
This is a repository copy of LdsConv : learned depthwise separable convolutions by group
pruning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164620/

Version: Published Version

Article:

Lin, W., Ding, Y., Wei, H.-L. orcid.org/0000-0002-4704-7346 et al. (2 more authors) (2020)
LdsConv : learned depthwise separable convolutions by group pruning. Sensors, 20 (15).
4349.

https://doi.org/10.3390/s20154349

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

sensors

Article

LdsConv: Learned Depthwise Separable
Convolutions by Group Pruning

Wenxiang Lin 1 , Yan Ding 1,* , Hua-Liang Wei 2 , Xinglin Pan 3 and Yutong Zhang 1

1 Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education,

School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;

wenxianglineut@163.com (W.L.); zhang1123034978@163.com (Y.Z.)
2 Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, UK;

w.hualiang@sheffield.ac.uk
3 Department of SMILE Lab, School of Computer Science and Engineering, University of Electronic Science

and Technology of China, Chengdu 610031, China; kp600168@gmail.com

* Correspondence: dingyan@bit.edu.cn

Received: 20 July 2020; Accepted: 30 July 2020; Published: 4 August 2020
����������
�������

Abstract: Standard convolutional filters usually capture unnecessary overlap of features resulting in a

waste of computational cost. In this paper, we aim to solve this problem by proposing a novel Learned

Depthwise Separable Convolution (LdsConv) operation that is smart but has a strong capacity for

learning. It integrates the pruning technique into the design of convolutional filters, formulated as

a generic convolutional unit that can be used as a direct replacement of convolutions without any

adjustments of the architecture. To show the effectiveness of the proposed method, experiments

are carried out using the state-of-the-art convolutional neural networks (CNNs), including ResNet,

DenseNet, SE-ResNet and MobileNet, respectively. The results show that by simply replacing the

original convolution with LdsConv in these CNNs, it can achieve a significantly improved accuracy

while reducing computational cost. For the case of ResNet50, the FLOPs can be reduced by 40.9%,

meanwhile the accuracy on the associated ImageNet increases.

Keywords: convolutional neural network; convolutional filter; classification

1. Introduction

Convolutional neural networks (CNNs) have shown remarkable achievements in various vision

tasks [1–8]. Most of the achievements benefit from the innovative design of network architectures [9–14],

with applications in a variety of areas including phishing detection (see, e.g., [15]). Recent designs

usually use the convolutional filter as the basic unit and achieve good training results through special

network architectures. However, the manual design of the network architecture has been gradually

replaced by architecture searching [16–22] with the rapid development of the computation ability of

the hardware. Compared with architecture searching, which often requires strong computing power

and expensive time cost, the model compression method and other new convolutional filter design

techniques [23–25] provide an economic choice to improve the efficiency of CNNs.

At present, the commonly used convolutions are Groupwise Convolution [2], Depthwise Convolution [26]

and Pointwise Convolution [27]. Pointwise Convolution is able to adjust the dimension of the

channels or feature maps. It is widely used in the design of architectures. Groupwise Convolution

can reduce the connection density and computation cost of convolutional filters, while Depthwise

Convolution is the extreme version of Groupwise Convolution which sets the number of groups

to be the same as the number of input channels. However, if we simply replace the standard

convolution with Depthwise or Groupwise Convolution without special adjustment of the architecture,

Sensors 2020, 20, 4349; doi:10.3390/s20154349 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5147-0844
https://orcid.org/0000-0002-9620-8679
https://orcid.org/0000-0002-4704-7346
http://dx.doi.org/10.3390/s20154349
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/15/4349?type=check_update&version=2

Sensors 2020, 20, 4349 2 of 18

the resulting model may not work well. Therefore, some new convolutional filters have been proposed

recently. HetConv [23] proposes the heterogeneous kernel-based convolution. OctConv [24] designs a

convolutional filter that can extract multi-scale information from features. These convolutional filters

have the ability to improve the performance of model by simply replacing the standard convolutions

without any adjustment of the baseline. The present study proposes a similar but different plug

and play convolutional unit. Our proposed LdsConv pays more attention on the learning ability of

the model and aims to transform a standard convolutional filter into a learned depthwise separable

convolutional filter.

Model compression is considered as another reliable and economic method to improve the

efficiency of the convolutional neural network, which can be roughly divided into three categories:

(a) Connection pruning [28,29]; (b) Filter pruning [30–36]; and (c) Quantization [28,37–39]. These methods

can effectively reduce the computation of the convolutional neural network, but this is always achieved

at the price of sacrificing the accuracy. Sometimes, special hardware support is also required for

compression methods.

Instead of directly pruning the whole model, we choose to integrate the pruning technique into

the design of convolutional filters. In this way, the model can automatically learn to know which input

features are most valuable for each single output, so that it enables to extract better features with fewer

filters. To achieve this objective, we design a new type of convolutional filter—Learned Depthwise

Separable Convolution (LdsConv), which can be directly plugged into existing standard architecture

to reduce floating point of operations (FLOPs) and meanwhile improve the accuracy.

To integrate the pruning methods, we develop the two-stage training framework to divide the

training task into picking and combining. In the first stage, the LdsConv picks out the most valuable

input features and applies more filters to them by pruning technique. In the second stage, the additional

pointwise convolution combines the output of the first stage and produces the output features. The idea

of division of labour and progressive working has been reflected in computer vision. For example,

the two-stages detection framework [40] divides the task into region proposed stage and classification

as well as location stage. Cascade RCNN [41] further refines the second stage into three parts and

each part is based on the front one. Similarly, we adopt this idea in the convolutional operation and

thus divide the training task into picking up useful filters and mixing up the results of picking up.

The relationship between two stages is progressive and inseparable. The two-stage training process

simplifies the training task for each stage and finally improves the efficiency of the model.

Our experiments show that by replacing the standard/depthwise convolution with the LdsConv

in CNNs, it can improve the accuracy and reduce computational costs in the following models:

ResNet [1], DenseNet [42], MobileNet [9], and SE-ResNet [43].

Our main contributions are three-fold:

1. We integrate the weight pruning method into the depthwise separable convolutional filter and

develop the two-stage training framework.

2. We design an efficient convolution filter named Learned Depthwise Separable Convolution,

which can be directly inserted into the existing CNNs. It can not only reduce and computational

cost, but also improve the accuracy of the model.

