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ABSTRACT

Despite the frequent use of model averaging in many disciplines from weather forecasting to health
outcomes, it is not yet an idea often considered in travel behaviour or choice modelling. The idea
behind model averaging is that a single model can be created by calculating contribution weights
for a set of candidate models, depending on their relative performance, thus creating an ‘average’.
There are different ways of doing this, with a clear distinction between looking at the overall per-
formance of each model or by doing this at the level of individual agents or observations. In this
paper, we demonstrate that a relatively straightforward adaptation of latent class models can be
used for the latter approach and show how this can be an effective method for travel behaviour
modelling. We identify two key opportunities for model averaging. The first is the situation where
an analyst faces the difficult choice between a number of advanced models, all with some desirable
properties. The second is the situation where advanced models cannot be used due to the size of
the data and/or choice sets. Our tests demonstrate that in both cases, model averaging using a se-
quential latent class framework results in a consistent improvement in model fit for both estimation
and in forecasting with subsets of validation samples. Additionally, we demonstrate that model av-
eraging can be used to obtain more reliable elasticities and welfare measures by averaging across
outputs obtained from the set of candidate models. In terms of actual implementation of model av-
eraging, we present a simple expectation-maximisation (EM) algorithm which can deal with very
large numbers of candidate models within the same model averaging structure, unlike the typical
case with classical estimation approaches for latent class.

1. INTRODUCTION

Travel behaviour modelling, and choice modelling in particular, places great emphasis on model
specification, with studies often comparing and contrasting several mutually exclusive model struc-
tures on the same data. These comparisons are carried out on the basis of mathematical fit to the
data, theoretical consistency with underlying hypotheses, and reasonableness of the substantive
model outputs. This process often does not lead to a clear “winner”, and analysts need to make a
highly consequential decision on which structure to put forward as the final model. Even in situa-
tions where one model is “superior” to the others overall, it is quite reasonable to expect that this
model may be inferior to some of the rejected models for at least a non-trivial subpart of the data.

Other fields have tended to avoid this winner-take-all approach in model selection by using
techniques commonly referred to as model averaging or ensemble methods. These can be used to
allow a modeller to establish a single model by calculating relative contribution weights for a set
of candidate models, with the underlying idea of allowing multiple competing structures to con-
tribute to the final model/results. Within health, Bayesian model averaging has been successfully
used to improve the prediction of who is at risk of a stroke (Volinsky et al., 1997) or a coronary
event (Wang et al., 2004), and to understand the relation between arsenic levels and cancer rates
(Morales et al., 2006). Bayesian model averaging is used regularly in medical statistics (Hoeting
et al., 1999), ecology (Wintle et al., 2003) and biology (Posada and Buckley, 2004). Addition-
ally, ensembles are often used to combine neural networks (Gazder and Ratrout, 2015; Moretti
et al., 2015). Model averaging is often used for pooling forecasts from different models. This is
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particularly common for meteorological forecasting, with model averaging having been used to
predict the surface temperature of the ocean (Raftery et al., 2005) and also wind speeds (Sloughter
et al., 2010). It is also used in other fields for tasks such as predicting levels of economic inflation
(Wright, 2009). A key advantage of model averaging is that the structures that contribute to the
model average can be very different from each other, using diverse methods, and even be produced
by different sets of researchers.

The use of model averaging in choice modelling is far more limited, despite some promis-
ing work. Rose et al. (2009) for example demonstrate how model averaging can be used in the
generation of efficient stated choice experiments. Furthermore, there has also been work com-
paring the use of different model averaging procedures for the allocation of model weights for
multinomial and ordered logit models, with Zhao et al. (2019) developing a method based on
cross-validation. Other alternatives include asymptotically optimal model averaging Wan et al.
(2014) (which has been extended for use in MACML-estimated multinomial probit models by Ba-
tram and Bauer 2017) and Bayesian model averaging over multinomial logit models (Sevcikova
and Raftery, 2013). However, despite the variety of methods for model averaging and the fact that
it can combine the benefits from a number of models into one model, it is not yet common practice
within choice modelling.

