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Abstract

Organizations have successfully used dynamic pricing to optimize revenues for

many years, where research and practice have mainly focused on applications with

independent, discrete commodities; for example, an airline ticket. In this research

we consider applications where the commodity is continuous and the value of the

commodity available to sell depends on the combination of previously accepted

demand. We focus on vehicle ferries, where the accepted vehicle bookings are

packed in lanes in the ferry to leave a useable space for future bookings. Certain

combinations of vehicles may result in areas of unusable space, which will affect

future revenue. While this application is the focus of the paper, there are numerous

industries that face similar challenges including freight and the sale of advertising

on television and radio. In this paper, we simultaneously solve the pricing and

resource utilization problem to optimality for a discrete set of product types and

stochastic demand. Our approach combines a dynamic pricing model with a mixed

integer linear program to optimize the packing. We present results for real-world

examples from the ferry industry and discuss extensions to the method to improve
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the selection of vehicle configurations. dynamic pricing, revenue management,

cutting and packing

1 Introduction

Many organizations have adopted variable pricing to maximize revenues. This is par-

ticularly common where the product is perishable and capacity is limited, such as for

transport tickets. Our focus is on adapting dynamic pricing models to situations where

the capacity used by a sale is a complex function of the individual capacity require-

ments of the sales accepted so far. Immediate applications arise where capacity is

defined by either a continuous two (or three) dimensional constrained space, or time

slots. The decision of how much to charge for a sale is then dependent on how ef-

ficiently the accepted sales can be arranged within the space/time available. The op-

portunity cost of fitting a large or awkwardly-shaped sale may well be greater than

that associated with fitting several smaller sales which can generally be allocated more

easily. Hence, for these problems we need to solve the underlying packing problem

when setting prices to maximize revenue. The optimal solutions for each inventory

level and each time period can be calculated well in advance of the selling season, en-

abling the longer time needed to calculate exact optimal solutions. We show here that

incorporating sophisticated packing algorithms, in the form of mixed-integer programs

into a dynamic pricing algorithm can increase revenues and improve the efficiency of

the packing.

The application that we consider here is the pricing of vehicle tickets in the ferry in-

dustry, focusing on situations where the vehicles should be packed within lanes. In this

case, the packing problem becomes a one-dimensional bin packing problem with het-

erogeneous bins. In previous work, Bayliss et al. (2018), we considered the physical

space inside the ferry to be a two-dimensional space, ignoring lane configurations. This

allows a more flexible placement of vehicles, and these earlier methods use heuristic

algorithms to suggest the prices to charge and to address the two-dimensional packing

problem. While providing efficient packing solutions, packing without consideration

of lanes is slower and requires much more skill and careful placement on the part of the

loaders. Consequently, splitting the physical space into lanes is a practical and widely

used strategy. An additional advantage of the method we propose here is that we are

aiming to solve the optimization problems exactly, trying to find the optimal prices to

charge for each vehicle type at each point in time on the selling season.

The above problem description arises frequently in the transportation industry,

where freight or vehicles are being transported on a scheduled service. Other applic-

ations where the remaining capacity is not a linear function of sales include selling

advertising time on the radio and television (e.g., see Giallombardo et al. (2016)) or

scheduling bespoke jobs on machines.

Maximizing efficiency is vital in the vehicle ferry industry to ensure the profitability

of ferry services, which are often the only means of delivering freight and transporting

people to and from island populations. The global ferry market was valued at over $15

billion in 2012, making it an important factor in the global transport network. Ferries

often transport a wide range of vehicles types, ranging from motorcycles and private
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cars to large haulage trucks, which means that the packing problem is non-trivial and

the reduction in capacity as a result of accepting a sale is not just dependent on the size

and shape of the vehicle, but also how well it fits with the previously accepted sales.

We consider ferries with multiple vehicle decks that can be configured in a variety of

ways, hence adding the complication that the shape and size of the space available can

be altered to provide a better fit for the mix of vehicles booked.

A dynamic program is used to find the optimal dynamic pricing policy for each

vehicle type, where a vehicle type is defined by its physical dimensions. The states of

the dynamic program correspond to the optimal packing solutions for each possible mix

of vehicles that can fit on the ferry, where these are identified using a combination of

two heuristics and a mixed-integer linear program (MILP). The heuristics, “first fit de-

creasing” and “minimum length”, can speed up the computations involved in the MILP

approach, particularly for very large examples, and are used to find packing solutions

for vehicle mixes for which finding a feasible solution is relatively straightforward. We

compare this combined approach with using either only the first fit decreasing or the

minimum length heuristics to solve the packing problem. These produce inferior pack-

ing solutions and revenues, underlining the fact that it is important to solve the packing

problem to optimality.

Using instances provided by a UK ferry operator, our results show that linking

assignment and packing algorithms with dynamic pricing models can increase revenue

by up to 65% compared with revenue management strategies that fix the maximum

capacity of the number of vehicles of each type at the beginning of the selling period./

1.1 Problem description

For reasons of clarity we describe the problem in the context of a vehicle ferry while

acknowledging its potential use in other industries. We aim to maximize the expec-

ted revenue generated by a vehicle ferry for a single origin and destination, where

bookings are received during a finite selling horizon. Vehicles are classified by their

dimensions (length, width and height) into a discrete set of vehicle types with known

arrival rates and purchase probabilities, which can vary during the selling period, as

described later in Section 6.1. This assumes that larger vehicles are more likely to pay

a higher price and that willingness-to-pay increases as the time remaining to departure

decreases, a common assumption based on the observation that customers with a higher

willingness-to-pay tend to arrive later in the selling season.

The decision variables are the prices being charged for each vehicle type given the

set of vehicles previously accepted and the time remaining until departure. Prices are

chosen from pre-defined discrete sets for each vehicle type. By integrating optimal

pricing and packing algorithms, the resultant dynamic pricing policies will account for

the efficiency with which different combinations of vehicles can be packed. Since the

number of vehicles that fit is not a straightforward function of the total area that they

take up, we identify all of the vehicles mixes that would fit in the ferry by applying

optimal packing algorithms, which allows us to change the vehicle mix to be considered

while solving the pricing problem to maximize the total revenue.

In an extension to the problem we consider a situation in which the configuration

of decks does not have to be specified until the day of departure. We allow our method
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to choose dynamically between several layouts, using the union of the vehicle mixes

available in each configuration as the states of dynamic program for the pricing prob-

lem. This is of particular interest in the ferry industry where it is common for vehicle

ferries to have the facility to lower temporary decks from the ceiling, which increases

the ferry’s capacity for low height vehicles whilst decreasing the ferry’s capacity for

high vehicles.

Our aim is therefore to maximize the value of the space available when setting

prices for different vehicle types. Note that, depending on the arrival rate of each

vehicle type and their willingness to pay, it might be possible that the solution which

maximizes the revenue is not maximizing the utilization of the ferry. Nonetheless,

through dynamic pricing the proposed approach is likely to increase the probability of

achieving mixes of vehicles which increase profit.

2 Previous Research

Revenue Management (RM) has been a vibrant area of research over the past 30-40

years (Talluri and Ryzin, 2004) and one where industry has actively engaged with re-

searchers to exploit the methodologies arising from their research. Traditionally, RM

focuses on finding the optimal price to charge for discrete items of inventory, with one

of the best known examples being the sale of seats on an aeroplane (e.g., Belobaba,

1989; Littlewood, 2005). The airline industry has greatly benefited from successfully

employing RM models, as have other industries with perishable products such as res-

taurants (Bertsimas and Shioda , 2003), cruise ships (Maddah et al., 2010), car rentals

(Li and Pang, 2017).

