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Abstract. Stroke is the third most common cause of death and a major con-
tributor to long-term disability worldwide. Severe stroke is most often caused
by the rupture of a cerebral aneurysm, a weakened area in a blood vessel. The
detection and quantification of cerebral aneurysms are essential for the pre-
vention and treatment of aneurysmal rupture and cerebral infarction. Here,
we propose a novel aneurysm detection method in a three-dimensional (3D)
cerebrovascular model based on convolutional neural networks (CNNs). The
multiview method is used to obtain a sequence of 2D images on the cerebral
vessel branch model. The pretrained CNN is used with transfer learning to
overcome the small training sample problem. The data augmentation strategy
with rotation, mirroring and flipping helps improve the performance dramat-
ically, particularly on our small datasets. The hyperparameter of the view
number is determined in the task. We have applied the labeling task on 56
3D mesh models with aneurysms (positive) and 65 models without aneurysms
(negative). The average accuracy of individual projected images is 87.86%,
while that of the model is 93.4% with the best view number. The framework
is highly effective with quick training efficiency that can be widely extended
to detect other organ anomalies.

1 Introduction

Cerebral aneurysms are localized pathological dilatations of the cerebral arteries.
Their rupture causes subarachnoid hemorrhage and is associated with a high mor-
bidity and mortality rate [3]. For the average person, the incidence of aneurysms
is 2 − 3%, and this proportion increases with age [13]. The early detection, growth
monitoring and early treatment of aneurysms is the most effective sequence method
for preventing aneurysmal rupture. However, the early detection of aneurysms in the
brain vessel network is quite challenging.

Conventional aneurysm detection methods use the machine learning method to
classify the aneurysm and vessel segments. Three main methods have been used
to identify areas in which aneurysms may occur based on vascular shape, vascular
skeleton, and image differences. Algorithms based on vascular morphology depend on
the assumption that aneurysms are approximately spherical. Suniaga used Hessian
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eigenvalues analysis to find spherical objects in 3D images [15]. Lauric constructed
a geometric descriptor ”writhe number” to distinguish between areas of tubular and
nontubular structures [8]. The nontubular structures may be aneurysms. The dot
filter [16] and blobness filter [15, 2, 4] have also been used to detect cluster struc-
tures in images based on prior knowledge of aneurysm morphology. The algorithm
in [15, 16] is based on the skeleton to find the endpoints and branch points of the
vascular structure and considers the distance between the endpoints and the branch
points as the parameters of the classifier. Several hybrid algorithms have been used
to train the classifier after feature extraction, incorporating classification strategies
such as feature thresholding [8], rule-based systems [16] or case-based reasoning [6].
Almost all proposed algorithms are intended to work with magnetic resonance an-
giography (MRA) datasets; one, however, implements a multimodal approach on
three-dimensional rotational angiography (3DRA) and computed tomography an-
giography (CTA) datasets [8]. The conventional methods for aneurysms detection
are not generalizable; they extract features using descriptors of a dot filter or a blob-
ness filter, or they extract customized features such as those related to geometry or
distance. Since the use of CNNs has been successful in computer vision and image
processing, many studies have examined aneurysm detection in medical images, such
as MRA or 3DRA using a CNN. Jerman [5] used a Hessian-based filter to enhance
spherical and elliptical structures such as aneurysms and attenuate other structures
on the angiograms. Next, they boosted the classification performance using a 2D
CNN trained on intravascular distance maps computed by casting rays from the pre-
classified voxels and detecting the first-hit edges of the vascular structures. Nakao [10]
employed a voxel-based CNN classifier. The inputs of the network were 2D images
generated from volumes of interest of the MRA images by applying a mixed-integer
programming algorithm. The network architecture they used was not very deep: 4
convolution layers in one [5] and 2 convolution layers in the other [10]. More ad-
justable parameters (weights and bias) correspond to greater freedom of adjustment
and a better approximation effect.

