 -7.72 0.0000 NA 0.0000 NA -0.0628 -10.34 -0.0610 -9.88 0.0000 NA 0.0000 NA

βwk-dist -0.5981 -11.91 0.0000 NA -0.6104 -12.24 0.0000 NA -0.6033 -8.94 0.0000 NA -0.6502 -9.37 0.0000 NA

βbk-dist -0.1467 -5.07 0.0000 NA -0.1556 -5.28 0.0000 NA -0.1170 -3.56 0.0000 NA -0.1341 -3.68 0.0000 NA

βcp-dist -0.0209 -4.06 0.0000 NA -0.0202 -3.84 0.0000 NA -0.0210 -4.35 0.0000 NA -0.0191 -3.99 0.0000 NA

βlog-cost1 -0.4237 -5.39 -0.6259 -6.50 -0.3826 -4.93 -0.5945 -6.38 -0.4823 -6.25 -0.6272 -6.88 -0.4186 -5.59 -0.5619 -6.54

βlog-cost2 -0.4036 -4.95 -0.6026 -6.16 -0.3681 -4.53 -0.5764 -6.05 -0.4649 -5.81 -0.6089 -6.55 -0.4082 -5.21 -0.5514 -6.23

βlog-cost3 -0.4040 -5.28 -0.5961 -6.38 -0.3657 -4.82 -0.5665 -6.23 -0.4673 -6.23 -0.6059 -6.85 -0.4078 -5.59 -0.5449 -6.51

βlog-car-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.2701 -1.48 -0.6001 -3.01 -0.5175 -2.98 -0.9033 -4.98

βlog-rail-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.8403 -6.27 -0.6281 -4.62 -0.7610 -5.91 -0.5248 -4.12

βlog-bus-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0403 0.26 -0.1833 -1.14 -0.0545 -0.36 -0.3099 -2.03

βlog-rail-bus-connect-time 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA -0.0296 -0.60 -0.0650 -1.28 -0.0755 -1.55 -0.1171 -2.35

βlog-access-time 0.0000 NA 0.0000 NA -0.8921 -7.20 -0.8361 -6.75 0.0000 NA 0.0000 NA -0.7814 -6.30 -0.8381 -6.62

βlog-first-wait 0.0000 NA 0.0000 NA -0.3267 -4.38 -0.2736 -3.67 0.0000 NA 0.0000 NA -0.3300 -4.44 -0.3216 -4.26

βlog-second-wait 0.0000 NA 0.0000 NA -0.5437 -6.65 -0.5179 -6.28 0.0000 NA 0.0000 NA -0.8662 -10.30 -0.8470 -9.81

βlog-walk-dist 0.0000 NA -3.1922 -20.53 0.0000 NA -3.2674 -21.37 0.0000 NA -3.3813 -16.11 0.0000 NA -3.6174 -18.00

βlog-bike-dist 0.0000 NA -1.9353 -11.21 0.0000 NA -2.0451 -12.38 0.0000 NA -1.8927 -8.15 0.0000 NA -2.1283 -9.45

βlog-carP-dist 0.0000 NA -0.6999 -7.49 0.0000 NA -0.7037 -7.50 0.0000 NA -0.6351 -6.90 0.0000 NA -0.6048 -6.62

ζother-car-user -1.5890 -16.52 -1.5928 -15.96 -1.5887 -16.47 -1.5935 -15.89 -1.5789 -16.52 -1.5852 -16.08 -1.5783 -16.45 -1.5876 -16.00

ζcompany-cars 0.7606 6.21 0.7890 6.12 0.7656 6.24 0.7944 6.14 0.7461 6.08 0.7716 6.03 0.7404 6.05 0.7668 6.00

ζmale-driver 0.2392 2.55 0.2533 2.61 0.2371 2.53 0.2510 2.58 0.2659 2.86 0.2777 2.90 0.2708 2.92 0.2827 2.95

ζunder25 -0.4756 -3.44 -0.4981 -3.52 -0.4712 -3.43 -0.4932 -3.51 -0.5294 -3.83 -0.5354 -3.80 -0.5222 -3.82 -0.5292 -3.79

ζother-driver 1.8353 7.14 1.8866 7.38 1.8442 7.09 1.8959 7.34 1.8549 7.17 1.9128 7.41 1.8768 7.16 1.9367 7.41

ζhigher-income-rail -0.0875 -0.63 -0.0990 -0.71 -0.0798 -0.58 -0.0923 -0.67 -0.0726 -0.53 -0.0988 -0.72 -0.0573 -0.43 -0.0856 -0.63

ζft-worker -0.1770 -1.26 -0.1907 -1.37 -0.1673 -1.19 -0.1815 -1.30 -0.1631 -1.18 -0.1895 -1.37 -0.1619 -1.18 -0.1923 -1.39

ζmale-bike 2.2002 4.05 2.1748 4.02 2.1956 4.04 2.1671 4.01 2.2180 4.07 2.2091 4.07 2.2148 4.04 2.2013 4.05

δiz -1.8387 -5.39 -0.2070 -0.40 -1.7479 -5.11 -0.0796 -0.15 -2.1186 -6.28 -0.5715 -1.19 -2.1292 -6.37 -0.5179 -1.07