Our objective is to maximize the value of the available space, which we achieve

by encouraging (through price) the most profitable vehicle mixes. There are analogies

to multi-product dynamic pricing (see Akcay et al., 2010), but where each product has

different dimensions, and the optimal numbers of products to sell are unknown a priori.

The majority of the research in this area focuses on air freight (see Slager and Kapteijns,

2004; Kleywegt and Papastavrou, 2001, 1998), where the key issue in these articles is

that the dimensions of the packages are not known exactly at the time of the booking

(e.g., Kasilingam, 1996; J.S.Billings, 2003; Amaruchkul et al., 2007). For this reason

the objective of the optimization routines implemented is often to minimize overbook-

ing rather than to optimize revenue. Air cargo RM has some additional complexities

over the situation that we consider here, namely a weight constraint and a constraint

on the number of container positions. These complexities force the model solutions to

be somewhat simplified, e.g., by using standard weight-volume relationships or dens-

ity values provided by historical data. For example, Kasilingam (1996) combines the

capacity dimensions with some flexibility in the schedule, so that a specified delivery

time per product is satisfied.

The methods used in air cargo RM include Markov Decision Processes (Han et al.,

2010) and dynamic stochastic knapsack (Kleywegt and Papastavrou, 1998). News-

vendor models are also popular and Wong et al. (2009) propose a model based on a

variant of the multi-item newsvendor model, which accounts for both the weight and

the volume capacity constraints but does not consider the packing of the items, while
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Zou et al. (2013) use a two-location newsvendor model to optimize overbooking for

an airline operating multi-segment flights. A continuous-time stochastic control model

to solve a RM problem with a general two-dimensional capacity with two types of

demand can be found in Xiao and Yang (2010).

To the best of our knowledge, none of the existing algorithms designed to maximize

revenues solve the implicit packing problem using the best approaches available in the

literature in terms of computational time and solution quality. We consider situations

where product sizes are known at the time of booking, which means that the packing

problem can be considered when setting prices. During the selling season the packing

problem is a feasibility problem which tells us which vehicle types can still fit onto the

ferry. The packing solution becomes fixed once all of the capacity has been sold and

the selling season has finished.

In this paper we show that this problem can be addressed off-line in some problems

with realistic ferry sizes and with a comprehensive discretisation of vehicle types; in

such cases it is possible to list all of the vehicle mixes that fit onto the ferry. These

constitute the feasible states of the dynamic program. This allows us to determine

the optimal price that should be offered to any type of customer arriving at any time

period in any state. The two key aspects to take into account in order to apply the

proposed methodology is to use some greedy heuristics to speed up the derived packing

problem, which is needed to compute the states, and the use of a sensible discretisation

of vehicles into several types depending on their dimensions in order to reduce the

curse of dimensionality derived when solving the pricing problem.

We base our computational results on problems derived from real data from a ferry

company that operates with ferries that can accommodate around 214 standard-sized

cars. It is worth mentioning that the largest ferries used in the industry have a capacity

over 800 vehicles, and in this case the derived pricing problem will be much bigger

and the number of vehicles type should be reduced to two or three in order to apply

this method. With large numbers of vehicle types, the problem will become intractable

due to the number of states and only heuristics or approximation algorithms would

work. For these larger problem sizes, the heuristic method we describe in Bayliss et

al. (2018) is generally a good option, although note that it differs from the method

we describe here in that it is not an exact optimization so is not guaranteed to find the

optimal solution.

Our work generalizes the problem presented in Kleywegt and Papastavrou (2001),

who solve to optimality the dynamic and stochastic knapsack problem, in which each

demand requests the same amount of a given resource and the decision to be made

is to accept or reject the request. The more general case in which demands require

different amounts of a resource is studied in Kleywegt and Papastavrou (1998). The

method we describe here can be viewed as an extension of the dynamic stochastic

knapsack approach, where accept/reject decisions are replaced by pricing decisions for

regulating demand.

We do not consider the situation where multiple drop offs and pick ups are needed.

When several origins and destinations are involved, then the problem becomes one of

transportation planning, where freight is being transported between several origins and

destinations across a network (e.g. Bartodziej et al. (2007)). An example with multiple

drop offs can be found in the rail industry, where Crevier et al. (2012) proposed a model
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combining an integer programming model which address the logistics operations and

maximizes the revenues. The authors propose a bilevel mathematical formulation in

which railroad operations and RM are considered.

Besides the heuristic approach presented in Bayliss et al. (2018) and Bayliss et al.

(2016), we have not found a previous research in the Operations Research literature on

pricing for vehicle ferries. Maddah et al. (2010) consider dynamic pricing for passenger

cruise ships, and focus on the problem of having multiple capacity constraints (cabins

and lifeboats). Technically, a similar double capacity constraint exists in the vehicle

ferry industry in that each ferry will have a limit on the number of passengers that

can travel due to lifeboat capacity, which is separate from the space available on its

vehicle deck. However, in our experience, the maximum number of passengers is rarely

reached and so the packing of the vehicle deck is almost always the binding constraint.

We describe a dynamic pricing algorithm as opposed to a dynamic allocation al-

gorithm. Hence, the decision is one of selecting a price from a finite set for each of the

available products rather than whether to accept or reject an order. Dynamic pricing

algorithms were introduced by Kincaid and Darling in the 1960s to describe the sale

of goods in a shop (Kincaid and Darling (1963)), and their use in the RM literature

has increased steadily since the publication of Gallego and van Ryzin (1997). Phil-

lips (2005) provides a useful discussion of price-response models. A key component

of a dynamic pricing algorithm is an understanding of the price sensitivity of the cus-

tomers. We assume that customers are segmented by product types and use a logistic

distribution to describe the willingness-to-pay. Bitran and Mondschein (1997) use a

similar shape for the willingness-to-pay distribution for a retail pricing problem, but

they use the Weibull distribution. Assuming a logistic distribution for the willingness-

to-pay distribution means that a customer’s price sensitivity is increased at prices close

to the accepted market price; a good description of customer behavior in a competitive

market. Other authors have used an exponential distribution to model acceptance prob-

abilities (Gallego and van Ryzin (1994) and Zhao and Zheng (2000)). As is common

in the transportation industry, we assume that willingness-to-pay increases as departure

time approaches. Much of the early, pioneering research in RM exploited this feature

of the airline industry by protecting seats for higher paying passengers (Littlewood

(2005) and Belobaba (1989)).

In the problems we consider here we define the capacity as the number of vehicles

of each type that can fit onto the ferry. Therefore, the capacity available depends on the

layouts obtained by the packing algorithms used. Given that the capacity is a fixed two-

dimensional area with height constraints, the combinatorial problem is that of finding a

feasible arrangement of the items. In this case, the combinatorial optimization problem

given by finding a feasible layout, under the typology of cutting and packing problems

presented by Wäscher et al. (2007), is a Two-Dimensional Multiple Bin-Size Bin Pack-

ing Problem (2D-MBSBPP). A survey can be found in Lodi et al. (2002). Regarding

exact procedures, de Carvalho (2002) defined an MILP formulation and Pisinger and

Sigurd (2005) proposed a branch and price algorithm. Approximation algorithms can

be found in Kang and Park (2003). Most recently, the metaheuristic algorithm proposed

by Wei et al. (2013) obtains the best published results for this problem.
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3 Model Formulation

3.1 Approach Overview

We solve the pricing problem to optimality using a dynamic program, where the states

are defined by the numbers of vehicles of each type rather than the area used in the

ferry. Note that the packing solutions for two different vehicle mixes with the same

total area of vehicles can be very different in terms of the remaining useable space and

consequently the ability to include additional vehicles. The price offered to a vehicle

thus depends on how it fits in the ferry with the current set of booked vehicles and the

expected demand in the remainder of the selling season, rather than just its dimensions.