In medical image analysis, 2D images are widely used as input, but this approach
is not well suited for aneurysm detection due to four limitations. First, we are inter-
ested in detecting aneurysms from different types of imaging modalities such as CT,
MRA or 3DRA. The image resolution and file size may adversely affect the CNN
performance. Second, even for the subjects having aneurysms, the percentage of the
aneurysm volume data is quite small, which causes an imbalance of positive and nega-
tive samples in the learning process. Third, doctors detect aneurysms relying more on
anisotropic shape representation than the intensity or texture in image, which results
in a starting research point of separation aneurysms directly from the 3D cerebral
mesh model. Finally, due to ethics and case selection problems, the availability of
large population databases is not assured. Training on a small sample dataset is a
common problem for many tasks in medical image analysis, such as segmentation or
registration. To manage these limits, we detect aneurysms with a CNN in 3D cerebral
mesh models with a pretrained neural network. After the segmentation and recon-
struction of the cerebral vessel mesh model, the heterogeneous nature of the image
format and resolution can be eliminated. The cerebral vessel network model can be
divided into branch models with two or three bifurcations. Relative to the volume
data of an image, the imbalance of the training sample of a model can be significantly
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reduced. We overcome the influence of texture and intensity using the 3D cerebral
branch model, which focuses on shape. In several view experiments, the classification
accuracy of images is approximately 87%, while the classification accuracy of mesh
models is approximately 92%. To our knowledge, we are the first group to apply CNN
transfer learning to the aneurysm detection task on mesh models instead of medical
images. The main contributions of the paper are as follows: (1)We present a novel
aneurysm mesh model detection method based on a CNN. Due to the challenges
of direct calculation convolution on the mesh model, we use the projection idea to
change the 3D mesh model as a sequence of multiview projection images. (2)We use
the transfer learning method and data augmentation of the input image to overcome
the small training sample problem. The pretraining was performed using GoogleNet
Inception V3 on ImageNet. We use the data augmentation with mirroring, rotation
and flipping operations on the input image, which obtains 6 times more training
samples than before.

2 Methodology

Problem formulation. The aneurysm detection task is formulated as a classifica-
tion problem in this paper. Assume we have a training dataset composed of branches
with or without aneurysms in a featured space T = {(b1, l1), (b2, l2), ..., (bn, ln)} ⊂
B × L where B = R

n is the feature vector space and L = {0, 1} is the label space,
where li = 1 represents that bi includes an aneurysm (positive). The objective is to

predict the label from the feature vector by a classification function. l̂ = f(b) The
training of f(b) is based on minimization of the error between the predicted value

l̂i and the ground truth li, and the parameters in the classification function f are
updated so that the classifier can be more effective.

Architecture of the network. The neural network of the project in called the
multiview aneurysm model label network (MVML) with combined fG and fC . We
consider as a classifier the pretrained GoogleNet Inception V3 (fG) with a modified
full-connection layer (fC). The feature vector is each of the 2D images generated
from multiview rendered images of the mesh models, which are used as inputs of the
network. The outputs of the network are two probability values, corresponding to the
negative and positive cases. Finally, the accuracy of the mesh model is determined
by majority voting according to the image accuracy. Fig. 1 shows the framework of
aneurysm detection proposed in this paper.

Case selection The positive dataset (vessel model with aneurysms) of 56 patients
is drawn from a large multicenter database created within the EU-funded project
@neurIST [9] based on the 3DRA image. The negative model set (vessel model with-
out aneurysms), derived from the public dataset distributed by the MIDAS Data
Server at Kitware Inc. [1], The segments of the mesh model included the similar
branches as the positive dataset such as the anterior cerebral artery (ACA) or the in-
ternal carotid artery (ICA) bifurcation. No other information was considered during
the selection process.
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Fig. 1. Training process for the aneurysm detection with multiview CNN.

Multiview images from 3D aneurysm models . To obtain the multiview im-
ages from each 3D aneurysm model, the model coordination must be determined,
and the projected method should be chosen. We first use PCA to determine the
coordination of the mesh model. The vascular vertexes of each sample are denoted

by A = {
[

xj
i , y

j
i , z

j
i

]

, j = 1, 2, 3 . . . N}, i = 1, 2, 3 . . . nj , where N denotes the num-

ber of samples within the dataset and nj denotes the number of vascular vertexes
in the dataset. The vertex coordinates of each sample are represented by Aj(a) =