The lack of previous applications of model averaging in transport behaviour research specifi-
cally may in part be due to a lack of understanding about model averaging methods. Firstly, model
averaging may be perceived to be a complex undertaking as analysts may not understand that a
joint estimation of the overall model is not required. Secondly, the decision on the approach used
for determining the weights of individual models to the overall structure may be seen as arbitrary.
This is a perfectly understandable concern in the situation where model averaging is carried out
using sample level (aggregate) measures of fit, i.e. assigning model weights based on aggregate
model measures such as AIC or BIC'. Finally, the main use of model averaging in other fields has
been for prediction and there has thus far not been an emphasis on the fact that standard outputs
such as elasticities and welfare measures can still be provided after the use of model averaging.

This paper addresses all three of the issues above by relying on a sequential latent class ap-
proach for model averaging. Individual model structures are estimated on the full sample and their
individual-level contributions to the overall sample level likelihood are then used in a latent class
structure that only estimates class allocation probabilities. The sequential nature of the approach
addresses the concern about complexity. The reliance on individual-level probabilities within a
latent class model means that no arbitrary decisions are required on how weights should be cal-
culated, instead making use of maximum likelihood estimation. A key benefit of this approach is
that models that work well for subgroups of decision-makers but offer poor overall performance
can still contribute to the model average. Finally, the class allocation probabilities produced by the
sequential latent class structure can then also be used to produce weighted averages of other model
outputs such as willingness-to-pay measures or elasticities.

We consider two key cases that occur frequently within travel behaviour modelling for which
there is clear scope for the introduction of this type of model averaging. The first is to apply model

! Akaike and Bayesian Information Criterion, respectively.
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averaging across multiple candidate models that all have advantages and disadvantages, where
there is no clear cut case for choosing which is best. One obvious example of this is in the choice
of distribution(s) within mixed logit models (Guo and Wilson, 2007; Hess, 2010; Tjiong, 2015). A
second and rather different context in which the benefits of implementing model averaging are clear
is in the case of very large-scale applications, either with large datasets or large choice sets. In these
cases, the use of complex models may not be possible for computational reasons, and combining
several simpler models may have benefits. Obvious examples of this includes choice modelling
applications where we aim to predict both travel mode and destination (Fox, 2015; Outwater et al.,
2015) or choice modelling in the context of big data (Zannat and Choudhury, 2019; Tang et al.,
2020).

The remainder of this paper is organised as follows. First, we present a methodology section
demonstrating how we apply model averaging with sequential latent class models and demonstrate
how to produce outputs such as elasticities from model averaging. This is followed by three sep-
arate sections with empirical work on three different datasets. The final section summarises our
findings and presents directions for future research.

2. METHODOLOGY

In this section, we discuss how model averaging can be carried out using a simple sequential latent
class approach. We look separately at estimation and application.

2.1. Model averaging in estimation

Let us assume that we have a dataset containing the choices made by N different individuals, where
individual n makes 7}, separate choices, with 7, > 1.

To apply model averaging, we first determine a set of M different candidate models that are
suitable for the data at hand. These differences between the models can arise for a variety of rea-
sons. In the simplest form, they could relate to the specification of the value functions (such as
utility), for example using different socio-demographic interactions, different treatments of non-
linearity, or different specifications of random heterogeneity. The differences could be more fun-
damental than that, with differences in the actual model structure, for example looking at different
models from the family of Generalised Extreme Value (GEV) models. Finally, the models could
be based on different behavioural paradigms, for example looking at random utility maximisation,
random regret minimisation, etc.

In the most standard approach, a single analyst (or team of analysts) will then estimate the M
different models on the data. This is not an actual requirement of model averaging, with the pos-
sibility that the different models are contributed by different teams, which is an inherent strength
of the approach as this can lead to a more heterogeneous set of inputs into the model averaging
process.
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Ignoring the possibility of non-parametric models?, the estimation of each one of the M mod-
els will involve finding the values for the parameters of that model which maximise the likelihood
of the choices C in the data. We would have that, for model m:

N
m (C | Q) =[] Lin (Cu | Qi) ()

n=1

where C, is the set of choices for individual n. The specific functional form for L, (C, | ,,) will
vary across models®.

At convergence, model m will give us a set of estimates €2, for the vector €2, such that:

Q. = argmax Ly, (C | Q) (2)
QcO

where O is the set of real numbers. Estimation will yield M sets of vectors of optimal parameters,
1e. Q,, for model m, as well as M measures of mathematical fit to the data, i.e. L, <C | Qm) for

model m, obtained by using Si,\n in Equation 1.

