
This is a repository copy of A feature-importance-aware and robust aggregator for GCN.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164494/

Version: Accepted Version

Proceedings Paper:
Zhang, L. and Lu, H. orcid.org/0000-0002-0349-2181 (2020) A feature-importance-aware
and robust aggregator for GCN. In: CIKM '20: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. CIKM '20: The 29th ACM
International Conference on Information and Knowledge Management, 19-23 Oct 2020,
Online conference. Association for Computing Machinery (ACM) , pp. 1813-1822. ISBN
9781450368599

https://doi.org/10.1145/3340531.3411983

© 2020 Association for Computing Machinery. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Feature-Importance-Aware and Robust Aggregator for GCN

Li Zhang
Department of Computer Science,

University of Sheield
Sheield, UK

lzhang72@sheield.ac.uk

Haiping Lu
Department of Computer Science,

University of Sheield
Sheield, UK

h.lu@sheield.ac.uk

ABSTRACT

Neighborhood aggregation is a key step in Graph Convolutional

Networks (GCNs) for graph representation learning. Two com-

monly used aggregators, sum and mean, are designed with the

homophily assumption that connected nodes are likely to share

the same label. However, real-world graphs are noisy and adjacent

nodes do not necessarily imply similarity. Learnable aggregators

are proposed in Graph Attention Network (GAT) and Learnable

Graph Convolutional Layer (LGCL). However, GAT considers node

importance but not the importance of diferent features. The convo-

lution aggregator in LGCL considers feature importance but it can

not directly operate on graphs due to the irregular connectivity and

lack of orderliness. In this paper, we irstly unify the current learn-

able aggregators in a framework: Learnable Aggregator for GCN

(LA-GCN) by introducing a shared auxiliary model that provides a

customized schema in neighborhood aggregation. Under this frame-

work, we propose a new model called LA-GCNMask consisting of

a new aggregator function, mask aggregator. The auxiliary model

learns a speciic mask for each neighbor of a given node, allowing

both node-level and feature-level attention. This mechanism learns

to assign diferent importance to both nodes and features for pre-

diction, which provides interpretable explanations for prediction

and increases the model robustness. Experiments on seven graphs

for node classiication and graph classiication tasks show that

LA-GCNMask outperforms the state-of-the-art methods. Moreover,

our aggregator can identify both the important nodes and node

features simultaneously, which provides a quantiied understand-

ing of the relationship between input nodes and the prediction.

We further conduct experiments on noisy graphs to evaluate the

robustness of our model. Experiments show that LA-GCNMask con-

sistently outperforms the state-of-the-art methods, with up to 15%

improvements in terms of accuracy compared to the second best.

KEYWORDS

Graph convolutional networks, Mask aggregator, Feature-level

attention

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM’20, October 19-23, 2020, GALWAY, IRELAND

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

0

1
2

4
5

3

1 1 1
0 0 0
0 0 0
0 0 0
0 0 1

1 0
0 0
0 0
0 1
0 0

0 1 2 3 4 5

A A A A B B

1
0
0
1
0

Class:
Node features:
“neuron”

“posterior”

Central
node0

1

2

4
5

3

Figure 1: A six-node subgraph from the Cora [25]. Each

node corresponds to a machine learning paper, with a bag-

of-words feature vector x� (� = 0, 1, 2, ..., 5). Nodes 0ś3 belong

to Class A (Neural Networks), and nodes 4ś5 belong to Class

B (Probabilistic Methods). Individual features in x� are not

equally important for representing the central node 0.

ACM Reference Format:

Li Zhang and Haiping Lu. 2020. A Feature-Importance-Aware and Robust

Aggregator for GCN . In Proceedings of CIKM’20: ACM International Confer-

ence on Information and Knowledge Management (CIKM’20).ACM, GALWAY,

IRELAND, 10 pages.

1 INTRODUCTION

Graph Convolutional Network (GCN) is a powerful tool for machine

learning on graphs [21]. It learns a new representation of a given

node by aggregating information from neighbors, which naturally

combines graph structure and node features in the learning process.

The aggregator in GCN aggregates the feature vectors of its neigh-

bors with ixedweights that are inversely proportional to the central

and neighbors' node degrees. Later, some other aggregators were

proposed: mean, pooling, LSTM [14] and sum aggregator [37]. In

supervised learning, these aggregation strategies are designed with

the assumption that connected nodes in a graph are likely to share

the same label, i.e. homophily, which has been widely used in graph

neural networks (GNNs) [6, 9] and graph-Laplacian regularization

methods including label propagation, manifold regularization and

deep semi-supervised embedding [5, 36, 45].

