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Abstract

While the majority of literature on remanufacturing operations examines an end-of-

life (EOL) strategy which is both manual and mechanised, authors generally agree

that digitalisation of remanufacturing is expected to increase in the next decade.

Subsequently, a new research area described as digitally-enabled remanufacturing,

remanufacturing 4.0 or smart remanufacturing is emerging. This is an automated,

data-driven system of remanufacturing by means of Industry 4.0 (I4.0) paradigms.

Insights into smart remanufacturing can be provided through simulation modelling

of the remanufacturing process. While the use of simulation modelling in order to

predict responses and behaviour is prevalent in remanufacturing, the use of these

tools in smart remanufacturing is still limited in literature. The goal of this research

is to present, as a first of its kind, a comparative understanding of simulation

modelling in remanufacturing in order to suggest the ideal modelling tool for smart

remanufacturing. The proposed comparison includes system dynamics, discrete

event simulation and agent based modelling techniques. We apply these modelling

techniques on a smart remanufacturing space of a sensor-enabled product and use

assumptions derived from industry experts. We then proceed to model the

remanufacturing operation from sorting and inspection of cores to final inspection

of the remanufactured product. Through our analysis of the assumptions utilised

and simulation modelling results we conclude that, while individual modelling

techniques present important strategic and operational insights, their individual

use may not be sufficient to offer comprehensive knowledge to remanufacturers

due to the challenge of data complexity that smart remanufacturing offers.
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Introduction

There is an acceptance by researchers, academics, manufacturers and policymakers of the

urgent need to transition from a linear model, which extracts resources and manufactures them

into products that are disposed after use, into a circular model [14, 44, 47]. The circular

economy model is focused on value retention, where the resources are kept in use for as long

as possible; hence it is restorative and regenerative by design and intention [12]. Circular

economy research has motivated the emergence of a new supply chain paradigm, the closed-

loop supply chain [47]. Accordingly, these closed-loop supply chain (CLSC) systems include

material recovery processes such as remanufacturing, recycling, repairing and reusing [17, 20].

Ponte et al., [47] reflects on the foregoing and concludes that remanufacturing has become

one of the cornerstone of this emerging circular economy. There are several definitions of

remanufacturing and these definitions has been deployed in literature with various meanings,

sometimes creating ambiguity [2, 21, 55, 56]. However, in an early definition of

remanufacturing. In an extended definition, Lund defines remanufacturing as “an industrial

process in which worn-out products are restored to like-new condition through a series of

industrial processes in a factory environment. The discarded product is completely

disassembled, its useable parts are cleaned, reconditioned and put into inventory. Then the

new product is reassembled from the old and, where necessary, new parts to produce a fully

equivalent and sometimes superior in performance and expected lifetime to the original new

product” [36, 37]. Currently (and beyond profitability), remanufacturing has been argued as

part of the solution to reduce resource consumption while retaining economic advancement

[58]. According to the Ellen MacArthur Foundation (EMF), it decouples economic growth

from environmental impact [38]. Following this, several papers have emphasized the link

between remanufacturing and sustainability [18, 50, 51]. The United Nations Environmental

Programme (UNEP) International Resource Panel (IRP) on the circular economy makes this

link evident, highlighting remanufacturing as one of the key circular approach needed to

redefine value for a sustainable manufacturing. Thus, remanufacturing has been described as a

value retention process, VRP [57].

Smart remanufacturing, however, is relatively new and emerging research area in

literature. It has been described as in various terms such as remanufacturing 4.0 [7], I4.0

enabled remanufacturing [27, 62] data-driven remanufacturing [45], digital

remanufacturing [52] as well as smart remanufacturing [28, 63]. In their review studies

on smart remanufacturing, Kerin and Pham [28] define smart remanufacturing as the

utilization of I4.0 technologies on the product to be remanufactured as well as the

remanufacturing processing equipment and business management systems. Thus, the

application of I4.0 paradigms, (cyber-physical systems, cloud manufacturing, internet

of things, additive manufacturing [25]) in remanufacturing operations can be broadly

said to be smart remanufacturing. The emergence of this term has not been without its

challenges. Kurilova-Palisaitiene and Sundin [30] had argued that the remanufacturing

sector is even more complex than the manufacturing industry sector and hence, a blanket

transfer of I4.0 paradigms to the remanufacturing industry sector will not be expedient

[7]. It is also argued that an overarching definition must include a research agenda that

extends into understanding the technological, business model, economic, social and

environmental needs for smart remanufacturing [7]. This may also extend into smart

remanufacturing factories [15, 63]. What is generally accepted, however, is the potential

for I4.0 to revolutionize remanufacturing as is the case with manufacturing [39].
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Simulation modelling has been proposed in literature as a method in gaining insights of

manufacturing and remanufacturing challenges, especially as regards to uncertainties. Primary

tools used in manufacturing research includes System Dynamics (SD), Discrete Event Simu-

lation (DES) and Agent Based Modelling (ABM) [13] . While there has been extended

research in remanufacturing [35], research on enabling remanufacturing using simulation is

still limited. Using the selected keywords of “simulat*” OR “modelling” AND “remanufact*”

on SCOPUS,1 56 articles emerges when the keywords are restricted to article titles only. In

contrast, Lee and Kwak [35] discovered 369 articles in remanufacturing in the International