In order to obtain the states of the dynamic program we enumerate all of the pos-

sibilities for the numbers of vehicles of each type which are able to fit on the ferry.

This is achieved by formulating a multi-objective problem in which the objectives cor-

respond to maximizing the number of vehicles of a particular type that can be fitted

onto the ferry. This allows us to obtain a “Pareto set” of vehicle mixes, defined as the

set of vehicle mixes for which adding one more vehicle of any type would result in

the capacity being exceeded. Let m be the number of vehicles types, then any vehicle

mix s = {s1, . . . , sm}, where si denotes the number of vehicles of type i, belongs to the

“Pareto set” if and only if the following two conditions are satisfied.

1. All the vehicles in s fit onto the ferry.

2. Any vehicle mix s that satisfies the conditions: (i) s = {s1, . . . , sm} for which

si ≥ si ∀i ∈ {1, . . . ,m} and (ii) there exists i′ ∈ {1, . . . ,m} such that si′ > si′ ; does

not fit onto the ferry.

We denote by Q the set of all feasible vehicle mixes, i.e, any vehicle mix s =

{s1, . . . , sm} satisfying condition 1. If we denote by R the “Pareto set” of vehicle mixes

then R ⋐ Q. In practice, |Q| is much bigger than |R|.
Once the Pareto set has been identified, it is then straightforward to list all of the

feasible vehicle mixes, which correspond to the states of the dynamic program.

Figure 1 gives an overview of the methodology. We describe the dynamic pricing

formulation in Section 4, setting out the dynamic program, and describing the MILP

and the construction heuristics used for assigning vehicles to lanes. There are two ways

of approaching the pricing problem. In the first, a fixed allocation problem, we place

a limit on the number of vehicles of each type that we accept and in the second, a

dynamic allocation problem, we allow this to vary during the selling season based on

realized demand. We present the fixed and the dynamic allocation problems in Section

4.2. The input to the pricing problem from the packing algorithms is the full set of

vehicle mix states, which is described in Section 4.3 and the heuristic packing rules in

Section 4.4.

Two versions of the bin packing formulation are considered: the first assumes

products must be placed in lines (or lanes) and a second, more relaxed packing model,

allows wider vehicles to straddle two adjacent lanes. The latter increases the ferry’s ca-

pacity for larger vehicle types at the expense of smaller ones, which can be beneficial

in some demand scenarios. As an extension to the basic method, in Section 5 we ex-

plain how these algorithms can be adapted to decide between alternative deck and lane
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Identifies the Pareto
set of vehicle mixes

Inputs for the
dynamic programming

Enumerate
vehicle
mixes

Bin packing
feasibility
problem

Set of all
feasible

vehicle mixes

Dynamic
programming

Figure 1: Approach overview

configurations on the ferry. Finally, in Section 6 we present the computational results

for real and simulated instances coming from the vehicle ferry industry. We can solve

to optimality some real-world instances with up to 5 vehicle types and ferries that can

fit up to 214 standard-sized cars and our results show the benefits of keeping the alloc-

ation of space to each product type flexible compared with fixing these allocations in

advance. We also demonstrate the value of incorporating optimal packing algorithms

when solving the dynamic pricing problem.

It is worth highlighting that the computational time to solve these problems in a

standard desktop computer could go up to 33 hours (see Section 6) and the memory

needed to run the algorithm is around 15 GigaBytes. Since we are solving the off-line

problem this computational effort is totally affordable by the companies and the ferry

operator could let the algorithm run for days or even weeks. Note that the output of

the run will be the complete pricing plan and there is no extra calculation to be made

during the selling season.

4 Model Formulation

We assume initially that the available space is split into lanes and each vehicle can be

assigned to a lane. This reflects standard practice, where lanes are used in order to

reduce the loading time. The choice of how to configure the lanes is considered later

in the article (Section 5). We begin with the most basic example, where lanes are fixed

and no overlap is allowed, but we do go on to consider a situation in which products

are allowed to overlap lanes in Section 4.4.4.

We begin by defining notation and presenting the dynamic programming formula-

tion, which is solved to optimality. Following the dynamic program, we present two

heuristics and one MILP model used to identify all of the feasible states. In the com-

putational experiments, we implement the two constructive packing heuristics, first fit

and minimum length, on their own to generate the states of the dynamic program. This

allows us to evaluate the benefit of the computationally intensive optimal MILP ap-
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proach. As part of our exact method, these heuristics are computationally useful for

quickly identifying the feasibility of many vehicle mixes, which helps to compute the

Pareto set with a much lower computational effort by reducing the number of times the

MILP is solved. The MILP model is required to solve the packing problem to optim-

ality when it is more difficult, i.e, the ferry is closer to capacity, and the heuristics fail

to provide a feasible solution. We also extend this model in the subsequent sections in

order to consider situations where wide vehicles are allowed to overlap adjacent lanes.

4.1 Notation

The selling season is divided into T time periods, where t ∈ {1, . . . ,T } is the number of

time periods remaining until the end of the selling season. The selling season starts at

t = T and ends at t = 1, which corresponds to the last time period in which a customer

might arrive. We set the length of each time period to be sufficiently small such that

the probability of more than one arrival occurring in each period is negligible. Through

the rest of the article, we assume that customers arrive following a time-homogeneous

Poisson process, where rates differ between vehicle types.

We assume that the space can be split into lanes where J = {1, . . . , n} denotes the

set of lane types available, in which each lane type j, j ∈ {1, . . . , n} is described by its

maximum available height, ĥ j, and width, ŵ j, and its total length, l̂ j. The number of

lanes available for each type j ∈ J is denoted by n j. For the sake of simplicity, in this

section we assume that the number of lanes of each type is known and fixed. In Section

5 we extend this formulation in order to consider different configurations of the space.

Let I = {1, . . . ,m} be the set of vehicle types. Each vehicle type i ∈ I has width wi,

length li and height hi and a known present demand, Zi, which represents the number

of customers already booked onto the ferry. In addition, there is a probability λi of a

vehicle of type i ∈ I arriving during a given time period.

4.2 Dynamic Programming Formulation

For each time period t ∈ 1, . . . ,T , there is a price vector pt = (p1
t , . . . , p

m
t ) that gives the

price on offer for each vehicle type i ∈ I. The values of pi
t are discrete and limited to

a predefined set of prices, pi
t ∈ {Y i

1
, . . . ,Y i

qi
} ∀t ∈ {1, . . . ,T }, where qi is the number of

prices to be considered for vehicle type i. Note that it is possible to find the continuous

optimal prices, but in a real world context discrete sets of allowable prices are more

realistic. We assume that Y i
1
< Y i

2
< · · · < Y i

qi
.