In its simplest form, model averaging would involve computing weights for each of the M
models as a function of the relative differences across models in L,, ( C | Qm> , Or some other mea-

sure of model fit. This however looks only at fit at the sample level, and ignores the possibility that
different models will work differently well for individual people in a sample population.

In the sequential latent class approach, we instead rely on the likelihood at the level of in-
dividual decision-makers. In particular, we have that, at the estimated set of parameters €2, the

likelihood of the observed choices for person n, using model m, is given by L,, (C,, | @) We

group together the estimates from the M different models, giving Q= <S/2\1 yeen ,5;> The likeli-
hood function for the model averaging structure is then given by:

N M
Ly <C | 7'L',.Q.> = H Z T Lin (Cn ‘ Qm) ) 3)
n=1m=1

where 7, , is an estimated weight for model m for person n, Z%zl Tmpn=1and 0 < m,, < 1.
With &, = <71'17n, e, 71'M7,,> representing the weights for person n, we have that © = (my,..., y).

2Such models can also be used in model averaging of the type described here if they can provide likelihoods at the
individual level, but their presence in the model average will preclude the calculation of other possible outputs, such
as willingness-to-pay measures, although the same also applies for some parametric models, if they are not grounded
in the appropriate behavioural paradigm.

3For example if model m is of the mixed logit type, we would have L, (C,|Q,) =
Js, 17 P (| ﬁm) S (Bn| Qum)dBu. In this example, we have that P, (ji, | Bn) gives the probability of
the observed choice j;, for decision maker n in choice situation ¢, conditional on using model m which would be of
the Multinomial Logit type, where the parameters 3, are distributed according to fy, (B | Qum)-
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In many applications of model averaging, 7, would be the set to be the same Vn, though it is easily
possible to link 7, to characteristics of person » in estimation.

Of course, the likelihood of the model averaging structure in Equation 3 is dependent on the
vector . This combines the estimates from the M different models contributing to the model
average. Crucially, in estimation of the model averaging structure, these parameters are kept fixed
at the estimates from the individual models, hence the ™ notation, and only 7 is estimated.

This last point provides the key contrast between the sequential latent class approach used
for model averaging and the typical simultaneous approach used in standard latent class applica-
tions. In the latter, an analyst simultaneously estimates the class allocation parameters (7, ) and
the parameters driving the within class probabilities. In model averaging, individual models are
estimated for the entire sample, and then the weights for these models are estimated, conditional
on the parameters obtained during the individual model estimations. Model averaging is thus a
sequential rather than simultaneous process. This is clearly computationally much easier, but also
in fact allows a situation where the individual models come from different teams of analysts. In
fact, the estimation of the weights in Equation 3 does not require the parameters of the individ-
ual models, or even the mathematical formulation of the probabilities for individual models, but
simply relies on the person-specific likelihoods obtained with the individual models. Model aver-
aging will offer a model fit that is bounded below by the fit of the best fitting of the M individual
models. Model averaging will almost inevitably lead to a lower model fit than the estimation of a
simultaneous structure, but of course the general situation is one where this simultaneous structure
is often difficult or impossible to estimate.

A further difference arises in that, in a simultaneous latent class model, it is generally the
case that the same overall model structure is used in different classes, though this is by no means
necessary (cf. Hess et al., 2012). In model averaging, a different model specification, in terms of
model structure and/or e.g. utility specification, is required for the different models as the separate
estimation of the same structure for different m would of course yield the same fit and parameter
estimates.

Model averaging such as discussed here can be carried out using any package capable of latent
class estimation, where for all models, we use Apollo (Hess and Palma, 2019). Latent class models
are well known to have complex likelihood function that can lead to problems with convergence
to poor local optima. While this issue is alleviated to some extent with the sequential latent class
approach used in model averaging, care is still required, and we advocate the use of an expectation-
maximisation (EM) approach rather than using classical estimation. For a detailed discussion of
EM algorithms, see Train (2009, ch. 14). In our case, we rely on a class allocation model without
covariates, i.e. T, = T,;, Vn, making the use of an EM approach especially straightforward. In
particular, the following iterative process is used:

1. Definition of starting model weights 7,,, where we set these to 7, = 1%/17 Vm.
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2. Calculate likelihood of the model, using equation 3 and store this as L1, i.e.
W R N M .
L (C17.8) =TT ¥ #nln (G 120) 4)
n=1m=1

3. Calculate posterior model weights for each individual conditional on the model specific like-
lihoods for that individual, using:

EmLm (Cn ’ é?n)

hm7n = ; — (5)
M Tl (Co | Q)
4. Update the model weights as follows:
Y hm,
n m=1""mn

5. Calculate likelihood of the model with new model weights, using equation 3 and store this
as Ly

6. If L, — Ly is less than a predefined limit (we chose 1072), convergence has been reached.
Otherwise, return to step 2 with the new values for ©

We use a two-stage implementation of this algorithm. After completing the original algorithm,
there is a possibility of some models being retained in the model averaging with very low weights,
i.e. not contributing in any meaningful manner. We eliminate any models that obtain less than a
1% share in the first round, and repeat the above algorithm until convergence a second time with
the reduced set of models.

2.2. Model averaging in application

To use model averaging in application, we rely on the estimates for the model averaging weights,
i.e. T obtained by maximising Equation 3, i.e.:

7 = argmax Ly (C \ JT,SAZ) , @)

ned

where this itself is conditional on the estimates Q obtained by optimising the M individual models.

In application, we use 7 = (7j,...,7y) and Q. If 7 is generic, i.e. not linked to the char-
acteristics of individual decision-makers, we have 7, = 7Vn, and the application to a sample dif-
ferent from that used in estimation does not necessitate any additional steps. If 7 is a function of
characteristics of the decision-makers, i.e. m, = f (?, Zn), Where ? is estimated during the model
averaging, then individual-level weights simply need to be computed for the application sample of
decision makers.
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The most obvious use of model averaging in application concerns forecasting of choices. Let
P, ( Jn | Sn, Qm> give the probability of individual n choosing a specific alternative j out of a choice

set Sy, conditional on model m, where S,, describes the characteristics of the alternatives faced by
person n, where these could be different from the levels used in estimation. The calculation of

Py ( Jn | Sns Si;) is thus equivalent to making a forecast of a choice probability with a single model
m. We can then compute the probability of this alternative j under model averaging as:

M
m=1

and an analyst can then for example use these weighted predictions in sample enumeration.

When producing forecasts, we thus use the actual model averaging structure for the forecasts,
combining predictions from individual models and averaging across those, using the weights ob-
tained by Equation 7. Elasticities and other measures related to changes in demand thus need to be
calculated on the basis of these weighted predictions, rather than by looking at changes in demand
from individual models. To explain this further, imagine a situation where we want to study the
impact of a change in a given attribute. In our notation, this would lead to a new definition of
the choice set, say S/, rather than S,,. To study the impact of this change, say on the demand for
alternative j at the sample level, we would look at the predicted change in demand, relative to the
original demand, i.e.:

1 (Pua (jn 1S4 %) = Puaa (Jn | 0.7, Q) )
) £y (P (jn 18,0 7.9) )
1 (20 T P (S0 ) = £ T P (0B )
i (Z%:1 T Pon <jn | Sb@))

(€))

The reader will note that this is different from using the weighted average of the relative changes,

1.e.:
2’:1 (Pm <]n | Sip-Qm> _Pm <]n | Snan)>
1 P (| S0 G

Equation 9 is looking at the change in demand predicted by the final model averaging structure,
while Equation 10 looks at the weighted average of predicted changes across the individual model
components. The former measure is the one in line with the notion of model averaging.

M)
A=Y T (10)
m=1

Aside from predictions, the other key post estimation output of a choice model is the compu-
tation of marginal rates of substitution (MRS), which, if the denominator is a cost sensitivity, give

us willingness-to-pay (WTP) measures. Let W, (n | Su, (z;) be some model output for individual

n and choice set S,, conditional on model m and the estimated parameters for that model®. Tt is

“In many cases, the dependence on S, will not apply and is only shown here for the sake of generality.
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then similarly possible to compute a model average version of this output, using:

M
Wita (115080, Q) = ¥ Foun Wor (| S0:@) (11)
m=1

Any measures such as WTP thus need to be calculated first for the individual models before being
averaged across models. The calculation will likely differ across models and may involve simu-
lation for some of the models if they incorporate random heterogeneity. If this is the case, it is
advisable to use the entire distributions in model averaging rather than just relying on the moments
from individual models if some non-normal distributions are included.