Journal of Production Economics alone, with most of the remanufacturing articles being

studied in the field of “supply chain”, “environmental” studies and “sustainability”. Like

traditional manufacturing, simulation modelling supports remanufacturing by providing in-

sights into manufacturing and remanufacturing, predicting the shop-floor behaviour in order to

support the remanufacturer in suggesting solutions from real-time analysis. As a process,

remanufacturing is subject to a number of challenges and uncertainties such as price fluctu-

ation, stochastic demand and challenges related to the core (used product or its part) such as

uncertain quality of returned used products, timing and quality [32]. The European

Remanufacturing Network (ERN) from its survey research on 188 European remanufacturers

also highlights the lack of accurate, timely and consistent product knowledge challenge.

In their paper investigating simulation modelling in manufacturing Jahangirian et al., [24]

concludes that these three techniques are the most widely used. While simulation modelling

has verifiably extended into remanufacturing from manufacturing, we find no papers that

comparatively investigates these three modelling approach for smart remanufacturing. New

products such as sensor-enabled products and smart devices [22, 35] are expected to enter the

remanufacturing stream as Original Equipment Manufacturers (OEMs) digitalise their opera-

tions and products. I4.0 adoption is also expected to increase in remanufacturing, with Kerin

and Pham [27] as some of the researchers advancing the applicability of the Internet of Things

(IoT), Virtual Reality (VR) and Augmented Reality (AR) in remanufacturing. Expectedly, data

and information flow and complexity is expected to increase in remanufacturing. This study

builds on our previous studies [22, 36, 37], by comparatively analysing the SD, DES and

ABM simulation modelling as applied to smart remanufacturing operations. It therefore poses

the research question: What advantages does the three core simulation modelling tools provide

for the smart remanufacturing context? We expect an identification of this advantages to be

important to remanufacturers and closed loop supply chain researchers. Hybrid modelling,

where at least two of these three approaches are used to model complex enterprise-wide

systems, have also grown over the years, however this is not within the scope of this research.

Simulation modelling in remanufacturing

While simulation modelling does not rank within the top 12 research topic areas in

remanufacturing when a citation network analysis of remanufacturing articles from SCOPUS

is performed, “simulation” was found to be a keyword across the analysis of approximately

7300 articles [35]. In a survey of the use of simulation in manufacturing and business

1 We combine “remanufact*” AND “simulat*” OR “modelling” on SCOPUS and it produced 56 articles, spread

across journal articles (38) and conference papers (18). There was no limit put on the year of article publication.

This search was done in November, 2019.
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undertaken in 2010, it was found out that system dynamics (SD), discrete event simulation

(DES) and agent-based modelling (ABM), also known as agent based-simulation were the

most widely used in operational research (OR) to model business challenges [5]. Other

simulation modelling techniques exist in manufacturing. In their review paper investigating

simulation in manufacturing, Jahangirian et al. [24] identifies 17 simulation techniques or tools

utilised in manufacturing. These include, DES, SD and ABM, as well as interactive simulation,

spreadsheet simulation, Petri-nets, Monte Carlo simulation, process mapping, parallel simula-

tion, Microsoft applications, process mapping, etc. [24]. These tools were utilised across a

varied number of manufacturing applications; these include resource allocation, scheduling,

supply chain management, production planning and inventory control, purchasing and main-

tenance management, amongst others [49]. These applications are also found within

remanufacturing operations for remanufacturers. Thus, we argue that simulation modelling

in remanufacturing can adopt lessons from manufacturing.

Following this, a number of papers have studied simulation modelling as it relates to

remanufacturing. Using system dynamics modelling investigated remanufacturing closed-loop

supply chain dominated by third party [40]. Their studies show that a remanufacturing model

dominated by the third party is more effective than the traditional remanufacturing cycle. Also,

subsidy policies on recycling and remanufacturing in the case of automobile parts in China

was analysed using system dynamics [59]. The effect of the interaction of customer behaviour

on economic viability of remanufacturing was investigated using a hybrid modelling approach

that employed system dynamics and agent-based model [42]. Dulman and Gupta [11] use DES

to compare regular and sensor-embedded wind turbine systems. This complemented by

monitoring key variables in both systems, such as maintenance cost, disassembly cost,

inspection cost and EOL profit. Maintenance [also referred to as reconditioning], disassembly

and inspection form key elements of the remanufacturing process as captured in Fig. 1. The

statistical significance were analysed using pairwise t-tests. From the articles obtained on

SCOPUS wherein simulation modelling was performed in remanufacturing, we find out that

system dynamics was used more in comparison to DES and SD.

Simulation modelling has been suggested as a method needed to assess and improve

remanufacturing processes and production systems. It involves the development and analysis

of models that imitate the behavior of the system being analyzed [22]. According to Pegden

et al., [10] a simulation model can be used primarily for the following three purposes:

a. Analysis of system behavior

b. Development of theories and/ or hypothesis based on observed behavior

c. Prediction of future behavior.