We define αt(i, p
i
t), t ∈ {1, . . . ,T }, i ∈ I, to be the probability that a customer

with a vehicle type i accepts price pi
t. It is worth highlighting that these αt(i, p

i
t) only

depend on the price of the current vehicle type (i), and not on the prices of other vehicle

types. We are not assuming any condition on the acceptance probability but in the

computational results we use a sigmoidal distribution, as defined in Section 6.1. We

assume that αt(i,Y
i
qi

) = 0.

Let Z = (Z1, . . . ,Zm) be a utilization vector, where each entry Zi denotes the number

of bookings received for vehicle type i. We need to keep track of which vehicle types

have been booked instead of simply the remaining available space because the mix of

vehicles will impact on the ease with which additional vehicles can be fitted in. We
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consider two formulations: the fixed allocation problem and the dynamic allocation

problem.

For the fixed allocation problem we assume a fixed capacity for each vehicle type

at the start of the selling season and the state variable is bounded by Z = (Z1, . . . ,Zm),

where the Zi denotes the number of spaces available for vehicles of type i. Given a

time period t ∈ {1, . . . ,T }, a vehicle type i ∈ I and a state variable Z, we define a

state-dependent action space as

P1
Zti = {p

i
t ∈ {Y i

1, . . . ,Y
i
qi
}; pi

t = Y i
qi

if Zi = Zi, i = 1, . . . ,m}.

For the dynamic allocation problem we assume the state variable Z has to be within

the capacity envelope of vehicle mixes, where the capacity envelope defines the set of

feasible vehicle mixes. This formulation allows for dynamic allocation of capacities to

vehicle types during the selling period and consequently is able to react to arrivals. For

example, in the case where the number of bookings of one vehicle type is much higher

than expected, we could accept all of them if there is space in the ferry. In the dynamic

allocation problem we define a state-dependent action space as

P2
ZTi = {p

i
t ∈ {Y i

1, . . . ,Y
i
qi
}; αt(i, p

i
t) = 0 ∀pi

t ∈ {Y i
1, . . . ,Y

i
qi
} if Z + ei < Q}.

Note that for any vehicle mix in the Pareto front (R), it will not be possible to fit a

new arrival, regardless of its vehicle type. The action space P2
ZTi

will then set the prices

in such a way that the probability of acceptance is 0 for all the vehicle types.

The dynamic programming equations can be written as follows, where V(Z, t) de-

notes the optimal expected revenue from period t to the end of the selling season

(revenue-to-go).

V(Z, t) =
∑m

i=1 maxpi
t∈PZTi

{

λi
[

αt(i, p
i
t)
(

pi
t + V(Z + ei, t − 1)

)

+

(

1 − αt(i, p
i
t)
)

V(Z, t − 1)
]}

+λ0V(Z, t − 1), ∀t = 1 . . . T, ∀Z ∈ Q,

(4.1)

where λ0
= 1 −

∑m
i=1 λ

i is the probability that no arrival occurs. The utilization

vector moves to Z + ei if vehicle type i purchases a ticket, where ei is the unit vector

of length m with zeros in all of the entries except a one at position i. The action space

PZT can be either P1
ZT

or P2
ZT

dependent on whether the fixed or dynamic allocation

problem is being solved.

The boundary condition, which captures the effect that the value of remaining ferry

capacity perishes at the end of the selling season, is given by

V(Z, 0) = 0 ∀Z ∈ Q. (4.2)

A customer arrives into the system to buy space for a vehicle of size i with prob-

ability λi and will purchase with probability αt(i,Y
i
ri

). Purchases yield an immediate

benefit of pi
t but increase the utilization vector to Z + ei
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4.3 Optimizing the Fixed Allocation Problem

The first case described above considers a fixed booking limit for each vehicle type,

where the maximum number of vehicles of type i ∈ I that can be accepted onto the

ferry is Zi. The way the values Zi are selected has a strong effect on the final expected

revenues. It is easy to check that if two vectors Z
1
= (Z

1

1, . . . ,Z
1

m) and Z
2
= (Z

2

1, . . . ,Z
2

m)

satisfy Z
1

i ≥ Z
2

i , ∀i ∈ I then V(Z
1
,T ) ≥ V(Z

2
,T ), i.e, the expected revenues obtained

by solving (4.1) using Z
1

are greater than or equal to the expected revenues when using

Z
2
. Therefore, at least one capacity vector Z belonging to the Pareto set will lead to

the highest expected revenues from all of the feasible vectors. In the computational

experiments presented in Section 6 we focus only on solutions in the Pareto set, where

we report the best, average and worse expected revenues, allowing us to report the

upper bound and the worst case revenues for the Fixed Allocation Problem.

In Section 4.4.3 we present a method to compute all of the vehicle mixes in the

Pareto set. For each vehicle mix we then solve equations (4.1) to compute the expec-

ted revenues and choose the vehicle mix with the highest expected revenue to be the

optimal fixed allocation policy.

4.4 Optimizing the Dynamic Allocation Problem

In the dynamic allocation problem we no longer fix the number of each vehicle type

independently but instead ensure that the accepted vehicle mix lies within the capacity

envelope. This requires us to define the capacity envelope, or equivalently the Pareto

set that forms its boundary, in advance. This can be computationally expensive and so

we begin by defining two heuristics than can speed up the process.

4.4.1 First Fit Heuristic.

The FF heuristic applied to the one dimensional bin packing problem consists of pla-

cing one item at a time in the first bin (lane) that it will fit. The complexity of this

algorithm is O(n log n) if a search balanced binary tree is used to find the bin to insert

the next piece, see D. Knuth (1998), where n is the number of vehicles. Note that

different initial permutations of the vehicles lead to different solutions and it is well

documented that in order to obtain high quality results using the FF heuristic it is better

to sort the vehicles by non-increasing length. We assume that there are different lane

types, each with different constraints on height and width, and so the order in which the

lanes are considered will also impact the quality of the fit. As there are two different

capacity constraints to be satisfied, the width and the height, the size of the lane cannot

be used as a dominance criteria between lanes. We instead sort the lanes in such a way

that the first lane considered has the lowest total arrival rate of the vehicle types that fit

in the lane. That is, for each lane type j ∈ J, let J j be the set of lanes of type j and let

I j ⊂ I be the set of vehicle types such that any vehicle i ∈ I j fits in lane j. We then

calculate the sum of the arrival rates of all the vehicles types that can fit in that lane,

a j :=
∑

i∈I j

λi,
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and then sort the lanes by non increasing a j. In order to break ties, we place vehicles

in the lane with the shortest available length.

4.4.2 Minimum Length Placement Heuristic.

Using the ML heuristic, the vehicles are placed with the objective of maximizing the

minimum length available within a given type of lane. We first assign vehicles to the

lane type as in the FF algorithm, where we select the lane type with lower a j. The

particular lane is then chosen to be that with the greatest length remaining.

The ML heuristic is presented in Algorithm 1.

Algorithm 1 ML placement heuristic. Returns true if the vehicles fit in the ferry.