Edges in real graphs are often noisy or deined via user-deined

thresholds [22]. Therefore, the edges may not clearly correspond to

label agreement uniformly across the graph [31]. In Cora, Citeseer

and PubMed, 19%, 26%, and 20% of the edges, respectively, connect

with nodes from diferent classes. Besides, each feature within a

neighbor feature vector may play a diferent role for the central

node's representation learning [15, 24, 44]. Figure 1 shows an ex-

ample. The central node 0 belongs to Class A (Neural Networks) and

it can be cited (i.e., connected) by papers from Class B (Probabilistic

Methods). Node 5 from Class B may contain some common features

with the central node 0 from Class A, e.g., neuron, and also some

CIKM’20, October 19-23, 2020, GALWAY, IRELAND Li Zhang and Haiping Lu

features more unique for Class B, e.g., posterior. Thus, the feature

neuron should be more important than posterior for representing

the central node. In such cases, mean, pooling, or sum aggregators

are not optimal choices in learning useful representations from the

noisy neighborhood of the central node. It is necessary to ilter

both node and feature information before aggregation, especially

for graphs with node features.

Thera are also learnable aggregators proposed to automatically

ilter the neighborhood information. Graph Attention Network

(GAT) borrows the idea of attention mechanisms [3, 32] to learn

to assign diferent weights to diferent neighbors in aggregation

[33]. However, all individual features in a feature vector are treated

equally. Learnable Graph Convolutional Layer (LGCL) performs

convolution operation in the aggregation process, which can as-

sign diferent weights to diferent features [10]. But, using regular

convolution operation on graphs requires the number of neighbor-

ing nodes for each node remains the same, and these neighboring

nodes are ordered. LGCL transforms the graph into grid-like struc-

ture by selecting the top-� values in each feature dimension from

all the neighbors. The covolutional operator mixes or reorganizes

neighborhood information, which makes it diicult to interpret the

learned representation because we can not distinguish which node

and feature have a salient inluence on the prediction result.

This paper aims to design a more adaptive and interpretable

aggregator satisfying the following ive Desirables.

• D1 & D2: To deal with graph structures, the aggregator

should 1) be able to handle variable-sized neighbors [26, 33],

and 2) be invariant to the ordering of neighbors [26]. Unlike

images and sentences, graphs usually have no regular con-

nectivity and neighboring nodes have no natural ordering.

• D3 & D4: To enhance the discriminating power, the aggre-

gator should 3) be discriminative to node-level and feature-

level neighborhood information [10, 33], 4) be able to dis-

criminate graph structures in the embedding space [37]. Real-

world graphs are noisy and the aggregator should automati-

cally identify the important information from the neighbor-

hood.

• D5: For practical applicationswhere interpretability is needed,

the aggregator should 5) be able to explain learned represen-

tations in relation to the prediction and robust to structure

and feature noise. Real-world data are often noisy so aggre-

gating information from noisy graph structures and node

features can cause signiicant diiculties in accurate predic-

tion and useful interpretation [40]. An explainable and robust

aggregator can increase the trustworthiness and real-world

performance.

To this end, we unify current learnable aggregators in a general

framework: learnable aggregator for GCN (LA-GCN). This frame-

work introduces an auxiliary model that can extract customized

high-level knowledge from a given node's neighbors to guide the

aggregation process. Under this framework, we propose a new

model called LA-GCNMask consisting of a new aggregator function,

mask aggregator, and a carefully designed auxiliary model shared

by all nodes in a graph that satisies D1 and D2. Firstly, a given

node and its neighbors are fed into the auxiliary model to get a spe-

ciic mask for each neighbor. Then the mask aggregator performs

a Hadamard product between the feature vector of each neighbor

and its corresponding mask before aggregation. In this way, the

mask aggregator can learn to assign diferent weights to diferent

features in diferent neighbors, which leads to better discriminative-

ness to node and feature information (D3) and also enables better

interpretation of the learned representation (D5). The proposed

aggregator sums up all the iltered neighbors of the central node as

its learned representation, meeting D4.

We evaluate LA-GCNMask on three popular citation graphs and

one large social graph for node classiication, and three bioinfor-

matics graphs for graph classiication. Our results conirm that

node-level and feature-level attention of neighborhood informa-

tion in aggregation can lead to signiicant performance gains. In

addition, we visualize the learned mask to show that it can identify

important features and nodes, which provides an interpretable ex-

planations for prediction. Finally, we study the robustness of our

model on graphs with structure and node feature noise.