Simulation modelling methods (SD, DES and ABM) can be described by their modelling para-

digms. Events that occur continuously, such as machine deterioration can bemodelled using system

dynamics. Events that occur in discontinuous time steps, for example the breakdown of a machine,

can bemodelled usingDES.ABMhowever, is normally applied for state transitions of elements, for

Fig. 1 A generic remanufacturing process chart based on the steps described in Steinhipher [53]

Journal of Remanufacturing



example, a machine going from a state of working to a state of being idle. Thus, their deployment

(also described as suitability or appropriateness and relevance) [24] in manufacturing have been

argued to depend on levels of abstraction as indicated in Fig. 2.

While these three simulation modelling methods have been applied across diverse systems

and processes, choosing one or a combination of these methods is dependent on the content of

the system and the problem to be addressed as shown in Fig. 2. Ease and speed of building a

simulation model also informs the choice of modelling for many researchers. From their

investigation into the teaching of SD & DES [19] found out that student modellers found it

much easier to conceptualise material aspects of a system using DES than conceptualising the

intangible properties of the same system using SD modelling. The ranking thus, will be in the

form DES, SD and ABM. Their research also shows a clear trend in understanding DES

modelling skills as compared to SD modelling skills [19]. A reason for this could be that

students may not readily recognise feedback loops when they analyse SD simulation models,

as linear thinking is a norm for novice modellers [29, 41].

Challenges in smart remanufacturing operations: a simulation modelling
solution?

Increasingly pervasive in manufacturing is industry 4.0 adoption [8, 34, 48]. Industry 4.0 is the

synonym for the transformation of today’s factories into smart factories. The aim is to address and

overcome the current manufacturing challenges of highly customised products, shorter product

lifecycles and stiff global competition [61]. Traditional automation, for example, cannot achieve the

degree of flexibility that is high product variability and shortened product-lifecycles demands.

Thus, asmoreOEMs digitalise and adopt Industry 4.0 tools, remanufacturing operationswill also

see the need for Industry 4.0 adoption as their cores come from these OEMs. Already, there have

been opportunities identified in remanufacturing literature for the integration of Industry 4.0 and

remanufacturing. These include the utilising of monitoring tools and robotics in smart lifecycle data

Fig. 2 Abstraction levels for the simulation modelling methods (adapted from Borshchev, [4])
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for design for remanufacturing; smart sensors, additive manufacturing in order to build a smart

remanufacturing factory [62] involving the various remanufacturing process in Fig. 1.With Industry

4.0 and digitalisation of remanufacturing systems comes data volume, variety and velocity [23, 33].

For remanufacturing, the entry of Industry 4.0 and subsequent data increase is expected to increase

process complexity with more data produced as sensor-enabled products enter the remanufacturing

shop-floor. Studies have shown that remanufacturing companies react passively to these complexity

[6]. As remanufacturing is primarily driven by the relationship between the original equipment

manufacturer (OEM) and the third party remanufacturer (TPR), the uptake of I4.0 by the OEM is

expected to affect remanufacturing and slowly driving remanufacturing towards end-to-end

digitalisation of the physical assets and the entire supply chain [31]. Butzer et al. [7] describes this

as remanufacturing 4.0.

This study advances its problem area from our previous study where we developed a

framework to support a simulation-based understanding of digitalisation remanufacturing

operations [46]. In that paper, we undertake a qualitative study using a sample of 5

manufacturing and remanufacturing companies. The study agrees with related studies [16,

62] which suggests that simulation modelling can actively enable Industry 4.0 adoption in

remanufacturing. We however, advance a framework to support this adoption. This and the

methodology for this paper is presented in the next section.

Methodology

In our previous study, we advance a framework to support a simulation-based understanding

for digitalisation in remanufacturing, modelled according to the framework for hybrid simu-

lation in Brailsford et al., [5]. This is presented in Fig. 3 below:

Following the framework in Fig. 3, we identify our remanufacturing problem, as highlight-

ed in the first section of this study to be, “How simulation modelling using individual

modelling tools support smart remanufacturing operations?” We examine smart

remanufacturing operation by assessing a sensor-enabled product as it goes through the

remanufacturing process as captured in Fig. 1. We assume that, due to the influence of I4.0

paradigms, the smart remanufacturing process in Fig. 1 will be much faster than what is

obtainable in traditional remanufacturing. This assumption was modelled into the simulation.

The remanufacturing operation is modelled and simulated using SD, DES and ABM and

outputs such as remanufacturing cycle, are analysed. Assumptions required in the simulation

model are agreed with remanufacturing experts as identified in [46]. These experts also

provide qualitative validation for our simulation models.

This study builds on two earlier studies by the same author. In these studies, SD and DES

were utilised in a remanufacturing set up [22, 36]. Some of the results have been replicated in

this study. Finally, we perform a cross-case analysis of the three simulation methods.

Use case

We use the remanufacturing process for an independent remanufacturer processing a recharge-

able energy storage system (RESS) as a use case for the SD model. We have previously

described the remanufacturing process of the RESS in two previously published papers

[43–45]. We use an electric motor (rotor, an electrical component and a shaft, a mechanical

component) to inform the use case for the DES and ABM model.
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Case 1: System dynamics (SD)

Using SD modelling, we map out the structure of a remanufacturing system. First a

Causal Loop Diagram (CLD) is developed as shown in Fig. 4. The CLD is used in

representing the feedback structure of systems [54]. The CLD simply asks: what are the

feedback processes responsible for the dynamics in the system? The remanufacturing

operation is defined as a complex system, where in a CLD the case and effect connec-

tions often form loops which indicate information feedback between parameters. The

behaviour and structure of the system is defined by the nature of these feedback loops.