Input: Number of vehicles of each type (mi, i ∈ I, set of lanes in the ferry J)

Sort vehicles by non increasing length

Sort the lanes by non-increasing a j;

for each i = 1, . . . ,m do

for each i′ = 1, . . . ,mi do

Let j be the lane type with lowest a j such that the vehicle type i fits

Let k be the lane with the most space over all lanes of type j, k = 1, . . . , |J j|.
Place vehicle i′ of type i in lane k of type j

if vehicle fits then

Update space available in k

else

Return false

Return true

4.4.3 Exact Model.

We introduce a Mixed Integer Linear Program, MILP1, which is used to check the

feasibility of adding an additional vehicle to the previously-booked vehicle mix. Al-

though the objective of MILP1 is to check feasibility, we use an objective function that

maximizes the unused space in each lane type. This allows us to reduce the number

of times we need to solve the model. If a vehicle mix is found to be feasible, we will

know the optimal lane allocation for each vehicle and the space available in each lane;

therefore, in the next iteration, we can determine if a given vehicle fits in a lane without

solving the MILP again. This can be achieved by applying either the FF or ML heur-

istics, using the previous MILP1 solution as an initial solution. The objective function

is chosen to set priorities on which lanes to use, to avoid issues with symmetries, thus

eliminating the potential for unnecessary computation, and guaranteeing that the space

remaining will decrease each time a new vehicle is considered.

Let xi jk be an integer variable representing the number of vehicles of type i assigned

to lane k of type j. Decision variables are only generated for feasible vehicle allocation

decisions, which is when wi < ŵ j and hi < ĥ j. Let y jk, j ∈ 1, . . . , n, k ∈ J j be a binary

variable which takes the value 1 if lane k of type j is used and 0 otherwise. Coefficients

c jk, j ∈ 1, . . . , n, k ∈ J j satisfy the constraint that c jk < c jk′ , k < k′ and k′ ∈ J j. These
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coefficients c jk are used in the objective function in order to set the priorities on which

lanes should be used first to help avoid symmetries.

In this model we assume that di is known, ∀i ∈ I, which matches with what is

already packed. We define a real variable u, which represents the remaining usable

length in the used lane with the most available space. We force coefficients c jk > l̂ j,

∀ j ∈ J, ∀k ∈ J j giving more priority to determine which lanes we use first and then, as a

secondary objective, to minimize u. The first term of the objective function ensures that

we reduce the number of lanes used in the solution and that we use the most restrictive

lanes first. The idea behind this objective is to reduce the number of times that we

need to solve the MILP as this is time-consuming for practical-sized problems. For

example, if we end up with two lanes not being used then, in the following iterations

of the enumeration to find the Pareto front we use simple, fast heuristics since feasible

solutions will be found easily. This reduces computation time significantly. The second

term, u, is included for similar reasons: we know the space remaining in any lanes that

are partially used. This again reduces the computational effort used on subsequent

iterations of the enumeration.

MILP1 is then as follows:

Min
∑

j∈J

∑

k∈J j

c jky jk − u

∑

j∈J

∑

k∈J j

xi jk = di ∀i ∈ I (4.3)

diy jk ≥ xi jk ∀ j ∈ J,∀i ∈ I (4.4)
∑

i∈I
lixi jk ≤ l̂ j ∀ j ∈ J, k ∈ J j (4.5)

u ≤ l̂ j −
∑

i∈I
lixi jk − M(1 − y jk) ∀ j ∈ J, k ∈ J j (4.6)

xi jk ≥ 0 and integer ∀ j ∈ J, k ∈ J j, ∀i ∈ I (4.7)

u ∈ R (4.8)

Inequalities (4.3) ensures that the demand of all of the vehicles is met. Inequalities

(4.4) activate an additional lane if it is used by any vehicle. Note that di is used as a

big-M constant. Inequalities (4.5) ensure that lane lengths are not exceeded. Note that

width and height are always met by the way the variables have been defined. Finally,

inequality (4.6) forces us to use the lane with most available space sparingly. This

forces the optimization to find solutions that fill the lanes up.

In order to obtain all of the solutions in the Pareto set we enumerate all of the

potentially feasible combinations of the other vehicle types and then we try to find

a feasible solution by applying first the First Fit Heuristic, then the Minimum length

placement heuristic, and finally, in the case that the two heuristics fail to provide a

feasible solution, we solve the MILP1 model. We start by setting all of the demands

di = 0, i ∈ I \ {i′} and, in each iteration, we increase the demand of one vehicle type

by one and solve the model again, making sure all of the feasible combinations are

considered. Note that when increasing the numbers of vehicles of any type in I \ {i′} we
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might end up with an infeasible MILP1. In this case, the last feasible MILP1 solved to

optimality provides a vehicle mix which belongs to the Pareto set.

It is important to highlight that an upper bound of the number of vehicles of each

type that can fit onto the ferry is given by the space available on the lanes in which the

given vehicle type fits, which generally avoid using the space available in the ferry for

just one vehicle type.

4.4.4 Overlapping Lanes.

The optimization routines presented above assigns vehicles to lanes in such a way that

all three dimensions of the vehicle should fit within the lane. In real applications, it

is possible to place vehicles across more than one lane, which may be necessary for

vehicles that are wider than any of the available lanes. While for ease of loading it is

still important to respect the lanes boundaries as much as possible, this opens up the

opportunity for placing more vehicles, as well as placing wider vehicles. Doing this

will expand the capacity envelope of the ferry. Therefore, the formulation of MILP2,

presented here, makes the lane width a soft constraint, allowing vehicles to be assigned

to two lanes instead of one.

To allow vehicles to overlap lanes, first we need to identify which are the adjacent

lanes. Let J′
j
be the set of lanes of type j with an adjacent lane that can be used for the

same vehicle. We identify each lane k of type j, that can be used simultaneously with

an adjacent lane, which we denote by k′ and has type j′. Note that consecutive lanes

might be from either the same or different types.

The number of xi jk variables thus increases and we define these variables if one of

the following conditions are satisfied:

1. wi < ŵ j and hi < ĥ j, ∀ j ∈ J, i ∈ I

2. If wi > ŵ j, wi < ŵ j + ŵ j′ , hi < ĥ j and hi < ĥ′
j
, ∀i ∈ I, j ∈ J, k ∈ J′

j
, where k′ is

a lane of type j′, which is adjacent to lane k of type j.

In addition, we introduce a new set of integer variables, zi jk, which represent the

number of vehicles of type i assigned to lane k of type j which use lane k′ of type j′.

Again, these variables are defined only if the second condition is satisfied.

MILP2 is then as follows:
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Min
∑

j∈J

∑

k∈J j

c jky jk − u

∑

j∈J





















∑

k∈J j

xi jk +

∑

k′∈J′
j

zi jk′





















= di ∀i ∈ I

(4.9)

My jk ≥ xi jk ∀ j ∈ J,∀i ∈ I, ∀k ∈ J j \ J′j
(4.10)

My jk ≥ xi j′k′ + zi jk ∀ j ∈ J,∀i ∈ I, ∀k ∈ J′j
(4.11)

∑

i∈I
lixi jk ≤ l̂ j ∀ j ∈ J, k ∈ J j \ J′j

(4.12)
∑

i∈I
li(xi j′k′ + zi jk) ≤ l̂ j ∀ j ∈ J, k ∈ J′j

(4.13)

u ≤ l̂ j −
∑

i∈I
lixi jk − M(1 − y j) ∀ j ∈ J, k ∈ J j

(4.14)

xi jk ≥ 0 and integer ∀ j ∈ J, k ∈ J j, ∀i ∈ I \ {i′}
(4.15)

u ∈ R (4.16)

The objective function is the same as in MILP1. Equalities (4.9) ensure that all the

vehicles are placed. Inequalities (4.10) and (4.11) force activation of a lane if a vehicle

has been assigned to it. Inequalities (4.12) and (4.13) ensure that the lengths of the

lanes are not exceeded, and inequalities (4.14) force the use of lanes with more space

available, encouraging placement of the vehicles only in one lane if possible.