In both structure-noisy and feature-noisy graphs, LA-GCNMask

consistently outperforms popular baselines (GCN, GAT and LGCL),

with up to 9.82% (Cora) and 15.05% (Citeseer) improvement on

structure-noisy graphs and 10.67% (Cora) and 3.60% (Citeseer) im-

provement on node feature-noisy graphs, in terms of node classii-

cation accuracy.

In summary, our contributions are threefold:

• We unify several existing methods in a LA-GCN framework

and propose a new mask aggregator, a new attention mech-

anism allowing both node-level and feature-level attention.

• We comprehensively evaluate the superiority of the pro-

posed LA-GCNMask on seven graphs with diferent sizes and

types for both node and graph classiication tasks.

• We demonstrate that the proposed model can provide in-

terpretable explanation for the prediction, also study the

robustness of our model on both structure and node feature

noisy graphs.

2 RELATED WORK

Graph Neural Networks (GNNs) were introduced in Gori et al. [12]

and Scarselli et al. [29] as a generalization of recursive neural net-

works that can directly deal with a more general class of graphs, e.g.

cyclic, directed and undirected graphs. Node representation learn-

ing via GNNs consists of two key steps: neighborhood aggregation

and feature transformation.

In neighborhood aggregation step, neighbors of a given node

are aggregated (with or without the central node) to get the ag-

gregation result. In feature transformation stage, the central node

irst combines with the aggregation result to get a combined vector,

which is followed by a linear mapping or a multi-layer perceptrons

(MLPs) [17, 18] to get the new representation of a given node. This

schema iteratively updates the representation of a node by aggre-

gating representations of its neighbors and transformation, which

can also be treated as a general neural message-passing process

[11] or relational inductive bias model [4].

Later, Hamilton et al. [14] proposed mean, pooling and LSTM

aggregators in GraphSAGE. Mean aggregator simply takes an ele-

mentwise mean of a given node's neighbors, pooling aggregator

applies an elementwise max-pooling on the neighbors and LSTM

LA-GCNMask CIKM’20, October 19-23, 2020, GALWAY, IRELAND

aggregator applies LSTM [16] to a random permutation of the neigh-

bors. Note that the neighborhood in GraphSAGE can come from a

diferent number of hops, or search depth, away from a given node.

After getting the aggregated result, GraphSAGE concatenates it

with the central node and feeds the concatenated feature vector

into a fully connected layer with nonlinear activation function in

the feature transformation stage. However, mean, pooLing aggre-

gators are not injective functions and fail to distinguish diferent

graph structures. Xu et al. [37] generalizes the WL algorithm [35],

a powerful algorithm known to distinguish graph structures, and

proposes sum aggregator in graph isomorphism network (GIN).

Instead of summing the labels [35], GIN sums a given node with its

neighbors in the neighborhood aggregation step.

The mentioned aggregators are all predeined heuristics that

connected nodes tend to be similar, but it is debatable, because

real-world graphs are noisy or have edges that do not correspond

to label agreement. Some strategies have been proposed to make

the aggregator learnable. In GAT [33], the aggregator aggregates

the neighbors corresponding to the learned attention coeicients

that indicate the importance between two nodes. However, all the

features are still treated equally within a feature vector, for each fea-

ture shares the same weight in the aggregation. LGCL [10] applies

convolution operation on the reconstructed neighbors' feature map

(choosing the top-� values in each feature dimension from all the

neighbors). The reconstruction can achieve the transformation from

graphs to grid-like data, but it breaks the original correspondence

between node features. Besides, the ilter in the convolution process

can only work on ix-sized feature maps, and using convolution

in the aggregation process is not suitable to learn from unordered

neighbors with variable-size.

Recalling the desirable characteristics of an aggregator in Sec. 1,

we ind that above mentioned aggregators can not satisfy all these

desiderata.

3 LA-GCN

We unify current learnable aggregator in one framework: LA-GCN,

that utilizes an auxiliary model to guide the aggregation process,

which enables the aggregator to satisfy all the desirables. In this

section, we irst describe the framework, followed by theoretical

motivation for our model: LA-GCNMask. Then, we compare our

model with prominent GCN based methods.

3.1 Notation and Problem Deinition

An undirected graph with � nodes can be represented as G=
(V, E,X), where node �� ∈ V , edges (�� , � �) ∈ E (�, � = 1, ..., �),

an adjacency matrix A ∈ R�×� , and a feature matrix X ∈ R�×�

containing � �-dimensional feature vectors. The neighborhoodN�
= { �� ∈ V | (v� , � �) ∈ E} is the set of adjacent nodes of �� . A hidden

representation of node �� learned by the �-th layer of a model is

denoted by h
(�)
� ∈ R�� (�� < �) and we initialize h

(0)
� = X� .