3. We validate the effectiveness of the proposed LdsConv through extensive ablation studies.

To facilitate further studies, our source code, as well as experiment results, will be available

at https://github.com/Eutenacity/LdsConv.

2. Related Work

2.1. High Efficiency Convolutional Filter

Ever since the pioneering work on Alexnet [2] and VGG [3], researchers have studied how to

improve the efficiency of CNNs from various perspectives. However, much less work has been

devoted to developing innovative convolutional filters. Among those proposed convolutional filters,

https://github.com/Eutenacity/LdsConv

Sensors 2020, 20, 4349 3 of 18

the most popular ones are Groupwise Convolution [2], Depthwise Convolution [26] and Pointwise

Convolution [27]. They are widely used in the design of efficient CNNs. ResNet [1,44] uses Pointwise

Convolution to build bottleneck layers that allow the network to go deeper without increasing too many

parameters. For example, ResNeXt [45] and ShuffleNet [12] use Groupwise Convolution to reduce

redundancy in internal connections. Xception [10] and Mobilenet [9] use Depthwise Convolution

to further reduce the connection density. SENet [43] and CBAM [46] design a module that can

automatically weigh the output of convolutional filters at the cost of a small number of parameters.

Hetconv [23] uses convolutional filters with heterogeneous kernels to replace the standard convolutional

filters. OctConv [24] reduces the spatial redundancy in CNNs by designing special convolutional filters

with multi-scale input features. The Multi-Kernel Depthwise Convolution proposed in [47] can better

extract information with multiple kernel sizes and effectively utilize the computational efficiency

of Depthwise Convolution. The fully learnable group convolution (FLGC) proposed in [48] can be

integrated into a deep neural network and automatically learn the group structure in the training stage

in a fully end-to-end manner; its can achieve high computational efficiency. In [49], a new dynamic

grouping convolution (DGConv) was proposed, which is able to learn the number of groups in an

end-to-end manner; it has been proven to have several advantages. The training-free method, called

network decoupling (ND), proposed in [50] is interesting; it achieves high computational efficiency

and accuracy performance via pre-trained CNN models which are transferred to the MobileNet-like

depthwise separable convolution structure. Compared to these methods, the proposed LdsConv

chooses to incorporate weight pruning technique into the design of convolutional filters and further

develops the two-stage training framework to simplify the training task for each stage.

2.2. Model Compression

Model compression is another popular method to improve the efficiency of the convolutional

neural network. Refs. [28,29] remove redundancy in the model by pruning connection. Refs. [28,37–39]

compress the calculation amount of the model via quantization. Refs. [30–36] prune filters that have a

minimal contribution in the model. After removing these filters, the model is usually fine-tuned to

maintain its performance. Among these methods, filter pruning methods generally do not require

special hardware and software, but they need a pre-trained model which may use a computationally

expensive training to obtain.

The proposed LdsConv inserts the weight pruning process into the training. Therefore,

the LdsConv embedded model is able to be trained from scratch without a pre-trained model.

Different from [51] which only integrates the pruning and fine-tuning process with training, LdsConv

further develops the two-stage training framework dividing the training task into picking and combing.

Moreover, LdsConv conducts the group pruning by replacing the original convolution with the

groupwise convolution before training and use an additional balanced loss function to make the

pruning procedure more smooth. Additionally, LdsConv adds an additional pointwise convolution

at the end of the pruning, to integrate the pruning results and build a regular depthwise separable

convolution, allowing for efficient computation in practice at test time.

3. Method

In this section, we first introduce Depthwise Separable Convolution and LdsConv. Then we

describe the details about the utilization of LdsConv. We also discuss implementation details and show

how to replace Depthwise Separable Convolution with LdsConv.

3.1. Depthwise Separable Convolution

Consider a standard convolution that takes an R × Dh × Dw feature as an input and produces

an O × Dh × Dw feature as an output, where R, O, Dh and Dw denote the numbers of input channels,

output channels, and the height and the width of the feature. Usually a standard convolution applies R

filters to every input channel for each output. Thus, a standard convolution has the weight matrix with

Sensors 2020, 20, 4349 4 of 18

the size of R × O × H × W where H and W denote the height and the width of the filter. To reduce

the computational cost, the depthwise separable convolution splits the standard convolution into

two: a depthwise convolution for filtering, that only applies a single filter to the corresponding input

channel for the output one, and a pointwise convolution for combing the outputs of the depthwise

convolution and producing final output channels. The depthwise convolution is parameterized by the

kernel of the size R × 1 × H × W and the pointwise convolution is of the size R × O × 1 × 1.

3.2. Learned Depthwise Separable Convolution

Considering the strength of the depthwise separable convolution, it is highly desirable to design

a more complex architecture to enhance the capability of the convolution so that the neural network

can decide on which feature should be applied. In doing so, we need a novel convolution architecture,

named Learned Depthwise Convolution (LdsConv). As shown in Figure 1, the training process is

divided into picking stages and the combining stage. Moreover, the training task is also divided into

picking and combining. In picking stages, we focus on removing little influence filters repeatedly to

pick out valuable input features. In the combining stage, similarly to Depthwise Separable Convolution,

an additional 1 × 1 convolution is applied to combine features.

3

3
2

1

2
1

Out1

Out2

Out3

3
2
1

3
2
1

Out4
3
2
1

Out5
3
2
1

Input
Features

Filters
Output

Features

Stardard Convolution

3

2

2

2

1
1

1

2

2

2

3

1

3

2

2

2

1

1

Out5

Out4

Out3

Out2

Out1

Optimization stage

Indexed
Input Features

Output
FeaturesExtra

Convolutional Filter

Middle
Features

Pruned Filters

3
2

1

Input
Features

3

3
2

1

2
1

Out1

Out2

Out3

3
2
1

3
2
1

Out4
3
2
1

Out5
3
2
1

Input
Features

Pruned
Filters

Output
Features

Pruning stage 1

Sparsified Convolution

Index Depthwise Convolution Pointwise Convolution

3

3
2

1

2
1

Out1

Out2

Out3

3
2
1

3
2
1

Out4
3
2
1

Out5
3
2
1

Input
Features

Pruned Filters
Output

Features

Sparsified Convolution

Pruning stage 2Original state

Figure 1. The illustration of the LdsConv with a input channel of R = 3, an output channel of O = 5,

a group cardinality of NO = 5, a group number of G = 1, a pruning factor of k = 2 and a stage factor of

s = 2. At the end of picking stages, we remove filters with the number of (NO − k)R. After the picking

stages, an additional 1 × 1 standard convolution is added into the convolutional module to form a

standard depthwise separable convolution.