A further constraint is that the solution obtained by MILP2 should be achievable in

practice, in that the layout can be produced by loading the vehicles one at a time. The

challenge is to ensure that everything loaded in an adjacent lane is loaded in such a way

that vehicle types assigned to two lanes and vehicles types assigned to one lane can be

arranged, and that vehicles assigned to two lanes should have the same position in both

lanes. To do this, we place the vehicles in the following order. First place vehicles

using two lanes lanes, k and k+1, where k is an odd number, then place all the vehicles

assigned to only one lane and finally place vehicles using two lanes, k and k+ 1, where

k is an even number.

Figure 2 illustrates an example of a ferry with four lanes and 12 vehicles. Assuming

that the top lane is the first lane, we first load vehicle 1, 2 and 3 since they use two

lanes where the first lane is odd. Then vehicles 4 to 11 are assigned to individual

lanes. Finally, vehicle 12 is loaded, which is assigned to lanes 2 and 3. Note that this

procedure will always lead to an achievable solution.
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Figure 2: Order of vehicles to be loaded in the ferry. There are four lanes and four vehicles

requiring two lanes.

5 Dynamic Configurations

In this section we generalize the model described in Section 4.2 to allow different

lane configurations. This extension is motivated by work with vehicle ferries, many

of which feature temporary decks that can be lowered to allow the placement of more

small vehicles, as a result restricting the placement of high vehicles. This more general

model extends the range of applications as it also allows the widths of the lanes to be

optimized in order to satisfy different demand sets.

There are a finite set of configurations of the ferry’s vehicle decks and a finite

set of ways of configuring the lanes within those decks. Combining these we can

predetermine a complete set of configurations. Hence instead of optimizing over a

given configuration, here we optimize over them all.

Let φ ∈ {1, . . . ,Φ} be Φ different lane configurations where the number of each

lane type in configuration φ is denoted by Jφ = {Jφ
1
, . . . , J

φ
nφ } and nφ is the total number

of different lane types in configuration φ. Instead of making the decision on the best

configuration to use in advance, we allow the decision to be made during the selling

season. Therefore, in a given time period and depending on the set of vehicles to be

placed in the ferry, the decision of the price offered to a new customer arises from

considering all of the different configurations that can be used.

Let t′ ∈ T be the time period in which a new customer with a vehicle of type

i′ ∈ I arrives. In order to decide whether the new vehicle fits, it is enough that the

algorithms used in Section 4.4 identify a feasible solution for one configuration φ ∈
{1, . . . ,Φ}. If there are one or more configurations that cannot accommodate vehicle

i′ and the vehicle is accepted, then these configurations are not considered in the next

time periods. For the dynamic ferry configuration formulation of the pricing problem,

the capacity envelope is constructed from the union of the capacity envelopes for each

individual ferry configuration. In practice we find that if selling a ticket to a given

vehicle type leads to a reduction in the possible ferry configurations then this will in

general lead to a lower expectation on future revenues. To offset this fall, a higher price

would be offered to the customer.

In order to solve the DP equations presented in Section 4.2 to optimality, we cal-

culate the value functions in all of the possible states obtained by all of the possible
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configurations in each time period.

6 Computational experiments

The computational results are generated using simulations based on the characteristics

of real data from a vehicle ferry operator, with up to 5 vehicle types and a capacity

of approximately 214 car equivalent units. We divide the computational experiments

into four parts. In Section 6.1 we present the price acceptance model used in our

experiments. In Section 6.2 we show the benefit of allowing dynamic capacity vectors

when solving the pricing problem to optimality. In addition, we compare the three

different methodologies we adopted in this paper to solve the derived packing problem:

exact method, FF and ML heuristics. The results show that there is a significant benefit

when the packing is solved to optimality. In Section 6.4 we analyze the results obtained

for instances where the configuration of the ferry can be altered. We show that the

algorithm allowing dynamic configurations described in Section 5 obtains significant

improvements in expected revenue compared to the solutions obtained by solving each

configuration separately. Finally, and based on the results obtained in Sections 6.2

and 6.4, we present results obtained when implementing the models on the largest real

instances provided by a UK ferry operator.

The algorithms were coded in C++, MVS2013, and run on a i5-5300U CPU, with

2.30 GHz and 16 GB of RAM. The MILP models were solved using CPLEX, version

12.6.2.0.

6.1 Price acceptance model

This price acceptance model has been described elsewhere (Bayliss et al. (2018),

Bayliss et al. (2016)) and is included here for completeness. The method will work

with different functional forms for the price acceptance model, assuming that the key

assumption that probabilities of purchase are independent of the prices on offer for

different vehicle types is true.

We assume that the probability that a customer will purchase space for an item at

price p, at time t before departure is equal to

αt,p = d













1

1 + e
k
(

p

q
− f
)













(

a + (b − a)
(

1 − t

T

)c)

, (6.1)

where d = 1 + e−k f is a normalising factor and a, b, c, k, f and q are parameters to be

set for a particular problem instance.

The model has two multiplicative components, one for time and another for price.

A logistic curve is used to model the price component, whilst a general non-linear

model is used to capture the effect of time-until-departure on price acceptance. The

parameter f controls the mid-point of the logistic curve and equivalently the skewness

of the reservation price distribution. The choice of price-dependence suits the sale of

goods in a competitive market because the demand elasticity is highest at prices close

to the market price (Phillips, 2005). The parameter k controls the steepness of the
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sigmoidal price acceptance curve and represents the the inverse of the variance of the

willingness-to-pay distribution.

Parameters a and b scale the probability of price acceptance at the beginning and

end of the selling season respectively. The relative values of a and b result in three

situations: (i) b > a price acceptance increases over time (e.g. transportation); (ii)

a > b price acceptance decreases over time (e.g. fashion retailing); (iii) a = b price

acceptance is independent of time (e.g. durable goods). The value of c (> 0) accounts

for any non-linear effects of time on the probability of price acceptance.

Since the parameters of this price acceptance model {a, b, c, k, f , q} have intuitive

meanings, the burden of fitting them to real data can be simplified. We suggest that

a and b can be estimated from website click data; f is located at the mode of the

willingness to pay distribution and k can be estimated from the average variance in

price acceptance over time. The q parameter is the assumed upper limit on the price.

6.2 Data instances with one ferry

We have generated eight instances based on real data arising from two different ferry

types and the number of vehicle types ranging between two and five. We specify below

the ferry dimensions, the vehicle types and finally the parameters used to estimate the

customer arrival rates and the price acceptance probability used in each time period.

In all eight instances we assume T = 1000 time periods. Note that we assume that

at most one arrival occurs during each time period. Therefore, we set the length of

the time periods based on the arrival rates. If we assume that the arrival rate for each

vehicle type is constant during the selling season then the time periods would have the

same length, so for a typical selling period of six months the length of the time periods

correspond to 6/1000 ≈ 4.38 hours.

Ferries: The first four instances were generated from a ferry which has six lanes in

total, all with the same available length (37.04m). There is no restriction on the height

but the lanes have different widths: two lanes with 2.34m, two lanes with 2.93m and

two lanes with 3.42m to accommodate wider vehicles. We denote this ferry as RMF

and consider four instances: RMF 2, RMF 3, RMF 4 and RMF 5, with two, three,

four and five vehicles types respectively.