Āj +
nj−1
∑

i=1

ajiv
j
i Ā denotes the average vertex of the model j in the dataset and

aj = [a1
j , a2

j , aj
3
, . . . , ajnj−1

] denotes the eigenvalues of the covariance matrix in

descending order of the model j and vj = [v1
j , v2

j , vj
3
, . . . , vjn−1

] denotes the corre-
sponding orthogonal eigenvectors. The first three eigenvectors [v1

j , v2
j , v3

j ], comple-
mented with the right-hand rule, define the adapted coordinates of the 3D model j.
The eigenvector corresponding to the largest eigenvalue is the rotation axis, while
the one with the smallest eigenvalue of the first three is the beginning of the view
projection. We then use the Phong reflection model [12] to create multiview images
of the mesh model. We set up different numbers of viewpoints (virtual cameras) to
obtain the mesh model rendering results. All the viewpoints (virtual cameras) are
positioned on the ground plane and pointed toward the centroid of the mesh. We ren-
der the images from all the viewpoints to obtain a sequence of highly representative
images of the mesh model. We shrink the white space around the view to enlarge its
effective area. Different shading coefficients or illumination models do not affect our
output descriptors due to the invariance of the learned filter to illumination changes
as observed in an image-based CNN [7, 14]. Thus, the view color is set to gray. We
create v rendered views by placing v virtual cameras around the mesh every 360/v
degrees. The selection of the value for the hyperparameter v is discussed in detail
in the experimental description. The Toolbox Graph [11] is used to generate the
rendering result of the 3D mesh model.

Data augmentation with rotation and reflection. we enrich the dataset using
mirroring, rotation, and flipping operations. Each image of the view is transformed to
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create 2 additional images by flipping its horizontal and vertical edges, and another
3 additional images are created by rotating with 90, 180, and 270 degrees. Thus, we
obtain 6 projected images from each view. The number of datasets is v × 6 × 121.
With these treatments of the images, the difference of rotation axis orientation of the
PCA eigenvector is eliminated.

Aneurysm labeling with transfer learning. To address the limitations of the
aneurysm model dataset, we use the transfer learning method of the image to realize
the learning result. The pretrained CNN based on large annotated image databases
(ImageNet) is used for various classification tasks in the images of the different do-
mains. The original network architecture can be maintained, and the network can
be initialized with pretrained weights. The representation of each layer can be calcu-
lated from the representation of the previous layer. The end-to-end back-propagation
algorithm, which combines feature extraction and classification processes, is widely
used in CNN training. Generally, the convolution layers are considered as feature
extractors, while the fully connected layers are seen as a classifier. The network archi-
tecture MVML of the project is composed by fG and fC . We accept the pretrained
GoogleNet Inception V3 model (fG) as the feature extractors and the two-layer fully
connected neuron network (fC) as the classification. The latter outputs probabili-
ties of the two classes with each input image view with the Softmax function. The
cross-entropy loss function is adopted. C = − 1

n

∑n

i=1
[yi ln ŷi + (1 − yi) ln(1 − ŷi)]

When the network training, only the weights of the fully connected neuron net-
work are updated with the pretrained GoogleNet weights frozen. From the result-
ing decision for each view, we obtained the mesh group decision with majority

voting,Ei =
∑m

i=1
I(yi = P (xi)) s.t. I(yi = P (xi)) =

{

1, if yi = P (xi);

0, if yi 6= P (xi).

where m = k × v is the total number of projected images per mesh model and v is
the number of views. In our task, k is the multiplying factor of the data augmenta-
tion. xi is the input image, and yi is the label of the image. P (xi) is the prediction
of the image by the classifier. The final label for the mesh model is the one satisfying
Ei >

m
2
. For instance, for v = 12 and k = 6, an aneurysm mesh model with more

than 36 different positive labeled projected images is assigned a final positive label.
Model performance is measured by first classifying views of testing mesh models, and
the classification results of all views through a majority voting process are used to
obtain the final class label for each mesh model.

3 Experiments and Data Analysis

We conduct our research platform based on TensorFlow using an NVIDIA 960 M
GPU on an Ubuntu 16.10 Linux OS 64-bit operating system. The initial fully con-
nected classification is randomly set from 0 to 1. A stochastic gradient descent op-
timizer is employed to train the loss function of cross-entropy. A learning rate of
0.01 is suitable. The epoch step K = 500. The mini-batch size N ′ = 128. A five-fold
cross-validation is used on the classifier performance. In the following, we test the
effectiveness of the classification algorithm, the effect of the data augmentation, and
the computational time of the network training.
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Optimization of the view number hyperparameter First, we aim to verify the
effect of the different view numbers v on the classification results using the accuracy
of the mesh model and image data. We collect 3, 6, 9, 12, 15, and 18 views of the
mesh model for the experiments. The views of the mesh models used for training the
classifier are never used for testing. The overall prediction accuracy of the classifier
on the image is evaluated, that is, the ratio of the number of images correctly clas-
sified to the total number of images evaluated (Table 1). The classification of each

Table 1. Classification accuracy of the image and mesh model(%).