The key advantage of this process is that the calculation of these predictions or derived mea-
sures is informed by the results of a number of different models, and is thus potentially more robust
to mis-specification of the individual models. It is similarly possible to compute variances for the
outputs of Equation 8 and 11, though we rely only on the mean outputs in the present paper.

3. APPLICATION TO SP ROUTE CHOICE DATA

Our first application makes use of a typical stated preference (SP) dataset, where our focus for
model averaging is on combining the results from multiple Mixed Multinomial Logit (MMNL)
models making different assumptions about the shape of distribtions for random heterogeneity in
sensitivities across respondents. There is extensive literature on the choice of distributions and it
is often clear that different specifications yield relatively similar fit but often substantially different
model outputs, making the choice of a final distribution difficult for analysts (Borjesson et al.,
2012; Hess et al., 2017), while the use of non-parametric distributions is still beyond the reach of
most modellers despite seminal innovations on this approach (Fosgerau and Mabit, 2013).

3.1. Data

The dataset that we consider involves public transport commuters living in the UK each making
ten choices between three alternatives in a SP survey. A total of 368 participants completed the
survey resulting in 3,680 choices. Each choice task includes an invariant reference trip (with the
attribute values collected before the decision-maker completes the SP questions) and two hypo-
thetical alternatives with attribute values that are pivoted around those of the reference trip. In the
scenarios, each alternative was described by six attributes: travel time (in minutes), fare (in £), rate
of crowded trips (frequency of having to stand out of 10 trips), rate of delays (frequency of delays
out of 10 trips), the average length of delays (across delayed trips) and the provision of a delay
information service (either not available, available at a small cost of £0.30 per journey, or available
for free). Full details of the dataset are given by Hess and Stathopoulos (2013).
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3.2. Specification of individual components and model averaging

In our MMNL models, the utility (net of the extreme value error term) for alternative i in choice
task 7 for individual n is specified as:

Vie = Oi + Bn17 - TTint + BuiF - 108(Fint) + Br.cr - CRint + Bu.rD - RDins

(12)
+ Buap ADjnt + BneD - EDint + Bu.cr - Cling + Brrr - Flins

In this specification, we include alternative specific constants (ASC) for alternatives 1 and 2, i.e. d;
and &, i.e. fixing 83 = 0. We use the continuous attributes of travel time (TT), the natural logarithm
of fare (F) given earlier findings about non-linear response, crowding (CR), rate of delays (RD)
and average delays (AD). In addition, we include a new variable of expected delay (ED), which
is the interaction between RD and AD. Finally, the delay information attribute is dummy coded,
where we set the base of no information service to zero, and estimate an effect for the charged
information service (CI) and the free information service (FI).

We estimate M = 16 different models on this data. In each model, the ASCs are kept fixed
across respondents, i.e. not random. The eight marginal utility (f) coefficients are allowed to vary
randomly across respondents. Our focus in testing the distributional assumptions (and thus the use
of model averaging) is on the first four attributes, where we look at all 16 possible combinations
of negative lognormal and negative loguniform distributions, i.e. distributions where the logarithm
of the negative of the parameter follows a normal or uniform distribution. For example, in speci-
fication 1, all four are negative lognormal (LN-), in specification 2, the rate of delays is negative
loguniform (LU-), and the other three are negative lognormal, etc. For the remaining four attributes
(ED, AD, CI, FI), we always use lognormal distributions. For ED and AD, the use of a negative
lognormal distributions is an obvious choice, given the undesirable nature of these attributes. Pre-
liminary tests also showed that respondents preferred the absence of a delay information service to
a charged one, so that a negative lognormal distribution was used for CI, and a positive lognormal
(LN+) distribution for FI.

The model fits for the 16 different MMNL models are given in Table 1, where the correspond-
ing model parameter estimates are given in the Appendix, in Table A1°. The best fitting model
across the different specifications is version 15, which has negative loguniform distributions for
fare, time and crowding. Table 1 also shows the percentage of individuals whose choices are best
described by each model (labelled as ‘Best model for x% of respondents’ in Table 1). The model
using negative lognormal distributions for all parameters actually has the worst sample level fit but
obtains the best fit for more individual participants than any other model. This, together with the
small overall differences between the sample level model fits supports the hypothesis of different
models working differently well for different individuals and means that there is clear scope for
model averaging.