The CLD is expressed as a mathematical model after the different interactions and

feedback among the different variables of the elements are considered [45]. This is

then converted to computer simulations or the Stock and Flow Diagram (SFD) [3].

Negative (−) and positive (+) polarities are assigned to the causal link on the CLD.

The polarities represent the relationships between respective connected parameters.

These polarities also indicate how a dependent parameter changes when an indepen-

dent parameter changes [1]. The notation B and R signify a negative (or balancing)

loop and a positive (or reinforcing) loop, respectively.

Assumptions are important in developing the CLD and the SFD. For this research question,

we make two assumptions:

& The remanufacturing variables shall be analysed based on their process data and not the

remanufacturing processes as described in Steinhilper [53].

& We assume remanufacturing a sensor-enabled product represent digitalised

remanufacturing.

Fig. 3 Framework to support a simulation-based understanding of digitalisation in remanufacturing. (Source:

Okorie et al., [46])
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& That, for simplicity’s sake, these data shall be analysed as “data from sensors” (for example,

vibration data and stack voltage, etc.) and “data from other sources” (for example, data from

traditional remanufacturing parameters). This descriptions are given in paper published in

Journal of Manufacturing and Materials Processing (Okorie et al., [45])

& That information about a component is required before the point of inspection and sorting

in order for it to be remanufactured.

& That components with information do not require detailed inspection (hence just sorting,

eliminating the inspection process) as their status is already known from the data.

Components without information need to be inspected physically before it can be deter-

mined whether to remanufacture them or not.

From the developed CLD, it can be observed that when more components with data

enter the remanufacturing line, the inspection time for components decrease which

consequently reduces the overall remanufacturing cycle time. When cycle time de-

creases, management is motivated to further increase the components with information,

seeing it as a benefit to be reinforced, R1. As components with information increases,

the number of components entering the reman stream increases. This increase exerts

pressure on existing capacity, hence encouraging management to reduce the compo-

nents with information so as not to overload the system, represented in Fig. 4 as B1.

Both feedback loops are in conflict. The CLD representing the two key feedback loops

is shown in Fig. 4. We proceed to draw the SFD based on the CLD. Figure 5 expands

the CLD into an SFD.

Accordingly the SFD is used to increase the understanding of the feedback and control

process of a given system [3]. The intended simulation model can be used to test various

policies regarding whether the company should increase data about the components to

remanufacture, on the assumption that the increased availability of information about the

component means that it is more likely the component can be sent for remanufacturing and

vice versa. The less that is known about the component, the less likely it will be sent in for

remanufacturing [45].

Fig. 4 CLD indicating the dynamic implications of component data on the remanufacturing system for the

component. (Source: Okorie et al, [45])
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Coding the simulation model (SD)

Hypothetical estimates are made to enable the presentation of simulation results that mirror

how they may occur in real life. The below hypothetical estimates was used to code the SD and

ABM simulation model and were validated by remanufacturing professionals (see: [45])

& Rate of entry of components to be remanufactured

– Random, between 1 and 3 h (SD)

– 1 in 12 min which equals 5 per hour. (ABM)

& Percentage of components with information = 5% (we take a pessimistic baseline situation,

as if the majority of components have no information) (SD&ABM)

& Percentage of components without information (it is assumed that some components

without information are also entered into the system; those that are physically inspected) =

95% (SD &ABM)

& Inspection time per component (for those components with information)

– We use triangular distribution (3, 5, 7) min. While a component may have data about it, it

is important to still carry out some physical examination to confirm that it is fit for

remanufacturing. This is akin to a verification inspection. We estimate a triangular

distribution with min = 3 min, max = 7 min and mode = 5 min. (SD)

– We use a uniform distribution (5, 10) minutes. While a component may have data about it,

it is important to still carry out some physical examination to confirm that it is fit for

remanufacturing. This is akin to a verification inspection. We estimate a triangular

distribution with minimum = 5 min, maximum= 10 min. (ABM)

& Inspection time per component (for those components without information)

– Triangular distribution (30, 60, 45) min is used. We estimate a triangular distribution with

min = 30 min; max = 60 min and mode = 45 min. (SD)

– Uniform distribution (10, 20) minutes is used. We estimate a triangular distribution with

minimum = 10 min; maximum= 20 min. (ABM)

Fig. 5 SFD indicating the dynamic implications of component data on the remanufacturing system for the

component. (Source: Okorie et al, [45])
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& Remanufacturing time per component

– Triangular (2, 3, 5) h. We estimate a triangular distribution with min = 2 h, maximum =

5 h and mode = 3 h. (SD)

– Uniform distribution (30, 40) minutes. We estimate a minimum = 30, maximum = 40.