View 3 6 9 12 15 18

Image 87.4±2.4 87.6 ±3.0 87.9 ±2.8 88.0 ±2.7 87.9 ±2.6 87.7 ± 2.8

Model 90.9 ±1.7 91.7±0.1 93.4 ± 2.0 92.6 ±1.6 92.6 ± 1.6 92.6 ± 1.6

view is only an instrumental task. The real result is the classification of the model.
The mesh model label is achieved by a majority voting process based on the pre-
dicted probability for every view. The data show that when the number of views is
large (such as 18), more images can be created to identify the aneurysms, but image
mislabeling will greatly influence the results. For the proposed method, the equal
possibility of aneurysms with the voting result of the images without aneurysms re-
duces the accuracy of the final result. The view number in this research is a nonlinear
and unpredictable hyperparameter that greatly influences the result. The small view
number of the model cannot offer sufficient images to reveal the aneurysm’s shape;
however, the large view number creates more branch clip images, resulting in mis-
labeling. From these results, we selected the number of views v = 9 as the optimal
one, with a mean accuracy of 93.40%.

Effect of the data augmentation. To validate the effect of the data augmenta-
tion on the images, we test the model with or without data augmentation of the
images. For the without-mirroring and rotation data augmentation view, the sizes of
the dataset are 363, 726, 1089, 1452, 1815, and 2178. The accuracy of the classifier
experiment on the images and the mesh model is shown in Table 2. Thus, the data
augmentation appears not to greatly influence the accuracy. Inception V3 can bring
out the strong features of the image to clearly illustrate aneurysms. However, the data
augmentation has a strong influence on the mesh model. Without data augmenta-
tion, the accuracy of the model decreases by an average of 2%. First, the convolution

Table 2. Average classification accuracy of images and mesh models without data augmen-
tation(%).

View 3 6 9 12 15 18

Image 87.9±3.3 87.9 ±3.7 88.3 ±3.4 88.6 ±2.7 87.9 ±2.5 87.7 ±2.9

Model 90.9 ±3.1 90.1±4.2 90.9 ± 4.1 91.8 ±2.5 90.9 ± 3.0 91.8 ± 3.6
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layer of the Inception V3 is local on the image. After the data augmentation, the
augmented image can be labeled identically to the original image. Second, the data
augmentation brings more training data, which can increase the learning result of
the classifier in the fully connected neural network. Third, deep learning with small
training data is relatively instable in learning. More data can bring better results. In
this case, the image data greatly influence the model accuracy.

Computation and Convergence Time. The time-consuming processes that are
involved constitute a major challenge encountered in deep learning. We use transfer
learning with GoogleNet to limit the training data and decrease the test time. The
average change in the total lost function is smaller than 0.01 for 20 steps. We can
identify the convergence of the training. The convergence steps of the training process
are shown in Tables 3. For data that are not mirrored and rotated, the average
numbers of convergence steps of the classifier in different views are approximately 330,
301, 327, 332, 331, and 300. The average numbers of convergence steps for different
view classifiers are approximately 384, 361, 367, 348, 363, and 373 for different view
classifiers through the mirroring and rotation data.

Table 3. Convergence steps of the training process.

view 3 6 9 12 15 18

without data augmentation 330 301 327 332 331 300

data augmentation 384 361 367 348 363 373

4 Conclusions

In this paper, we present a new multiview CNN to identify aneurysms in a 3D cere-
brovascular model. No registration or alignment is necessary in the method for any of
the models. With the projection of the 3D mesh model, we can obtain the multiview
images. The transfer learning method with data augmentation is used in the model.
The final mesh model identification is obtained by the voting algorithm. The method
is simple to understand and implement. In a future study, we plan to incorporate
postprocessing adjustment that is known to slightly improve the identification of
some datasets. The development of a more sophisticated automatic adjustment will
also necessitate further research.
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