3.2.1. Group Pruning

Initially, we adopt a group convolution which divides a standard convolution of size

R × O × H × W into G groups of 4D tensors Fg with the size of NR × NO × H × W to initialize

Sensors 2020, 20, 4349 5 of 18

our architecture. For convenience of description, define NR = R
G and NO = O

G . Given the fact that the

size of convolution layers is widely different which needs different G for the division operation, in the

experiment we set a unify hyper-parameter NO, named group cardinality, to represent our model and

analyze its influence on the accuracy. Group pruning aims to relieve the effect of the pruning to the

accuracy by making pruning results more uniform.

3.2.2. Pruning Criterion

During the training process, we gradually screen out less important filters for each group.

The importance of the filters is evaluated by the L1-norm of its weight Fgij that corresponds to the

weight of the i-th input for the j-th output within group g. In other words, we remove filters with the

L1-norm.

3.2.3. Pruning Factor

It is important to consider and determine how many filters should be removed before the

combining stage. Formally, we set a hyper-parameter k with a range from 1 to 4 to represent that the

number of remaining filters is k × R. In Section 4, discussions and analysis on how to choose k is

presented, which both has a good balance of parameter and accuracy and fits all around dataset and

network scale.

3.2.4. Stage Factor

In contrast to methods that prune weights in pre-trained models, our weight pruning process

is plugged into the training procedure. Thus, we define the stage factor to determine the times of

pruning. For a group filter weight Fg with size of NR × NO × H × W, the number of filters that need

to be pruned can be calculated by the equation Nd = NRNO − kNR. Thus, the total number of pruned

filters is GNd = RNO − kR. Then, at the end of each picking stage, we prune GNd/s filters.

3.2.5. Balance Loss Function

To reduce the negative impact on the accuracy induced by pruning, we deliberately set the number

of remaining filters of each input feature to be even avoid the case that most of remained filters extract

information from only a small number of input features. As we know, it is hard to optimize the number

of filters as they are non-differentiable. We thus define the coefficient of M to ensure that filters belong

to input features with a bigger number of possible remained filters would be penalized more strongly.

In each training iteration in picking stages, we first find the filters that have the highest probability

to remain. Then, we check their input features to get the number of probably remaining filters of

each input feature. Finally, we restrain these filters belong to input features having a big number of

probably remaining filters. To this end, we use the following regularizer for a group filter weight Fg

during training:

Lbal =
NO

∑
j=1

NR

∑
i=1

Mi(
HW

∑
l=1

∣

∣

∣
wl,i,j

∣

∣

∣
)2 (1)

where Mi denotes the coefficient for filters belong to the i-th input feature and wl,i,j denotes every

parameter in Fgij . By adjusting the coefficient of Mi, the input feature having higher number of

probably remaining filters will force its filters to be penalized more strongly. The equation for Mi is

defined as:

Mi = max(e(NR
i −λk)/γ

− 1, 0) (2)

where NR
i denotes the number of probably remaining filters belonging to the i-th input feature.

We introduce a parameter λ to define the threshold over which the filter belonging to the i-th input

feature will receive the penalty since the average value of NR
i is k. Furthermore, γ is set to adjust the

penalty level. In this paper, we set λ = 1.5 and γ = 10 in all experiments empirically.

Sensors 2020, 20, 4349 6 of 18

3.2.6. Additional Pointwise Convolution

At the end of picking stages, we convert the sparsified model into a network with regular modules

that can be efficiently deployed on devices without special hardware and software support. For this

reason, we add additional pointwise convolutions to each LdsConv to build Depthwise Separable

Convolution (see Figure 1). This operation also highly broadens the expression ability of LdsConv

filters and lead the training task to combining the output of picking stages and producing the final

output features. The weight of the additional pointwise convolution has the size of kR × O × 1 × 1

related to the number of input channel R and output channel O of the original convolution and the

pruning factor k. The initial value of the weight is set by the index information of the remaining filters.

Figure 2 shows the initial value of the example in Figure 1. We set the value of the position in the

weight matrix to 1 only when the middle feature extract by the remaining filter matches the output

feature. The color in Figure 1 represents this matching relationship. This kind of initial value can

narrow the negative effect of the newly additional pointwise convolution added in the training process.

3

2

2

2

1

1

Out5Out4Out3Out2Out1

1 0 0 0 0

0

0

0

0

1

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

Figure 2. Initial value assignment of the example shown in Figure 1. The left set of parallelograms

represents the middle features. The numbers in these parallelograms mean the index in the input

features. The upper set of parallelograms represents the output features. The same color between the

left parallelogram and the top one means that they are matched in picking stages. The value in the

matrix means the initial value of the additional convolution.

3.2.7. Learning Rate

We adopt the cosine shape learning rate schedule during training, which smoothly changes the

learning rate, and usually improves the accuracy [18,52,53]. Figure 3 demonstrates the learning rate

as a function of training epoch, and the corresponding training loss of a ResNet50 using LdsConv

filters on the ImageNet dataset [54]. Before we enter the combining stage, we add additional pointwise

convolution and reset the learning rate to reduce the negative effect of the learning rate to the newly

added weights. Thus, the abrupt increase occurs in the loss at epoch 45. However, the plot shows that

the loss gradually recovers from this accident.

3.3. The Implementation of LdsConv

In addition to the use of LdsConv, we briefly describe how to replace standard convolutional

filters and depthwise separable convolutional filters with LdsConv filters.

Sensors 2020, 20, 4349 7 of 18

0

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0 15 30 45 60 75 90 105 120 135

tr
a

in
in

g
 l

o
ss

le
a

rn
in

g
 r

a
te

Epoch

learning rate

training loss

Picking Stage Combining Stage

Figure 3. The cosine shape learning rate and a typical training loss curve trained on ImageNet.

The vertical gray bar in the figure marks the end of picking stage and the begin of combing stage.