The second ferry, denoted as RFF, has one main deck, another top deck and two

movable mezzanine decks which can be used when necessary. The mezzanine decks,

when used, reduce the height available on the main deck in some areas from 4.9m to

2.7m (see Figure 3). Therefore, by using the mezzanine decks we reduce the capacity

for higher vehicles in the ferry whilst increasing the capacity for lower vehicles.

We consider four instances based on this ferry, with 2, 3, 4 and 5 vehicle types,

called RFF 2, RFF 3, RFF 4 and RFF 5.

Vehicles: Details of all five vehicle types are given in Table 1. The choice of cat-

egorization of vehicle types where the number of types is less than five is based on

differentiating the most important groups. With two vehicle types we split between

cars and lorries, types V2 and V5 such that the first vehicle type includes both V1 and

V2, and the second V3, V4 and V5. With three vehicle types we add the cars with trail-

ers and caravans, V2, V4 and V5. The classification with 4 vehicle types differentiates

the smaller cars, V1, V2, V4 and V5.
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Figure 3: Decks and lanes specifications in the ferry

When two or more groups are merged we combine their demands and use the di-

mensions of the larger group in the packing algorithms.

Table 1: Vehicle types used in the computational experiments. Dimensions listed are the max-

imum allowed for each vehicle type. Ticks indicate if a vehicle category is being used. (λi)

Vehicle Width Height Length RF2/RM2 RF3/RM3 RF4/RM4 RF5/RM5

V1 1.6m 1.5m 3m X X

V2 1.9m 1.5m 5m X X X X

V3 2.3m 2.5m 7m X

V4 2.9m 3m 9m X X X

V5 3.5m 4m 11m X X X X

Arrival rates and price acceptance model.

The arrival rates for each vehicle type vary between the instances and are summarized

in Table 2. We consider high-demand scenarios in which the ferry is likely to fill up as

this provides the best test of the methods described here.

The price acceptance probabilities for each customer type in each time period are

given by the price acceptance model presented in (6.1). We set c = 2 to capture the

effect that price acceptance probabilities increase at a faster rate as the time of depar-
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Table 2: Arrival rates (λi)

Instances V1 V2 V3 V4 V5 P(no arrival)

RMF2/RFF2 - 0.65 - - 0.25 0.1

RMF3/RFF3 - 0.65 - 0.2 0.05 0.1

RMF4/RFF4 0.40 0.25 - 0.2 0.05 0.1

RMF5/RFF5 0.40 0.25 0.15 0.05 0.05 0.1

ture draws closer; d = 0.5 to capture a competitive market where price sensitivity is

at its highest at the average market price; k = 10 is used to model a fairly wide vari-

ance of willingness-to-pay, which can be justified as considering a worst case scenario.

Parameters a = 0.5 and b = 1 are used to model low levels of price acceptance at

the beginning of the selling season, which increases as we approach departure. In this

work we assume that the maximum price qi that a customer for each vehicle type can

pay is proportional to
√

li. This approximates the trend for larger (freight) vehicles to

pay less per meter than smaller, more infrequent traffic. Freight vehicles tend to travel

more frequently and expect a discount on the price per lane meter in return for a guar-

anteed minimum level of crossings. The other parameters of the model are assumed to

be equal for all vehicle types.

Table 3 shows the solutions to the Fixed Allocation Problem (see Section 4.3) ob-

tained for the RM instances. The first column shows the instance name, the second

column the number of capacity vectors (non-dominated solutions when applying the

algorithm from Section 4.3), and the third, fourth and fifth columns show, respectively,

the average, minimum and maximum expected revenues obtained when solving Equa-

tion 4.1 for all of the capacity vectors. For instance, in instance RMF 5 we solve 3601

different problems. The values of the revenues compared between instances show the

benefit of considering a better discretization for the vehicle types.

Table 3: Number of possible solutions, average, minimum and maximum revenue for the Fixed

Allocation Problem.

Instances #states Av. R Min. R Max. R

RMF 2 34 30.76 18.76 44.77

RMF 3 252 31.52 19.11 44.02

RMF 4 532 32.27 21.87 47.63

RMF 5 3601 32.31 23.30 48.12

In Table 4 we present the solutions obtained for the Dynamic Allocation Problem

(see Section 4.4), when applying the FF and ML heuristics and the exact model to

decide whether a new vehicle fits in the ferry or the new customer should be rejected.

Each of these approaches solves the dynamic pricing problem in Equation (4.1) to

optimality. For each approach we report the total number of states considered, the

expected revenues and the time needed to solve both the packing problems and the

pricing problem. As expected, the number of states is always greater when solving the

packing problem to optimality using the MILP (Exact). Between instances with four

and five vehicles types, RM 4 and RM 5, we can observe that FF obtains a slightly
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higher number of states and expected revenues than ML.

For RMF 5, the computation time for the exact algorithm is 40% greater than for

applying just the heuristics. However, note that we are solving the off-line problem,

i.e, the policy price to offer each vehicle type in each state at each time period will be

known before starting the selling season. Therefore, the computational time is not a

strong restriction when solving this pricing problem.

Table 4: Number of states, expected revenue and computational time in seconds for the Dynamic

Allocation Problem.

Instances
ML FF Exact

#states Exp R Time (sec) #states Exp R Time (sec) #states Exp R Time (sec)

RMF 2 252 60.27 1 254 60.35 1 256 60.47 4

RMF 3 2173 60.53 9 2293 60.79 9 2386 61.10 25

RMF 4 51577 77.57 1806 55484 77.32 1927 62771 79.00 2595

RMF 5 334816 78.04 12368 366644 78.07 13261 441378 79.60 17484

When comparing the results obtained for the Fixed Allocation Problem in which

booking limits are predetermined before starting the selling season (Table 3), with those

of the Dynamic Allocation Problem (Table 4), we can observe that the optimal fixed

booking limits (Max. column in Table 3) produce expected revenues lower than the

expected revenues obtained by any of the dynamic approaches. Note that the dynamic

capacity approaches do not reject any customer if the vehicle fits, while the fixed book-

ing limits strategy has fixed quotas for vehicle types and therefore may waste more

space. From these results we can conclude that there is a considerable increase in

the expected revenues (over 30%, and up to 65%) when solving the packing problem

dynamically rather than fixing the capacities.

In Figures 4 and 5 we present the results obtained from 10, 000 runs of a simulation

model for instances RM 2 and RM 3 respectively for the Dynamic Allocation Prob-

lem. Backing up the results from the dynamic programming, we can observe that with

more vehicle types there is a greater difference between the heuristics and the exact

algorithm. In both cases the ML and FF heuristics behave similarly, obtaining almost

the same average and same shape for the revenue frequency distribution.

In Figures 6 and 7 we present different quantiles of the total length of the vehicles

booked in each time period when solving the problem with the exact algorithm for

instances RM 2 and RM 3 respectively. It is worth noting that in the first and in the

last time periods, the total length range is in a much narrower interval, with capacity

running out at the end of the selling season. It is interesting to observe that despite the

somewhat greater variability in the middle of the selling season, the dynamic pricing

ensures that the utilisation is in a relatively narrow range when sales close.