We next apply model averaging across the 16 mixed logit models, i.e. estimating the 16 model
specific weights using the EM algorithm discussed earlier. The use of model averaging results in a

SWith both lognormal and loguniform distributions, the analyst estimates the parameters for the distribution of the
logarithm of the marginal utility coefficient (possibly of the negative of that coefficient). In Table A1, we then show
pary and par,, where e.g. for the first block of parameters, these are for the distribution of log(—B, 7).



TABLE 1 : Log-likelihoods for 16 MMNLs with different combinations of distributions for the UK dataset

‘ ‘ Type of distribution ‘ Overall ‘ Best model for MA ‘
‘ Model ‘ Time Fare Crowding Rate of delays ‘ Log-likelihood ‘ x% of respondents ~ Share ‘
1 LN- LN- LN- LN- -3,034.16 13.59% 7.59%
2 LN- LN- LN- LU- -3,030.67 5.16% 0.00%
3 LN- LN- LU- LN- -3,019.60 4.62% 0.00%
4 LN- LN- LU- LU- -3,015.35 4.35% 0.00%
5 LN- LU- LN- LN- -3,027.83 7.34% 0.00%
6 LN- LU- LN- LU- -3,015.46 8.42% 8.16%
7 LN- LU- LU- LN- -3,001.06 3.80% 0.00%
8 LN- LU- LU- LU- -2,996.96 4.35% 3.26%
9 LU- LN- LN- LN- -2,982.40 6.79% 1.90%
10 LU- LN- LN- LU- -2,983.74 8.15% 16.17%
11 LU- LN- LU- LN- -2,980.24 5.43% 14.87%
12 LU- LN- LU- LU- -2,990.15 6.25% 0.00%
13 LU- LU- LN- LN- -2,982.85 4.08% 0.00%
14 LU- LU- LN- LU- -2,978.60 5.43% 9.54%
15 LU- LU- LU- LN- -2,963.14 7.07% 36.19%
16 LU- LU- LU- LU- -2,985.48 5.16% 2.33%
Model averaging | -2,94547 |

X0 pue A[e( ‘SSoH “Jo0oueH

0]
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log-likelihood of -2,945.47, which as expected, is better than that of any of the individual models.
No formal statistical test is used here as it is not a process of simultaneously estimating all the
parameters for all the models on a single dataset. The model averaging process retained 9 out of
the 16 models, and their weights are shown in the "MA share’ column in Table 1. We see that
the model with the best individual log-likelihood obtains the largest share but we in addition see
non-trivial shares for a substantial subset of other models. Crucially, this includes model 1, which
had the worst sample level fit, but also the largest share of respondents where this model produced
the best fit out of all 16 models. This confirms that model averaging can be a successful approach
for incorporating results from models that work well for only a subset of individuals.

TABLE 2 : Estimation and holdout sample results for model averaging for the UK dataset

‘ ‘ Estimation Sample ‘ Holdout Sample ‘
Model averaging Most contributing MMNLSs MALL Model averaging | MMNL MALL
LL Version LL Share Improvement LL LL ‘ Improvement
15 -2,963.14  36.19% 17.67
10 -2,983.74  16.17% 38.27
Full -2,945.47 11 -2,980.24  14.87% 34.77 n/a

14 -2,978.60  9.54% 33.13
6 -3,015.46  8.16% 69.99
11 -2,355.35  20.42% 28.53 -631.51 6.70
10 -2,350.06  18.17% 23.24 -637.22 12.41

Holdout 1 2,326.82 13 -2,353.99  14.29% 27.17 -624.81 -628.67 3.86
2 -2,389.52  10.56% 62.70 -652.93 28.12
14 -2,347.18  9.75% 20.36 -629.08 4.27
12 -2,405.45  24.68% 22.89 -561.54 3.33
9 -2,421.76  19.19% 39.20 -565.16 6.95

Holdout 2 2,382.56 16 -2,407.67  18.44% 25.11 -558.21 -564.02 5.81
6 -2,423.79  14.35% 41.23 -573.01 14.81
3 -2,437.56  11.10% 55.01 -571.94 13.73
16 -2,355.67  17.44% 29.26 -626.38 4.76
8 -2,355.90  15.00% 29.49 -630.66 9.03