3.3.1. Standard Convolution

When we try to replace a standard convolution with our proposed LdsConv, the most important

hyper-parameter is the group cardinality NO. In general, we suggest setting NO to the value from

8 to 32. But if the number of the channels of the original convolution is too small to divide, we need

to set NO to the same value as the number of output channels ensuring the group to be 1. For other

hyper-parameters, we can simply use the recommended value given by Section 4. In addition to the

fact that we replace the standard convolution with the group one first, a 1 × 1 convolution should

exist to mix all channels information after the group convolution. In Figure 4, we demonstrate the

replacement in the ResNet.

1×1,Conv

3×3,LdsConv3×3,Conv

1×1,Conv

1×1,Conv

1×1,Conv

Original bottleneck block bottleneck block w LdsConv

3×3,DwConv,256,256

1×1,Conv,256,256

3×3,LdsConv,256,64

1×1,Conv,64,256

Standard Convlution in MobileNet LdsConv in MobileNet

Figure 4. The replacement of original convolutional filters with LdsConv. Left: The replacement in

ResNet. We directly replace the 3 × 3 convolution with our proposed LdsConv in the bottleneck block.

Right: The replacement in MobileNet. We replace the original 3 × 3 convolution and reduce the number

of output channel of the LdsConv and input channel of the sequent 1 × 1 convolution.

3.3.2. Depthwise Separable Convolution

In general, a pointwise convolution exists in each depthwise separable convolution. So, we do

not need to worry about the problem mentioned above. In other words, we can simply replace the

depthwise convolution with our proposed LdsConv. However, parameters and FLOPs may increase if

we do not make any adjustments. Therefore, we suggest adding an additional convolution before or

Sensors 2020, 20, 4349 8 of 18

after the LdsConv to reduce the number of input or output channels of the LdsConv. The right part of

Figure 4 shows our implementation of LdsConv filters in MobileNet.

4. Experiment

In this section, we validate the effectiveness and efficiency of the proposed LdsConv. We first

present ablation studies for image classification on Cifar [55]. Then, we perform a set of experiments

on ImageNet [54] to check the performance of the proposed LdsConv.

4.1. Ablation Study on Cifar

We conduct a series of ablation studies to find the best situation to implement LdsConv filters

and then check its robustness in different models.

4.1.1. Training Details

We use stochastic gradient descent (SGD) algorithm to train all the models. Specifically, we adopt

Nesterov momentum with a momentum weight of 0.9 without dampening, and use a weight decay

of 1e−4. Unless otherwise specified, the size of the training batch is set to be 64 and the number of

total training epochs is 300, in which the picking stages take 150 epochs and the combining stage has

150 epochs. For the convenience of network accuracy comparison, we all use the standard cosine

learning rate change strategy without reset which starts from 0.1 and gradually reduces to 0. It is worth

mentioning that special modification on learning rate dose not affect too much. Therefore, we remove

the reset described in Section 3.2.7 for the convenience.

4.1.2. Implement on DenseNet-BC-100

We do experiment with DenseNet-BC-100 architecture having a growth rate of 12 [42] on

the CIFAR-100 dataset.When we implement our proposed LdsConv, we simply replace the 3 × 3

convolutional filters in dense blocks with the LdsConv filters. Specifically, we set the group cardinality

NO to the same as the number of output channels since the number is too small to divide. Then we

start experiments on the effect of pruning factor k and stage factor s for the LdsConv.

4.1.3. Effect of Stage Factor

The first part of Table 1 compares DenseNet-BC-100 models having LdsConv filters with different

stage factors. In particular, we set the pruning factor k to 2. The result shows that s = 4 seems to be the

best value. While reaching the peak at 4, the accuracy drops down for higher stage factors. We attribute

this change to the decreasing of gap epochs between pruning which is calculated by the equation

EG = EP/s where EP denotes training epochs of picking stages. To expel its effect, we conduct two

more experiments with s = 6 and s = 8 and set EG to be the same value as the one when s = 4 in

the second part of Table 1. In other words, the picking stages of these two experiments take 225 and

300 epochs, respectively. The result shows that the accuracy can increase a lot without the decreasing

of gap epochs EG. By taking into account the training time, we suggest to set the stage factor to 4 in the

ordinary course of events.

4.1.4. Effect of Pruning Factor

We do experiment with several pruning factors k, which vary from 1 to 4. In addition, we set

the stage factor s to 4 which means all models have the same times of pruning. The results presented

in the third part of Table 1 demonstrate that parameters of the model raise while the accuracy rise

ups and downs with the increasing of the pruning factor. The risk of overfitting and the decreasing

of pruning proportion battle with each other resulting in this change. In particular, it suggests that

setting the pruning factor k to 2 is a good choice which balances both the accuracy and the number of

Sensors 2020, 20, 4349 9 of 18

parameters. We can also reduce the pruning factor k to 1 or even integrate the additional pointwise

convolution with the sequent convolution to reach a higher reduction to weights.

Table 1. The table shows the ablation study results in different setups on CIFAR-100. ‘∗’ refers to the

LdsConv using the balance loss. ‘#’ refers to the model trained with gap epochs EG = EP/4.

Model Accuracy (%) GFLOPs Params (M)

Lds-DenseNet-BC-100 (s = 2) 76.9 0.23 0.64
Lds-DenseNet-BC-100 (s = 4) 77.3 0.23 0.64
Lds-DenseNet-BC-100 (s = 6) 76.3 0.23 0.64
Lds-DenseNet-BC-100 (s = 8) 76.6 0.23 0.64

Lds-DenseNet-BC-100 # (s = 6) 77.4 0.23 0.64
Lds-DenseNet-BC-100 # (s = 8) 77.9 0.23 0.64

Lds-DenseNet-BC-100 (k = 1) 76.3 0.21 0.6
Lds-DenseNet-BC-100 (k = 2) 77.3 0.23 0.64
Lds-DenseNet-BC-100 (k = 3) 77.3 0.25 0.71
Lds-DenseNet-BC-100 (k = 4) 76.8 0.28 0.74

Lds-DenseNet-BC-100 ∗ (k = 1) 76.8 0.21 0.6
Lds-DenseNet-BC-100 ∗ (k = 2) 77.7 0.23 0.64
Lds-DenseNet-BC-100 ∗ (k = 3) 77.6 0.25 0.71
Lds-DenseNet-BC-100 ∗ (k = 4) 77.1 0.28 0.74

Lds-ResNet50 ∗ (NO = 4) 80.1 2.87 14.97
Lds-ResNet50 ∗ (NO = 8) 80.9 2.87 14.97
Lds-ResNet50 ∗ (NO = 16) 79.8 2.87 14.97
Lds-ResNet50 ∗ (NO = 32) 79.8 2.87 14.97

Dw-DenseNet-BC-100 74.6 0.21 0.6
Lds-DenseNet-BC-100 (k = 2) w/o AC 76.2 0.3 0.79

4.1.5. Effect of Balance Loss Function

To check the effectiveness of our balance loss function, we apply it to the models with varied

pruning factors. The fourth part of Table 1 shows that the accuracy is improved by adding the balance

loss regularization.