6.3 Interaction between packing and pricing

In Figure 8 we plot the future expected revenue for instance RMF 2, at the beginning

of the selling season (left vertical axis) against the total length of vehicles (x-axis) for

each of the possible states. This illustrates the interaction between packing and pricing:

we see that it is possible for states which have a greater length of vehicles booked to
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Figure 4: Expected revenues with instance RM 2

Figure 5: Expected revenues with instance RM 3

have higher expected future revenues than states with a shorter total length of vehicles

booked. This is due to the efficiency of the packing: some vehicle mixes will be easier

to pack efficiently than others, resulting in less wasted space. By taking account of

the quality of the packing, the dynamic pricing algorithm will set prices for different

vehicle types that reflect the ease of packing the resulting vehicle mix whilst also taking

future expected demand into account. The effects of packing interactions become more

pronounced as deck space runs out and the ferry nears capacity.

It is important to highlight here that the approach in which the MILP1 model is

used finds all of the possible states, whereas the two packing heuristics may fail to find

some states. This can result in lower revenues if the states that the heuristics do not

find are likely to be used in practice.
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Figure 6: Quantiles of the lengths of vehicles booked over time using the exact model for scen-

ario RM 2

6.4 Results for dynamic configurations

In this section we compare the results obtained when solving instances RMF 2, RMF 3

and RMF 4 with all of the 18 possible ferry configurations. We compare the exact

algorithm (Section 4.4.3) and the dynamic configuration approach presented in Section

6.4 to assess the impact of the layout on the expected revenues.

We use the ferry defined previously and allow the width of the lanes to be 2m,

fitting only two vehicles types; 3m, fitting the third vehicle type as well; or 4m, where

all vehicle types can be placed. We consider 18 possible combinations of lanes of width

2m, 3m and 4m within the width of the ferry. The feasible non-dominated combinations

are shown in Table 5.

Table 5: Combination of lanes

Combination #2m #3m #4m Combination #2m #3m #4m

1 8 0 0 10 2 4 0

2 7 1 0 11 2 3 1

3 6 0 1 12 2 0 3

4 5 2 0 13 1 5 0

5 5 1 1 14 1 2 2

6 4 3 0 15 1 1 3

7 4 0 2 16 0 4 1

8 3 2 1 17 0 3 1

9 3 1 2 18 0 0 4

Table 6 presents the results obtained by applying the exact algorithm to each of the

18 configurations. The final row shows the result obtained by the Dynamic Configur-

ation algorithm described in Section 5, where all of the possible ferry configurations

are considered. We observe that the revenue is higher than for any of the fixed con-
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Figure 7: Quantiles of the lengths of vehicles booked over time using the exact model for scen-

ario RM 3

figurations but, for each instance, there is a configuration which produces an expected

revenue close to that for the Dynamic Configuration algorithm, e.g., configuration 2 for

RMF 2. The reason being that this configuration matches the vehicle demand pattern

well. The number of states varies between ferry configurations because the number

of possible vehicle mixes will be different; and a higher number of states does not

necessarily mean a greater expected revenue.

6.5 Larger Instances (RFF)

In Table 7, we present the solutions obtained for the larger instances derived from real

data from a UK ferry operator. These are bigger than the instances used in the previous

experiments. We apply both the ML and FF heuristics as well as the exact model

described in Section 4.4.

The results obtained mimic those of Table 4 but with longer computation times. We

enumerate more states when solving the packing problem to optimality using MILP1

than using the ML or FF heuristics and the additional states we find allow us to obtain

greater expected revenues. This demonstrates that, for real-life problems, the quality of

the packing solution used when optimizing the prices, has a definite beneficial effect on

the revenues. Although we see a large increase in computational time for five vehicle

types on this problem, it can still be solved using a reasonable amount of computational

effort given that the problem is to be solved off-line.

7 Conclusions

We have described an exact optimization method that can be used for pricing different-

sized products that must be packed into a three-dimensional space. The problem was

simplified by assuming that the products have to be allocated to lanes, but clearly

demonstrates through the numerical results that understanding how the products will
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Table 6: Expected revenues, number of states and computation times for the 18 ferry configura-

tions and the Dynamic Configurations Algorithm (DC)

Config
2 vehicle types 3 vehicle types 4 vehicle types

#states Exp R Time(sec) #states Exp R Time(sec) #states Exp R Time(sec)

1 85 52.59 1 85 43.83 1 6547 49.07 103

2 639 62.06 4 639 57.66 5 41415 60.89 589

3 973 61.95 9 973 64.24 10 51630 65.15 759

4 1087 59.53 8 1087 61.93 11 46196 63.49 835

5 981 56.19 8 981 57.67 11 34117 60.54 813

6 372 58.7 2 811 51.59 5 54463 56.07 729

7 576 61.12 3 2059 57.93 17 117501 61.85 1574

8 697 59.5 5 3420 61.24 39 161000 65.38 2273

9 735 56.19 6 4485 59.49 66 167489 63.37 2413

10 690 52 5 4845 54.86 52 136687 58.52 2109

11 788 61.87 5 2554 63.01 26 139662 66.28 1874

12 984 59.53 7 3417 63.92 31 147988 66.48 2099

13 960 56.19 7 3400 59.49 31 115457 62.77 2013

14 854 59.53 7 4255 63.58 49 190031 67.13 2625

15 912 56.19 6 4911 60.19 48 167212 63.37 2436

16 837 56.19 6 5333 60.15 63 187084 63.47 2713

17 737 52 5 5379 54.97 60 142573 58.52 2281

18 562 47.03 5 4091 48.93 53 85503 52.93 1798

DC 1338 62.57 12 8385 64.71 143 327599 67.53 5323

Table 7: Expected revenue, number of states and computation times for real instances

ML FF Exact (MILP1) Exact (MILP2)

Instances #states Exp R Time (sec) #states Exp R Time (sec) #states Exp R Time(sec) #states Exp R Time(sec)

RFF 2 1031 118.22 8 1031 118.22 8 1031 118.22 10 2271 119.34 41

RFF 3 5189 120.32 57 5189 120.32 58 5189 120.32 70 25729 121.98 1081

RFF 4 47504 122.73 694 47749 122.73 724 130330 133.85 2894 215021 137.19 9261

RFF 5 600676 126.09 12292 600722 126.09 12600 888950 131.89 113472 898645 139.05 117402
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Figure 8: Expected revenues from each state on instance RMF 2 (two vehicle types)

be packed and providing good measures of the utilization of the available space during

the selling season results in higher revenues. Fixing the individual booking limits for

product types in advance is shown to be a poorer strategy with regard to revenue than

being flexible about the numbers of each product type to accept. Accounting for the

packing dynamically and allowing allocations to change dynamically based on realized

demand can increase revenue by up to 65%.

The method we adopt involves allocating products to lanes of a fixed width and

height using a bin-packing methodology. By introducing a soft width constraint in

MILP2, we allow products to be assigned to two lanes if they exceed the width of one

lane. This is something that we have observed in practice but have not seen modeled

before. As we are still solving a one-dimensional bin-packing problem, the computa-

tional effort involved in solving this is not dramatically higher.

Allowing the decision over the configuration of the lanes to be flexible also im-

proves the revenue results and allows the method to be used in situations where there

is high variability in the numbers of different product types being bought during each

time period. As the algorithm is designed to run offline, the computational time is not a

strong constraint but we show in the final set of computational results that we can solve

real-world instances in a reasonable length of time.
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