δbe f 830 -0.4310 -3.93 -0.5091 -4.39 -0.4428 -4.01 -0.5239 -4.48 -0.4833 -4.38 -0.5035 -4.37 -0.4889 -4.40 -0.5078 -4.37

δCD-CBD -2.6573 -5.31 -2.5222 -5.00 -2.7589 -5.52 -2.6274 -5.22 -2.6244 -5.24 -2.5088 -4.97 -2.7740 -5.56 -2.6693 -5.31

δCP-CBD -2.1655 -4.02 -2.0966 -3.89 -2.2087 -4.10 -2.1411 -3.97 -2.1721 -4.03 -2.1084 -3.90 -2.2313 -4.14 -2.1736 -4.02

δTR-CBD -0.1856 -0.37 -0.1716 -0.34 -0.3713 -0.75 -0.3585 -0.72 -0.0469 -0.09 -0.0861 -0.17 -0.2899 -0.58 -0.3504 -0.70

δBS-CBD -0.4228 -0.85 -0.4390 -0.89 -0.6192 -1.25 -0.6346 -1.29 -0.3990 -0.80 -0.4964 -1.00 -0.6871 -1.39 -0.8126 -1.64

δBK-CBD -0.3595 -0.62 -0.5261 -0.97 -0.2287 -0.39 -0.4543 -0.83 -0.4798 -0.82 -0.7177 -1.31 -0.4327 -0.73 -0.7119 -1.29

δWK-CBD -1.5243 -2.08 -1.4053 -1.93 -1.4983 -2.04 -1.4024 -1.92 -1.5396 -2.10 -1.5340 -2.10 -1.5511 -2.11 -1.5661 -2.15

δTX-CBD 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA
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TABLE A5 : Parameter estimates for all models for the California data

Model MNL NL NL NL NL

Version basic destination region NSEW N-S

Log-likelihood -23,955.26 -23,925.90 -23,921.72 -23,939.90 -23,926.94

Free parameters 14 21 17 15 16

Parameters est. rob. t-rat(0) est. rob. t-rat(0) est. rob. t-rat(0) est. rob. t-rat(0) est. rob. t-rat(0)

δcar 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

δbus -4.0868 -18.41 -3.4724 -15.18 -3.9682 -18.91 -4.0880 -18.40 -4.0871 -18.22

δrail -3.5272 -8.92 -2.7558 -7.34 -3.2675 -9.18 -3.5220 -8.93 -3.5419 -8.90

δair -4.8046 -8.23 -4.1379 -7.73 -4.5718 -7.95 -4.7415 -8.12 -4.7222 -8.09

βtimecar -0.0036 -14.69 -0.0037 -15.91 -0.0034 -14.59 -0.0035 -14.03 -0.0035 -14.00

βtimebus
-0.0054 -8.01 -0.0048 -9.51 -0.0052 -8.24 -0.0053 -7.91 -0.0053 -7.82

βtimerail
-0.0047 -3.12 -0.0049 -3.61 -0.0046 -3.47 -0.0046 -3.07 -0.0045 -2.98

βtimeair
-0.0018 -1.20 -0.1620 -1.21 -0.0011 -0.80 -0.0016 -1.11 -0.0016 -1.08

βcost -0.0150 -7.58 -0.0131 -6.76 -0.0152 -7.86 -0.0154 -7.70 -0.0155 -7.69

distair500
0.7668 0.65 0.6556 0.68 0.5817 0.51 0.8231 0.70 0.8165 0.70

distair600
0.9117 0.85 0.4853 0.55 0.8873 0.85 0.8468 0.79 0.8324 0.78

distair700
0.4543 1.11 0.2702 0.77 0.3985 1.00 0.4270 1.05 0.4922 1.22

distair800
0.0884 0.36 -0.0333 -0.15 0.1342 0.56 0.1513 0.62 0.0986 0.41

szh 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA

szo 0.9258 8.53 0.9038 8.35 0.6525 6.23 1.0100 9.24 0.9727 9.15

sze -1.3666 -13.86 -1.3971 -14.19 -1.5275 -17.28 -1.3459 -13.46 -1.3687 -14.29

Nesting pars. est. rob. t-rat(1) est. rob. t-rat(1) est. rob. t-rat(1) est. rob. t-rat(1) est. rob. t-rat(1)

λreg1
0.6689 -6.82 0.9499 -3.76

λreg2
0.6954 -3.70 1.0000 NA

λreg3
0.8610 -2.23 1.0000 NA

λreg4
0.6886 -5.79 0.8730 -6.75

λreg5
0.8147 -2.99 1.0000 NA

λreg6
1.0000 NA 1.0000 NA

λreg7
1.0000 NA 1.0000 NA

λreg8
0.8758 -1.65 1.0000 NA

λreg9
1.0000 NA 1.0000 NA

λreg10
0.9412 -0.95 0.8885 -2.79

λnorth 0.8227 -5.77 0.7912 -7.22

λeast 1.0000 NA

λwest 1.0000 NA

λsouth 1.0000 NA 1.0000 NA

λcentre−north 0.8018 -4.46

λcentre−south 1.0000 NA
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