4.1.6. Effect of Group Cardinality

To evaluate the effect of the group cardinality NO, we experiment with ResNet50 [1] which

is designed to train on ImageNet and thus has large number of channels. We remove the first

three downsampling operations and retain only the last two ones since images in cifar have smaller

resolution. The fifth part of Table 1 compares ResNet50 models using LdsConv filters with varied

group cardinality. Specifically, we set the group cardinality NO to 4,8,16 and 32. The stage factor s is set

to 4 and the pruning factor k is set to 2 for all models. The result shows that the accuracy first rises up

and then goes down. When NO = 8, the model reaches its best accuracy. While reaching the accuracy

peak at 8, the accuracy drops down for lower NO indicating over-group can also have negative effects.

We own the negative effects to the shrink in expression ability when the convolution is grouped.

4.1.7. Effect of Two-Stage Training Framework

To verify the function of each stage, we first explore the norm value of the picking results and

then evaluate the effect of the additional convolution. The three panels of Figure 5a illustrates

the weights of the last 3 × 3 convolution for orignal DenseNet-BC-100, Dw-DenseNet-BC-100

and Lds-DenseNet-BC-100. We replace the 3 × 3 standard convolutions in dense blocks with

depthwise separable convolutions in Dw-DenseNet-BC-100 which can be regarded as the typical

one-stage training form of LdsConv. Each block in the figure represents the L1 norm (normalized

by the maximum value among all filters) of a 3 × 3 filter. In the top two panels of Figure 5a,

Sensors 2020, 20, 4349 10 of 18

the vertical and horizon axis represent the height and width of the weight matrix, respectively.

For the third panel, we arrange the weight matrix of Lds-DenseNet-BC-100 in this way for alignment.

Figure 5b shows the curve between 48 3 × 3 convolutional layers in dense blocks and the average

norm of weights for three models. The results suggest that the picking stage indeed reduces the

redundancy in the weight matrix and picks up more valuable filters. We additionally experiment

with Dw-DenseNet-BC-100 and Lds-DenseNet-BC-100 (k = 2) without additional convolutions (AC)

in the final part of Table 1. Without additional convolutions, the combing stage becomes the

common optimization one. The accuracy dramatically drops down indicating that the combing

stage is indispensable. Furthermore, additional convolutions arrange the sparsified convolutions into

standard depthwise separable convolutions improving the computation cost at test time. Besides,

Dw-DenseNet-BC-100 shows lower accuracy and non negligible gap in the convergence speed

compared with the baseline in Figure 5c. On the contrary, Lds-DenseNet-BC-100 trained with the

two-stage training framework owns a better curve of convergence speed which is near to the baseline.

4.1.8. Results on Other Models

To evaluate the effectiveness of the proposed LdsConv with the situation discussed in the above

in different networks, we choose currently popular models as the baselines including ResNet [1],

DenseNet [42], MobileNet [9], and SE-ResNet [43]. For all experiments, we set the pruning factor

k to 2, the stage factor s to 4 and the balance loss function active. In DenseNet, we set its pruning

cardinality NO to the same value as the number of output channels. In other networks, we set the

pruning cardinality NO to 8. The experimental results are shown in Table 2. After using our modules to

replace the convolutions in the original models, these networks generally achieve the effect of reducing

the FLOPs and the number of parameters, meanwhile maintaining or even improving the accuracy.

It shows that our method can effectively reduce the redundancy in convolutional filters. It also suggests

that the LdsConv can perform well without too many adjustments on hyper-parameters.

Table 2. The table shows the results for different models on CIFAR-100. ‘∗’ refers to the LdsConv

using the balance loss. With the setting obtained from the ablation study, we can simply improve the

performance of the model by replacing the standard 3 × 3 convolution with our proposed LdsConv.

Model Accuracy (%) GFLOPs Params (M)

MobileNet [9] 77.1 0.62 3.31
Lds-MobileNet ∗ 78.0 0.51 2.74

ResNet50 [1] 80.2 4.46 23.71
Lds-ResNet50 ∗ 80.9 2.86 14.97
ResNet152 [1] 81.7 14.20 58.34
Lds-ResNet152 ∗ 82.0 8.66 35.53

SE-ResNet50 [43] 81.2 4.46 26.22
Lds-SE-ResNet50 ∗ 81.5 2.87 16.54

DenseNet-BC-100 [42] 77.7 0.30 0.79
Lds-DenseNet-BC-100 ∗ 77.7 0.23 0.64

Sensors 2020, 20, 4349 11 of 18

48 columns

R
o

w
s

DenseNet-BC-100

Dw-DenseNet-BC-100

Lds-DenseNet-BC-100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 6 11 16 21 26 31 36 41 46

W
e

ig
h

t

Layer Index

Dw Lds(k=2) Baseline

(a)

(b)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

T
ra

in
in

g
 L

o
ss

Epoch

Dw

Lds(k=2)

Baseline

Figure 5. (a): Norm of weights of three models in Cifar 100. The block with darker color has less value

of norm. The vertical and horizon axis represent the height and width of the weight matrix expect the

Lds-DenseNet-BC-100 in which we arrange it in this way for alignment. (b) The curve between 48 3 × 3

convolutional layers in dense blocks and the average norm of weights for three models. (c) The curve

of convergence speed for three models.

Sensors 2020, 20, 4349 12 of 18

4.2. Results on ImageNet

In a set of experiments, we test LdsConv filters on the ImageNet dataset.

4.2.1. Training Details

We use the SGD method to train all the models and adopt Nesterov momentum with a momentum

weight of 0.9 without dampening using a weight decay of 1e−4. We use 135 as the total training epochs,

in which the picking stage takes 45 epochs, the combining stage involves 90 epochs. The learning rate

change strategy is shown in Figure 3. For MobileNet, we choose to simply increase the training epochs

rather than adjusting hyper-parameters to the best. Thus, we use 300 as the total training epochs,

in which the epoch size of the picking stage and combining stage is set as 100 and 200, respectively.