Holdout 3 -2,326.41 15 -2,353.65 13.76% 27.25 -621.63 -628.59 6.96
13 -2,369.48  12.43% 43.07 -627.18 5.56
1 -2,412.55  12.07% 86.14 -632.62 10.99
8 -2,362.21  24.18% 28.32 -621.61 6.73
9 -2,361.90  20.38% 28.01 -635.30 20.42

Holdout 4 -2,333.89 3 -2,376.59  18.87% 42.70 -614.88 -628.50 13.62
15 -2,371.26  10.27% 37.37 -614.83 -0.05
12 -2,370.15  8.52% 36.26 -628.56 13.68
15 -2,37826  22.70% 31.33 -595.39 8.66
6 -2,388.22  22.50% 41.29 -596.86 10.13

Holdout 5 -2,346.93 12 -2,396.10  10.86% 49.17 -586.73 -601.15 14.43
9 -2,391.96  8.49% 45.03 -592.52 5.79
11 -2,381.30  7.20% 34.37 -596.67 9.94

We also test to see whether the results from model averaging are overfitting by using out-of-
sample validation. To do this, we first split the dataset into five subsets of 80% of the data, where,
for each subset, we first repeat the exact same process as described above for the full sample,
i.e. estimating the parameters for all 16 mixed logit models and then estimating the weights for
these models using a latent class structure. In the next step, we calculate the log-likelihood on the
remaining 20% of the data, i.e. our hold-out sample, using the 16 separate models as well as the
model averaging structure, each time with the parameters obtained from estimation on the 80%
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sample. The results of this process are shown in Table 2, where, for brevity, we only ever show the
fits for the five most contributing MMNLSs in model averaging on the estimation data.

Across all five holdout runs, we see that model averaging obtains a better fit in estimation,
where this is of course in line with expectation. Note that across the five different subsets, four
different combinations of distributions result in the best model fit (models 14, 12, 15, 9 and 15, re-
spectively, across the different subsets). This highlights the difficult task of choosing distributions,
with a different “optimal” specification arising even across these datasets which share the majority
of the sample. As in the full sample, we again see that models which do not fit well at the sample
level can still contribute to the model average, with the best fitting model only twice receiving the
largest share across the five subsets, and with 13 out of the 16 models appearing at least once in the
top five contributors to the model average. Additionally, no single model is the largest contributor
to model averaging in more than one holdout subset. Crucially, the MMNL model that offers the
best performance in estimation is not the one with the best performance in the holdout sample in
three out of five cases, while the performance on the holdout sample is always superior for the
model averaging model compared to the best fitting MMNL model on the estimation data. This
highlights that model averaging is potentially more robust to overfitting than using a single model
structure.

3.3. Computation of outputs from model averaging

In this section, we look at value of travel time as well as values for changing the amount of crowd-
ing and the rate of delays. We first use the estimates from each of the 16 MMNL models to obtain
model-specific values® for the value of travel time (VTT, £/hour), value of crowding (VCR, amount
paid in £ for 1/10 less crowded trips) and value of the rate of delays (VDE, amount paid in £ for
1/10 less delayed trips).

In our models, the individual coefficients follow random distributions, and as a result, so do
the monetary valuations. We use the full distributions from the individual models in model averag-
ing, i.e. we do not simply take the weighted average of moments of the distributions but produce
an overall set of draws with an unequal distribution of draws from the individual distributions, rep-
resenting the weights of each model. To explain this further, the distribution of the WTP in model
averaging is represented by R draws, where in our case, we set R = 10°. As model 1 has a weight of
7.2% in model averaging, 0.072 - R draws will be produced from model 1 to contribute to the set of
R draws. The means and standard deviations of the WTP measures for each model and the model
average are given in Table 3. In comparison with the estimates obtained if we had simply used the
best fitting mixed logit model (MMNL-15, highlighted in Table 3), results from model averaging
suggest that the willingness to pay for changes in travel time and the rate of delays are lower by
3.9% and 8.5%, respectively. The opposite is true for changes in the number of crowded trips, for
which model averaging produces a valuation that is 10.8% higher than that for MMNL-15. Model
averaging also produces a much wider standard deviation for the value of crowding, by a factor of
62.6%.