(ABM)

& Remanufacturing capacity = we assume 1 set of machines. (SD&ABM)

& Percentage of components (i.e., those without information) that are not remanufactured

after inspection (since it is possible that some components will be found not to be

“remanufacturable” after inspecting them physically) = 70%. Hence, components that are

remanufactured after they are physically inspected constitute 30% of the total. (SD)

Sismulation results from System Dynamics

Running the simulation model is expected to reveal how the system will behave (on the basis

of the assumptions imputed) when the number of components with information is increased in

the remanufacturing system. For an ideal situation, 100% of components will have informa-

tion. In running the simulation model, two options are considered:

& We continue with the current capacity. Allow the components with information to vary

such that capacity is not stretched. In such a situation, when capacity utilisation is

approaching a high level (say, 80%), the components with information are reduced, so

as not to overburden the system. When there is slack, more components with information

can be entered into the system.

& Ensure all components have information and determine (through simulation) the capacity

that is needed to ensure that capacity is not overstretched or underutilised. Table 1 shows

the SD simulation results when compared to current remanufacturing capacity status.

From the table above, the current capacity utilisation is low because there are not

enough components entering the system (because there are not enough components

with information). The system can be slightly improved by allowing the components

with information to vary according to current available capacity. For an ideal situa-

tion, the capacity should be increased.

Table 1 Comparison of SD simulation results between real-time remanufacturing state and smart

remanufacturing state

Quantities Monitored Current

Status

Components with

Information are

Allowed

to Vary

All Components have

Information and

Capacity

is Doubled

Average remanufacturing cycle time (min) 306 350 225

Number of remanufactured components 1474 2096 4385

Average capacity utilisation 56% 80% 81%
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Case 2: Discrete event simulation (DES)

DES is appropriate for understanding a hypothesized digital remanufacturing operations as it

allowed the modellers to view the system as a sequence of operations focusing on the

processes at a medium level of abstraction. Thus, DES allows for modelling and visualisation

of complex manufacturing system without restrictions on the number of units.

In the development of DES model, the model was specified as a process flowchart

where blocks represented various remanufacturing operations as specified in Fig. 1.

However, we introduce two other processes; hence the entire process is detailed as:

Collection, Inspection & Sorting, Disassembly, Cleaning, Inspection & Grading, Fault

Diagnosis & Prognosis, Reconditioning, Reassembly, Testing and Final Assembly.

Key variables include to build the model include; collection rate of returned products,

attrition rate, reuse rate of products, rate of controlled disposal, remanufacturing

capacity, products accepted for reuse.

In order to give more insights to the model, the concept of certainty of product (CPQ) was

developed. It improves the way in which value in remanufacturing is quantified based on the

amount of data that is available to provide information about the returned product. CPQ is a

function of the physical condition of the product (PC), part remanufacturing history (PRM),

part replacement history (PRH) and the data from sensors (DS) and is defined by the equation

below: 2

CPQ ¼ w1*PCð Þ þ w2*PRMð Þ þ w3*PRHð Þ þ w4*DSð Þ ð1Þ

Where w1, w2, w3, w4 are individual weights which are dependent on external factors

such as the nature of the product, the nature of the industry, etc. The sum of weights

w1, w2, w3, w4 is equal to 1 and PC, PRM, PRH and DS are normalised. The

definition of the CPQ elements and weight is detailed in our earlier research [9].

Figure 6 gives a process flow chart for the DES model where key parameters at each

stage are highlighted.

Fig. 6 Discrete Event Simulation (DES) showing key parameters at each stage. (Source: Charnley et al., [9])
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Coding the simulation model (DES)

Similar to the SD and ABM model, we agree hypothetical estimates in order to code the

simulation model. These include:

& Collection of returned products: The attrition rate for the electrical products was assumed

to be 3% [60]. We assume the number of products in use to be 1000.

& The rate of collection of cores is given by the equation below:

Collection rate ¼ Total products*Attrition rate ð2Þ

& Inspection and sorting: The remanufacturing cores are collected and then inspected based

on the physical condition (PC) of the core. The product identification number (ID) also

informs this inspection and sorting. Sorting and disassembly is done across product type

(electrical components and mechanical components). We estimate that 10% of the prod-

ucts are rejected and sent for disposal at this stage.

– Inspection and sorting time per component was a triangular distribution of 30 mins, 60

mins and 90 min respectively, with a minimum, maximum and mode of 30 mins, 60 mins

and 90 mins are assumed.

& Disassembly: The CPQ of the returned product is determined and given a value of between

0.1 and 1.

& Time taken for disassembly, cleaning and inspection: The understanding of

remanufacturing process and the CPQ suggests that that the CPQ of the returned product

will affect the disassembly time, cleaning time. A high CPQ value suggests that the

remanufacturer does not need to go down to the lowest level of disassembly. This suggests

that the CPQ of a product can be useful in predicting remanufacturing time and costs. Eqs.