The initial learning rate is 0.045, and its weight decay is 4e−5.

4.2.2. Model Configurations

In the experiments on ImageNet, we set the balance loss function active, the pruning factor k to 2

and the stage factor s to 4. Except for DenseNet, we set the group cardinality NO to 8. In DenseNet,

we still set its group cardinality to the same value as the number of output channels ensuring the

group to be 1.

4.2.3. Comparison on ImageNet

We continue to use ResNet [1], DenseNet [42], MobileNet [9], and SE-ResNet [43] as the baseline

for comparison, and the results are shown in Table 3. All results of baselines come from their original

papers. In MobileNet, we can slightly reduce parameters and FLOPs, and highly increase the accuracy

by 2.3%. For other networks using standard convolution originally, we not only improve the accuracy

but also obviously reduce the number of parameters and FLOPs. What’s more, our modules can

coexist with SE-modules to further improve the efficiency of the model.

Table 3. The table shows the results for different models on ImageNet. ‘∗’ refers to the LdsConv using

the balance loss. By simply replacing the standard 3 × 3 convolutional filters with our proposed

LdsConv filters, we can not only improve the accuracy but also reduce the FLOPs and the number of

parameters a lot. For the case of MobileNet, we highly increase the accuracy by 2.3% which is a pretty

considerable improvement.

Model Error% (Top-1) GFLOPs Params (M)

MobileNet [9] 29.0 0.57 4.2
Lds-MobileNet ∗ 26.7 0.49 3.7

ResNet50 [1] 24.7 3.86 25.6
Lds-ResNet50 ∗ 22.9 2.71 16.8
ResNet152 [1] 23.0 11.30 60.2
Lds-ResNet152 ∗ 21.2 7.14 37.4

SE-ResNet50 [43] 23.3 3.87 28.1
Lds-SE-ResNet50 ∗ 22.0 2.71 17.1
SE-ResNet152 [43] 21.6 11.32 66.8
Lds-SE-ResNet152 ∗ 20.7 7.15 38.2

DenseNet121 [42] 25.0 2.88 8.0
Lds-DenseNet121 ∗ 24.2 1.99 6.5
DenseNet264 [42] 22.2 5.86 33.3
Lds-DenseNet264 ∗ 21.7 4.72 29.9

4.2.4. Comparison with Model Compression Methods

To investigate the compressing ability of our proposed LdsConv, we adjust the bottleneck block

with LdsConv in the ResNet to a extreme state as shown in Figure 6. To this end, we remove the Bn

Sensors 2020, 20, 4349 13 of 18

and Relu layers after the 3 × 3 group convolutional layer before training. When the combination stage

begins, we integrate the additional pointwise convolution (AC) with the sequent 1 × 1 convolution

by the matrix multiply operation since no non-linear operation exists between them. When the

model formally enters the combing stage, we only train one 1 × 1 convolution after every LdsConv.

In Table 4, we compare the LdsConv with the existing compression methods including ThiNet [30],

NISP [56] and FPGM [57]. We use ResNet50 as the baseline, replace the standard convolution with the

LdsConv, and reduce the number of parameters further by setting the pruning factor to 1 and combing

the additional pointwise convolution with the sequent 1 × 1 convolution. We also set s = 6 and

EG = EP/4, which lengthens the training epochs, in order to relieve the negative effect of extremely

compressing. Compared with these pruning methods, our method, denoted as Lds-ResNet50-extreme,

not only improves the accuracy outperforming all other compared methods but also reduces the FLOPs

by 40.9%. Furthermore, the real inference speed of Lds-ResNet50-extreme is 42 batches (16 images

per batch) per second with the practical evaluation on GPU Nvidia RTX 2080 compared with the

28.9 batches per second on the baseline of ResNet50. We can obtain nearly 1.5× speed up without

special hardware support.

1×1Conv

Bn

Relu

3×3Conv

Bn

Relu

1×1Conv

Bn

Relu

1×1Conv

Bn

Relu

3×3GConv

1×1Conv

Bn

Relu

1×1Conv

Bn

Relu

3×3LdsConv w/o AC

1×1Conv w AC

Bn

Relu

Original bottleneck block
Bottleneck block

before training

Bottleneck block during

the combing stage

Figure 6. The extreme state of LdsConv in the ResNet. We remove the Bn and Relu layer after the 3 × 3

convolution and combine the additional convolution with the sequent 1 × 1 convolution by the matrix

multiply operation. Finally the standard convolution is replaced with only depthwise convolution.

The 3 × 3 LdsConv w/o AC means the depthwise part in LdsConv. The sequent 1 × 1 Conv w AC

means the combing result of the additional convolution and original sequent 1 × 1 convolution.

Table 4. The table shows the comparison with existing compression methods for ResNet50 on ImageNet.

Our Lds-ResNet50-extreme outperforms all other methods in terms of accuracy and still has a comparable

reduction on FLOPs.

Model Error% (Top-1) GFLOPs FLOPs↓ (%)

ThiNet-70 [30] 27.9 - 36.8
NISP [56] 27.3 - 27.3
FPGM-only 30% [57] 24.4 - 42.2
Lds-ResNet50-extreme 23.4 2.28 40.9

4.3. Comparison with Similar Works

To further verify the effectiveness of our approach, we do several experiments using three different

networks, namely, ND [50], FLGC [48] and GDConv [49] as well as the proposed model. A comparison

of the four models is shown in Table 5. These methods perform similarly when they transform a

Sensors 2020, 20, 4349 14 of 18

regular convolution into a depthwise/groupwise convolution. To fairly evaluate the performance

of each method, we reimplement these methods in ResNet50 since they have different baselines in

their original papers. FLGC mainly transforms the 1 × 1 convolution into groupwise one and thus

can reduce the FLOPs a great deal. However, FLGC also sacrifices the accuracy a lot in order to reach

such a reduction on computational cost. On the contrary, our proposed LdsConv mainly transforms

the 3 × 3 convolution into the depthwise separable one and make a sweet balance between the FLOPs

and the accuracy. ND decomposes the regular convolution into the accumulation of several depthwise

separable convolutions. While our approach aims to replace the standard convolution with a single

depthwise separable convolution. Further more, our Lds-ResNet50-extreme replaces with only one

depthwise convolution (w/o separable one) resulting a extreme reduction on computation cost which

can be never transcended by ND. The goal of DGConv is to construct a groupwise convolution with

dynamic groups. While our approach is to construct a depthwise (Lds-ResNet50-extreme) or depthwise

separable convolution with most valuable filters. Our Lds-ResNet50-extreme plays a role as the upper

bound of reduction on FLOPs for DGConv-ResNet50 and our Lds-ResNet50∗ simply surpasses the

accuracy with fewer extra FLOPs. As shown in Table 5, our Lds-ResNet50∗ outperforms other methods

in terms of accuracy and still has a considerable reduction on FLOPs and number of parameters.