®Note that as we use a logarithmic transformation for the cost attribute, we multiply values by 3, as this is the
average cost of chosen alternatives (to the nearest pound).



TABLE 3 : Welfare measures obtained from the UK models

L VTT VCR VDE

Model MA Share Log-likelihood | ... . sd mean sd mean sd
1 7.6% -3,034.16 | 3.3901 6.8120 | 0.2913 0.7249 | 0.2653 0.9255
2 0.0% -3,030.67 | 3.3323 5.8661 | 0.3209 0.9212 | 0.2440 0.7226
3 0.0% -3,019.60 | 3.0992 5.5377 | 0.3807 1.2754 | 0.2310 0.6749
4 0.0% -3,01535 | 33816 6.5317 | 0.3964 1.3673 | 0.2738 0.8196
5 0.0% -3,027.83 | 3.1945 47553 | 0.3662 1.2518 | 0.2579 0.8680
6 8.2% -3,01546 | 3.1130 4.3986 | 0.4405 2.8656 | 0.2281 0.4376
7 0.0% -3,001.06 | 3.6717 6.2209 | 0.3752 0.8128 | 0.2975 1.0523
8 3.3% -2,996.96 | 2.9446 4.2261 | 0.3195 0.6953 | 0.1851 0.4678
9 1.9% -2,982.40 | 3.8090 7.6200 | 0.2973 0.8028 | 0.2048 0.5058
10 16.2% -2,983.74 | 3.9449 8.0836 | 0.3383 0.9637 | 0.2309 0.5933
11 14.9% -2,980.24 | 3.8708 8.4069 | 0.4052 1.3764 | 0.2279 0.6246
12 0.0% -2,990.15 | 3.9624 9.2506 | 0.3299 0.9689 | 0.2652 0.7720
13 0.0% -2,982.85 | 3.6243 5.7299 | 0.3053 0.8823 | 0.2565 1.0757
14 9.5% -2,978.60 | 3.6119 5.8889 | 0.3103 0.8760 | 0.1932 0.3483
15 36.2% -2,963.14 | 3.8910 6.6145 | 0.3025 0.6279 | 0.2596 0.7941
16 2.3% -2,985.48 | 3.6906 6.4057 | 0.3250 0.6588 | 0.1988 0.4331
| Model Averaging ~ -2,945.47 | 3.7405 7.0017 | 0.3352 1.0208 | 0.2374 0.6727 |
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4. APPLICATION TO RP MODE CHOICE DATA

We next test model averaging on revealed preference (RP) datasets, which can be more complex,
both in terms of number of individuals and the size of the choice set. As a result, the models
that can be applied often have to be simpler in structure as more complex models such as mixed
logit quickly become computationally infeasible. Model averaging avoids these computational
problems by creating a more complex model by averaging across a number of simpler models. A
key interest in large scale modelling is the specification of the utility function, notably in terms
of linearity assumptions (Daly, 2010; Stathopoulos and Hess, 2012), and this is the focus of our
second application.

4.1. Data

The second dataset that we use for model averaging comes from a Household Travel Survey (HTS-
06) that was carried out in Sydney between 2004 and 2006 (Bureau of Transport Statistics, 2012).
For this dataset, seven possible modes are considered (car driver (CD), car passenger (CP), taxi
(TX), walk (WK), bicycle (BK), train (TR) or bus (BS)) and a large number of destination zones are
defined (2,277 travel zones). For the purposes of this paper, we consider 5,173 home-work tours,
where we focus on mode choice only. Level of service and attraction measures were assembled for
each alternative such that attribute values could be derived for in-vehicle travel time, cost, access
time, waiting times for public transport modes (time until next service and time until subsequent
service) and distance. Details of the parameters used for the models for this dataset are given in
Table A2, and readers are invited to refer to Fox (2015) for a full description of the data and its
components, and also a discussion of the use of attraction measures.

4.2. Specification of individual components and model averaging

We group the attributes such that we have four parameter types: cost sensitivities (where there
are three different income groups, Beost, Beost, and PBeogs), in-vehicle travel time (IVT) sensitivities
(bus (Bous-time)» €ar (Bear-time)» train (Byain-time)» bus connection for train (Brail-bus-connect-time))» Other
time (OT) sensitivities (access time (Baccess-time)> time until ne