3 to 5 attempts to quantify the CPQ in terms of time as thus:

Disassembly time ¼
triangular 0:5; 1; 1:5ð Þ

CPQ
ð3Þ

Cleaning time ¼
triangular 0:5; 1; 1:5ð Þ

CPQ
ð4Þ

Inspection time ¼
triangular 0:5; 1; 1:5ð Þ

CPQ
ð5Þ

& Inspection and grading: The condition and state of the component is measured during

inspection (see Fig. 1). They are then separated into three sub-categories according to [53];

(a) directly reusable (b) reusable after sufficient repair or reconditioning is done and (c)

cannot be repaired or reconditioned. Accordingly, “directly reusable” products are sent for

reuse, “reusable after sufficient repair or reconditioning” are sent for fault diagnosis and

failure prognosis (see Fig. 7) and “cannot be repaired or reconditioned” are sent for

disposal as these cannot be remanufactured.
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& Fault diagnosis and prognosis: This is coded according to time for fault diagnosis and

remaining useful life (RUL) for fault prognosis.

& Reconditioning and repair: Reconditioning and repair in remanufacturing are dependent on

the state and the failure condition of the used parts. Here the PRM variable (see Eq. 1) is

important in providing insights into the usefulness of reconditioning methods [9]

& Reassembly and testing: As seen in Fig. 7, the CPQ and time inform the information and

variables needed for simulation at the final assembly.

& Final assembly: The simulation coding employed the first-in, first-out (FIFO) logic to

control the other in which products were proceeded. This involves the final reassembly of

the electrical and mechanical components before the product is sent back to market.

& Disposal: Products that cannot be remanufactured are sent for controlled disposal. We

assume this to be a triangular distribution (time per component) of 60, 90 and 120 min.

Simulation output (DES)

We present the simulation output around the CPQ concept. The model in Fig. 6 show the effect

of CPQ on the time which is spent in disassembly, cleaning and inspection. Figure 8a, b show

a High CPQ (0.8 to 1) and Low CPQ value (0.1 to 0.3). For the model with high CPQ values,

Fig. 7 A flowchart depicting the DES process, key variables and information required at each stage of

remanufacturing. (Source: Charnley et al., [9])
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75% of the products spent 31-35 h in disassembly, cleaning and inspection with a mean value

of 31 h when 100 products are remanufactured a shown in Fig. 8a. For the model with low CPQ

values, 75% of the products spent 46 – 52 h in disassembly, cleaning and inspection with a mean

value of 47 h as shown in Fig. 8b. The vertical dark blue line represents the mean value (Fig. 9).

An output of the DES model is the variations in the time spent in disassembly, cleaning and

inspection for batches of high and low CPQ.

Case 3: Agent based modelling (ABM)

Agent-based models are detached and individual-centric method. The comprehensive behaviour

emerges as a result of interactions of distinct individual behaviours. The main structure of agent-

based models are state-charts. State-charts consist of states linked by transitions used to characterise

the different status of an agent and their relationships. A state is the condition of an object in which it

performs some activity or waits for an event. It represents different contexts in which system

behaviours occur. A transition denotes a switch from one state to another. Transitions are relation-

ships between states, drawn as arrows, optionally labelled by a trigger that causes actions.

In this agent-based remanufacturing model we assume each material behaves autonomously

following the designed state-machine and random variables within the model. The state-

machine (see Fig. 10) was built up based on the different process mode an actual

remanufacturing system facilitates. The approach utilised in creating this model include;

firstly, the active entities or agents (i.e., materials) and their environment (Remanufacturing

system), was identified from the studied theory. Secondly, the interaction between each

remanufacturing process and materials (i.e., based on their conditions) within the

remanufacturing system were defined. This was used to build the remanufacturing

state-machine. Thirdly, the materials were placed in the remanufacturing system then

the simulation is run.

Simulation model assumptions

Below data are all hypothetical estimates to enable the presentation of simulation results that

mirror what may occur in real life. This hypothetical data was agreed upon with the

Fig. 8 Distribution of time spent in disassembly, cleaning and inspection for products with (a) high CPQ and (b)

low CPQ. (Source: Charnley et al., [9])
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Fig. 9 a Time spent in disassembly, cleaning and inspection for a low and high CPQ in small number of

products. b Maximum utilisation of pallet racks in different sections within a remanufacturing facility. (Source:

Charnley et al., [9])

Fig. 10 Remanufacturing state-machine
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respondents; however, using more realistic data (real estimates from one of the companies)

would be ideal.

Rate of entry of components to be remanufactured = 1 in 12 min which equals 5 per hour.

Percentage of components with information = 5% (we take a pessimistic baseline situation,

as if the majority of components have no information).

Percentage of components without information (it is assumed that some components

without information is also entered into the system; those that are physically inspected) = 95%.

Inspection time per component (for those components with information) =We use a

uniform distribution (5, 10) minutes. While a component may have data about it, it is important

to still carry out some physical examination to confirm that it is fit for remanufacturing. This is

akin to a verification inspection.

Sorting (for those components all component at arrival with or without information):

Uniform distribution (10, 20) minutes is used. We estimate a Uniform distribution with

minimum = 10 min; maximum = 20 min.

Reconditioning time per component: Uniform distribution (30, 40) minutes. We estimate it

with minimum = 30, maximum = 40.

Disassembly time: Uniform distribution (10, 20) minutes. We estimate it with minimum

=10, maximum = 20.

CPQ Value: Each material CPQ value was calculated following a uniform distribution

between (0, 1), where material with CPQ values less than 10% are immediately disposed,

greater than 10% but less than 40% are taking for re-inspection, and greater than 40% are sent

into the remanufacturing process.