Our Lds-ResNet50-extreme remains a comparable accuracy with strong compression on the model.

Table 5. The table shows the comparison with similar methods for ResNet50 on ImageNet. ‘∗’ refers to

the LdsConv using the balance loss.

Model Error% (Top-1) GFLOPs Params (M)

FLGC-ResNet50 [48] 34.2 1.0 7.6
ND-ResNet50 [50] 26.7 3.12 20.6
DGConv-ResNet50 [49] 23.3 2.46 14.6

Lds-ResNet50 ∗ 22.9 2.71 16.8
Lds-ResNet50-extreme 23.4 2.28 14.3

4.4. Network Visualization with Grad-CAM

We further apply the Grad-CAM [58] to models using images from the ImageNet validation set.

Grad-CAM uses gradients to calculate the importance of the spatial locations in convolutional layers.

As the gradients are calculate with respect to a specific class, Grad-CAM results show attended regions

clearly. By visualizing the importance map for the network, we are able to understand which part

the network is interested in and how the network is making use of the features for predicting a class.

We compare the visualization results between our proposed Lds-ResNet50 and baseline (ResNet50) in

Figure 7.

From Figure 7 it can be clearly seen that the Grad-CAM results of Lds-ResNet50 cover the target

regions better than those of the original ResNet50. It suggests that LdsConv-integrated network learns

well to exploit information in target regions and aggregate features from them.

Sensors 2020, 20, 4349 15 of 18

Lds-ResNet50

ResNet50

Input image

hartebeest coral fungus frilled lizard folding chair Chihuahua chickadee

Figure 7. Grad-CAM [58] visualization results. We compare the visualization results between our

Lds-ResNet50 and ResNet50. The Grad-CAM visualization is calculated for the last convolutional

outputs. The ground-truth label is shown on the top of each input image.

5. Conclusions

In this work, we propose a new type of convolution called LdsConv. We have compared our

proposed convolutional filters with the original convolutional filters on various existing architectures.

Experimental results show that our LdsConv is more efficient than existing convolutions in these

models. We also have compared the LdsConv method with the FLOPs compression methods and

similar motivated works. Results from our experiments show that the proposed method produces the

overall best accuracy while still having competitive FLOPs.

Author Contributions: Conceptualization, W.L. and Y.D.; investigation, Y.D., H.-L.W. and X.P.; methodology,
W.L., Y.D. and X.P.; project administration, Y.D.; software, W.L.; supervision, Y.D. and H.-L.W.; validation,
Y.Z.; visualization, W.L.; writing–original draft, W.L.; writing–review and editing, Y.D., H.-L.W., X.P. and Y.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep Convolutional Neural

Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV,

USA, 3–6 December 2012; pp. 1097–1105.

3. Simonyan, K.; Zisserman, A. Very deep Convolutional Networks for large-scale image recognition.

arXiv 2014, arXiv:1409.1556.

4. Du, M.; Ding, Y.; Meng, X.; Wei, H.L.; Zhao, Y. Distractor-aware deep regression for visual tracking. Sensors

2019, 19, 387. [CrossRef] [PubMed]

5. Lyu, J.; Bi, X.; Ling, S.H. Multi-level cross residual network for lung nodule classification. Sensors 2020,

20, 2837. [CrossRef] [PubMed]

6. Xia, H.; Zhang, Y.; Yang, M.; Zhao, Y. Visual tracking via deep feature fusion and correlation filters. Sensors

2020, 20, 3370. [CrossRef] [PubMed]

7. Hwang, Y.J.; Lee, J.G.; Moon, U.C.; Park, H.H. SSD-TSEFFM: New SSD using trident feature and squeeze

and extraction feature fusion. Sensors 2020, 20, 3630. [CrossRef]

http://dx.doi.org/10.3390/s19020387
http://www.ncbi.nlm.nih.gov/pubmed/30669369
http://dx.doi.org/10.3390/s20102837
http://www.ncbi.nlm.nih.gov/pubmed/32429401
http://dx.doi.org/10.3390/s20123370
http://www.ncbi.nlm.nih.gov/pubmed/32545916
http://dx.doi.org/10.3390/s20133630

Sensors 2020, 20, 4349 16 of 18

8. Liang, S.; Gu, Y. Towards robust and accurate detection of abnormalities in musculoskeletal radiographs

with a multi-network model. Sensors 2020, 20, 3153. [CrossRef]

9. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.

Mobilenets: Efficient Convolutional Neural Networks for mobile vision applications. arXiv 2017,

arXiv:1704.04861.

10. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

11. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level

accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

12. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient Convolutional Neural Network

for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856.

13. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,

USA, 27–30 June 2016; pp. 2818–2826.

14. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the impact of residual

connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

San Francisco, CA, USA, 4–9 February 2017.

15. Wei, B.; Hamad, R.A.; Yang, L.; He, X.; Wang, H.; Gao, B.; Woo, W.L. A deep-learning-driven light-weight

phishing detection sensor. Sensors 2019, 19, 4258. [CrossRef]

16. Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.; Hutter, F. Nas-Bench-101: Towards reproducible

neural architecture search. In Proceedings of the International Conference on Machine Learning, Long Beach,

CA, USA, 10–15 June 2019; pp. 7105–7114.

17. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search.

In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February

2019; Volume 33, pp. 4780–4789.

18. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,

USA, 18–23 June 2018; pp. 8697–8710.

19. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Li, F.-F.; Yuille, A.; Huang, J.; Murphy, K.

Progressive neural architecture search. In Proceedings of the European Conference on Computer Vision

(ECCV), Munich, Germany, 8–14 September 2018; pp. 19–34.

20. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.

21. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J. Efficient neural architecture search via parameter sharing.

arXiv 2018, arXiv:1802.03268.

22. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer

Nature: Berlin, Germany, 2019.

23. Singh, P.; Verma, V.K.; Rai, P.; Namboodiri, V.P. Hetconv: Heterogeneous kernel-based convolutions for deep

CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,

CA, USA, 16–20 June 2019; pp. 4835–4844.

24. Chen, Y.; Fang, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan, S.; Feng, J. Drop an Octave:

Reducing spatial redundancy in Convolutional Neural Networks with Octave Convolution. arXiv 2019,

arXiv:1904.05049.

25. Liao, S.; Yuan, B. CircConv: A structured Convolution with low complexity. In Proceedings of the AAAI

Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4287–4294.

26. Vanhoucke, V. Learning visual representations at scale. ICLR Invit. Talk 2014, 1, 2.

27. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

28. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep Neural Networks with pruning,

trained quantization and Huffman coding. arXiv 2015, arXiv:1510.00149.

http://dx.doi.org/10.3390/s20113153
http://dx.doi.org/10.3390/s19194258

Sensors 2020, 20, 4349 17 of 18

29. Zhu, L.; Deng, R.; Maire, M.; Deng, Z.; Mori, G.; Tan, P. Sparsely aggregated Convolutional Networks.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September

2018; pp. 186–201.

30. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep Neural Network compression.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;

pp. 5058–5066.

31. Singh, P.; Kadi, V.S.R.; Verma, N.; Namboodiri, V.P. Stability based filter pruning for accelerating deep

CNNs. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV),

Waikoloa Village, HI, USA, 9–11 January 2019; pp. 1166–1174.

32. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep Neural Networks. In Proceedings of

the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.

33. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient ConvNets. arXiv 2016,

arXiv:1608.08710.

34. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep Convolutional Neural

Networks. arXiv 2018, arXiv:1808.06866.

35. Singh, P.; Manikandan, R.; Matiyali, N.; Namboodiri, V. Multi-layer pruning framework for compressing

single shot multibox detector. In Proceedings of the 2019 IEEE Winter Conference on Applications of

Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1318–1327.

36. Singh, P.; Verma, V.K.; Rai, P.; Namboodiri, V.P. Leveraging filter correlations for deep model compression.

arXiv 2018, arXiv:1811.10559.

37. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-Net: ImageNet classification using binary

Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV),

Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 525–542.

38. Park, E.; Yoo, S.; Vajda, P. Value-aware quantization for training and inference of Neural Networks.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September

2018; pp. 580–595.

39. Zhang, D.; Yang, J.; Ye, D.; Hua, G. LQ-Nets: Learned quantization for highly accurate and compact deep

Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,

Germany, 8–14 September 2018; pp. 365–382.

40. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal

Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC,

Canada, 7–12 December 2015; pp. 91–99.

41. Cai, Z.; Vasconcelos, N. Cascade R-CNN: delving into high quality object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;

pp. 6154–6162.

42. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected Convolutional Networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,

21–26 July 2017; pp. 4700–4708.

43. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the

European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016;

Springer: Cham, Switzerland, 2016; pp. 630–645.

45. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep Neural Networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,

21–26 July 2017; pp. 1492–1500.

46. Woo, S.; Park, J.; Lee, J.Y.; So Kweon, I. CBAM: Convolutional block attention module. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

47. Hu, M.; Lin, H.; Fan, Z.; Gao, W.; Yang, L.; Liu, C.; Song, Q. Learning to recognize chest-Xray images

faster and more efficiently based on multi-kernel depthwise convolution. IEEE Access 2020, 8, 37265–37274.

[CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2974242

Sensors 2020, 20, 4349 18 of 18

48. Wang, X.; Kan, M.; Shan, S.; Chen, X. Fully learnable group convolution for acceleration of deep Neural

Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,

CA, USA, 16–20 June 2019; pp. 9049–9058.

49. Zhang, Z.; Li, J.; Shao, W.; Peng, Z.; Zhang, R.; Wang, X.; Luo, P. Differentiable learning-to-group channels

via groupable Convolutional Neural Networks. In Proceedings of the IEEE International Conference on

Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3542–3551.

50. Guo, J.; Li, Y.; Lin, W.; Chen, Y.; Li, J. Network decoupling: From regular to depthwise separable convolutions.

arXiv 2018, arXiv:1808.05517.

51. Huang, G.; Liu, S.; Van der Maaten, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned

group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Salt Lake City, UT, USA, 18–23 June 2018; pp. 2752–2761.

52. Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J.E.; Weinberger, K.Q. Snapshot ensembles: Train 1, get m for

free. arXiv 2017, arXiv:1704.00109.

53. Loshchilov, I.; Hutter, F. SGDR: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.

54. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database.

In Proceedings of the 2009 IEEE conference on computer vision and pattern recognition, Miami, FL, USA,

20–25 June 2009; pp. 248–255.

55. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Citeseer:

Princeton, NJ, USA, 2009.

56. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. NISP: Pruning

networks using neuron importance score propagation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9194–9203.

57. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep Convolutional Neural

Networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Long Beach, CA, USA, 16–20 June 2019; pp. 4340–4349.

58. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations

from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on

computer vision, Venice, Italy, 22–29 October 2017; pp. 618–626.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	High Efficiency Convolutional Filter
	Model Compression

	Method
	Depthwise Separable Convolution
	Learned Depthwise Separable Convolution
	Group Pruning
	Pruning Criterion
	Pruning Factor
	Stage Factor
	Balance Loss Function
	Additional Pointwise Convolution
	Learning Rate

	The Implementation of LdsConv
	Standard Convolution
	Depthwise Separable Convolution

	Experiment
	Ablation Study on Cifar
	Training Details
	Implement on DenseNet-BC-100
	Effect of Stage Factor
	Effect of Pruning Factor
	Effect of Balance Loss Function
	Effect of Group Cardinality
	Effect of Two-Stage Training Framework
	Results on Other Models

	Results on ImageNet
	Training Details
	Model Configurations
	Comparison on ImageNet
	Comparison with Model Compression Methods

	Comparison with Similar Works
	Network Visualization with Grad-CAM

	Conclusions
	References