Re-Inspection (for materials with CPQ values below 40%): Each material with CPQ values

below 40% are re-inspected using uniform distribution between (0, 1), where materials with

values less than 50% are disposed and the other (that is, greater than 50%) are accepted.

Grading: Each remanufactured material are graded to identify any fault within the materials.

The materials are graded using a uniform distribution (0, 1), where materials with graded value

less than 40% are sent for fault diagnosis, and those above 40% are sent for reassembly. Also,

based on the graded value materials are categories into the following group; High Confidence:

0.8 to 1.0, Medium Confidence: 0.6 to 0.7, and Low Confidence/ Uncertainty: 0.1 to 0.5.

Fault Diagnosis Duration: the fault diagnosis duration for each material with graded value

less than 40% sent for fault diagnosis is conducted using a uniform distribution (10,30)

minutes. We estimate a with minimum = 10 min, maximum = 30 min.

Outputs

The simulation model was run for 1000 materials using the stated assumptions. The model outputs

include the remanufacturing cycle time, average time for the different remanufacturing processes and

the comparison between materials sold (remanufacture) and the materials or components disposed.

Discussion

We present the simulation output looking at the interaction of each process mode within the

entire system. Table 2 reveals the model output for over 1000 samples using the highlighted

parameters discussed above. Figure 11 shows the average remanufacturing cycle time for over

1000 materials, while Fig. 12a, b depicts the PDF diagram and average time for the all legends (a)
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and CDF diagram and average time (b). The result shows that less than 10% of all samples were

disposed either having aCPQvalue less than <10%when theywere collected or < 50%when during

re-inspection. From the model output, it takes an average time of 15.05 min to sort and inspect

material after collection, while it takes an average of about 7.56 min to re-inspect a material. The

Disassembly period takes an average of 19.93min to complete and an average of 17.17min for fault

diagnosis. However, it takes an average of 35.37 min to recondition a material, resulting in an

average duration of 144 min and over for a complete remanufacturing cycle.

Figure 13 shows the material grading based on the fault identified within the materials

following the defined grading group; High Confidence: 0.8 to 1.0, Medium Confidence: 0.6 to

0.7, and Low Confidence/ Uncertainty: 0.1 to 0.5. The result shows that about 45% sample

were graded as low confidence material, 35% were graded as high confidence material, while

15% were graded as medium confidence material. This is indicated in Fig. 14.

Summary

An agent-based approach is flexible and easily extendible to greater detail. The approach has

the potential to capture the rich and diverse behaviour of the remanufacturing industry. The

Table 2 Model output for over a 1000 sample

Parameters Values Outputs over

1000 samples

Disposed = <10%

CPQ Re-Inspection = >10% but <40%

(Disposed = <50%; Accepted = >50%)

Disposed = 20% of Samples

Accepted = 80% of Samples

Accepted = >40%

Disassembly Time Uniform distribution(10,20) Minutes Average Time = 19.93 min

Sorting Time Uniform distribution(10,20) Minutes Average Time = 15.05 min

Inspection Time Uniform distribution(5,10) Minutes Average Time = 7.56 min

Reconditioning Time Uniform distribution(30,40) Minutes Average Time = 35.37 min

Fault Diagnosis Time Uniform distribution(10,25) Minutes Average Time = 17.17 min

Cycle Time Average Time = 144.32 min

Fig. 11 Average remanufacturing cycle time for over 100 materials
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behavioural state-machine helps represent complex process and support integration of high-

level interaction at different stages in the remanufacturing process.

The emphasis of this section is on the proposed methodology for simulating and investi-

gating the application of simulation modelling processes in the remanufacturing industry. The

results presented are primary serve to demonstrate the ability within the modelling methodol-

ogy to achieve a more realistic model and detailed result especially at micro level within the

remanufacturing system.

Cross-case analysis

Analysing the three simulation modelling methods becomes possible as all three SM methods

focuses on understanding how a digitised remanufacturing operation have with understood

conditions. Major differences lies in the assumptions made in defining the models: While the

CPQ concept was introduced for the DES and ABM model, the SD model relied on

remanufacturing assumptions developed in building the CLD. This cross-case analysis shall

examine the suitability and relevance of these simulation techniques to remanufacturing

operation applications [24] by focusing on the assumptions and the outputs of individual SM.

Borshchev argues that SD modelling requires a high level of abstraction with minimum

details required from the remanufacturing operators [4]. Thus in modelling the SD model we

hypothesise assumptions based around data and data flow which we assume to be the main

Fig. 12 a CDF diagram and average time for all the legends. b CDF diagram and average time
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difference when sensor-enabled products are remanufactured in comparison to non-sensor

enabled products. While data and data flow is of significance to DES modelling, the micro-

level investigation and process flow elements considerations which DES requires [4]. Thus

this process flow elements are demonstrated in Figs. 6 and 7 where the sequence of

remanufacturing from collection and inspection to final assembly is considered. For example,

the DES model in Fig. 9 show that storage/workspace was allocated for each station in the

form of pallet racks, hence determining the optimum resources needed to meet the product

demand can be analysed from the DES model. The ABM model present similar results to the

DES model but also identifies the average time required for disassembly, sorting, inspection,

reconditioning and fault diagnosis in Fig. 11 when 1000 materials are put through the

remanufacturing line. Knowledge of the time allocation can help the remanufacturers in

strategic decision making which influences the human resources as well as the equipment

utilised for remanufacturing (Table 3).

According to Katsaliaki & Mustafee, ABM is a computational technique which is

employed for modelling the actions and interactions of autonomous individuals (agents) in a

network [26]. With ABM the focus is to assess the effects of the agents on the remanufacturing

systems system and not to assess the effect of individual agents on the remanufacturing

system. This results in output such as the grading state of the material that come through for

remanufacturing. An ABM of 1000 materials, we expect a substantial number of the materials

Fig. 13 Comparison between materials sold and disposed

Fig. 14 Confidence Level based graded value diagram
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Table 3 Implications for smart remanufacturing across SD, DES and ABM

Parameters SD DES ABM Potential implications for

smart remanufacturing

Data required for

running model

Modelling generally requires a high level of

abstraction to inform macro and strategic

level decision-making for reman. Smart

reman will require extra detail due to

possible data complexity from product

and all actors in CLSC to generate

feedback loops.

Data sources include maximum details

required for modelling, variables such as

time, resource utilisation, cost queue

lengths, etc., which are product-specific,

as well as detailed process-centric ele-

ments for each reman stage.

Similar data requirement needed as DES.

However, depending on an individual

understanding of the agents, which are

extendible, data required to build model

will extend beyond a DES requirement.

Opportunity to derive and validate other

useful quantities such as the CPQ exists

for DES and ABM as such, these may be

preferable for smart remanufacturing as

an emerging concept. The social and

economic perspective for smart reman

can be obtained through SD. Hence

modelling can provide good insights for

smart remanufacturing.

Assumptions

required

in modelling

A high level of assumption required

for the SD model. An advantage is the

knowledge-sharing between the

remanufacturers and the modellers.

Low level of assumptions required.

This allows for exactness of results.

Assumptions required for smart reman

modelling using DES is subject to

variability dependent on the internal

dynamics of the agent.

How different I4.0 interfaces affect

smart remanufacturing remains to be

seen. We argue that a high level of

abstraction should support these three

tools in order to extract potentially useful

information for remanufacturers.

Potential users of

the SM results

For solving top management challenges.

This can support the economic,

technological, social and environmental

decisions on the smart remanufacturing.

The response time for managing

remanufacturing stages will be

useful for remanufacturing,

purchasing, business support

team and system scientists.

Similar users as applicable for the DES.

With regard to smart remanufacturing,

this will be also useful for forecasting

and planning team.

Multidisciplinary decision making in

adopting smart remanufacturing.

Improvement

metrics for smart

remanufacturing

simulation

modelling.

Different component can be tested in

SD with different remanufacturing

scenarios and results compared.

Improvement can be made to the

understanding of stochastic metrics

(includes the impact of uncertainty)

Metrics that support forecasting within

different scenarios such as non-linearity,

feedback, etc.

We recommend hybrid modelling techniques

and useful/robust stakeholder

engagement as next steps.
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to have a high confidence CPQ value of between 0.8 to 1.0. As ABM has the capability of

generating complex properties that emerge from the network of interactions among the agents, the

CPQ concept alone may be limited in providing a high network of interactions within

remanufacturing operations.

Conclusions and future work

Remanufacturing has a strategic importance as a value-retention process for industry and practi-

tioners seeking to retain substantially greater inherent value in the system. This is asides the social,

environmental and economic benefits that remanufacturing possesses. Overall, in the transition to a

more circular economy, remanufacturing has been seen to create net-positive outcomes for circular

economy through enabling product-level efficiency gains in material and energy use as well as in

emissions andwaste generation. As remanufacturing practices gainsmore attention globally, interest

and research has also focused on the behaviour of digital technologies within the remanufacturing

operations. Simulation modelling of remanufacturing operations has been suggested as a way of

gaining insights of remanufacturing operations with digital interventions.

Using SD, DES and ABM and drawing from previous studies as published by the authors,

we conduct a simulation modelling for a remanufacturable product as processed through a

remanufacturing line. The SD modelling is developed based on assumptions driven by data while

the DES and ABM assumptions is largely focused on data from product as well as the certainty of

product quality concept, CPQ, which focuses on the way in which value in remanufacturing is

quantified based on the amount of data that is available to provide information about the returned

product. By running the simulation model as well as reviewing relevant literature, we make a

number of conclusions. Firstly, we conclude that while individual modelling techniques can offer

insights to these products, there are a lot of similarities with these insights, especially between DES

and ABM modelling. Secondly, we conclude that product will a lot of data entering the

remanufacturing process line offers insights into remanufacturing without negatively impacting

the remanufacturing cycle. Thirdly, we conclude that the complexity in remanufacturing operations

may require hybrid modelling, which are iteratively applied, in order to sufficiently understanding

how remanufacturing operations behave in a digitised system. This can be a research area for future

work. Amuchwider area for future research can be based on the understanding of hybridmodelling

in remanufacturing andmanufacturing operations through a systematic review of literature. This can

offer insights into the assumptions needed by modellers in building a simulation model for

remanufacturing.
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