Predictions on graphs are made by irst embedding nodes X into

a low-dimensional space H, which is used for down-stream tasks,

such as node classiication, graph classiication.

Different
graph

information

High-level
rules

Auxiliary
model

Aggregator Aggregation
output

train
extract

assist

Figure 2: LA-GCN framework. The key idea is to utilize an auxil-

iary model to assist the aggregator to deal with diferent neighbor-

hood information in a customized schema.

3.2 Framework

A key challenge is how to design an eicient aggregator that suits

for each node in a graph since each node has diferent neighbors

no matter the numbers or categories, and satisies the mentioned

desirables. Intuitively, this requires each node with a speciic model,

which is quite impossible, for real-world graphs can containmillions

or billions nodes [13].

Inspired by the weight sharing property of CNNs [23] and atten-

tion mechanism [32], we use a shared auxiliary model to extract

high-level knowledge or rules from the given graph information,

and the learned rules are used to assist the aggregation process

as shown in Fig 2. It is a lexible and general framework that can

unify mentioned GAT [33] and LGCL [10], and we give a detail

comparison in Section 3.4.

3.3 Methodology

Under this framework, we carefully design our auxiliary model

and propose a new aggregation function: mask aggregator. Our

ultimate goal is to design an aggregator that can satisfy all the

disirables. We start from the theoretical study of the aggregator

function, which enables the formulation of our aggregator that

simultaneously satisies our desirables.

3.3.1 Theoretical Studies of aggregator. In this subsection, we

mainly study the aggregator function from graph datasets's per-

spective and the aggregator's expressive capacity.

In generic graphs, the numbers of neighboring nodes usually

difer for diferent nodes in a graph, and there is no order infor-

mation based on which we can order them to ensure the output is

deterministic. These special characters of graph datasets require

the aggregator should be a permutation-invariant function that can

deal with variable-sized and unordered neighbors (D1, D2).

Permutation invariant study. Permutation invariance is an

important property for aggregator since there is no natural order in

most real graphs. The neighborhood aggregation scheme iteratively

updates the representation of a node by aggregating representations

of it neighbors. To mathematically formalize the above insight, the

aggregation process can be generically written as follows:

s
(�−1)
� = �

(�)
�� (h(�−1)� , � ∈ N�), (1)

where �
(�)
�� is the predeined aggregation function (aggregator) in

the �-th layer of a model.

The aggregator �
(�)
�� can be seen as a function over the full mul-

tiset of node neighbors. Following [37], a multiset is a generalized

concept of a set [41] that the same element can appear multiple

CIKM’20, October 19-23, 2020, GALWAY, IRELAND Li Zhang and Haiping Lu

Auxiliary
model

* * *

Learned Mask

Aggregation

Node feature

Hadamard product

New
representation

Figure 3: LA-GCNMask consists of three steps: 1) train an auxiliarymodel with a given node and the feature vectors of its neighbors; 2) generate

the mask for each neighbor from the auxiliary model; 3) aggregate the neighbors (after multiplying the corresponding mask) to get a new

representation of the central node.

times since diferent nodes can have identical feature vector. Recall

that one of the desiderata is that the aggregator �
(�)
�� should be a

mutiset permutation invariant function. Following [41], a permuta-

tion invariant function on multiset can be deined as:

Definition 1. A function f is permutation-invariant if

� (
{

h1, h2, ..., h |N� |
}

) = � (
{

h� (1) , h� (2) , ..., h� (|N� |)

}

) (2)

for any permutation � and |N� | is the length of the sequence.

We will use Π |N� | to represent the mutiset of all permutations of

the integers 1 to |N� | and h� , � ∈ Π |N� | , represents a reordering of
the mutliset according to � . The following theorem in [41] shows

the relation between set and permutation invariant function.

Theorem 1. A function operating on amultiset
{

h1, h2, ..., h(|N� |)
}

having elements from a countable universe, is a valid set function. It

is invariant to the permutation of instances in the multiset, if it can

be decomposed in the form � (∑� ∈Π |N� |
� (h�)), for suitable transfor-

mations � and � .

The structure of permutation invariant function in Theorem 1

hints a general strategy for inference over mutiset. In other words,

the key is to add up all representations and then apply nonlinear

transformation.

Sum, mean, pooling aggregators and aggregators in GCN and

GAT can be formulated as this format. GCN and GAT add up all

neighborhood neighbors with ixed weights or learnable weights,

as shown in Eq. 3 and Eq. 4, respectively.

s
(�−1)
� = �

(�)
��� (h

(�−1)
�) =

∑

� ∈N�
h
(�−1)
� /

√

��� � . (3)

where �� and � � are the node degrees of node �� and node �� respec-

tively.

s
(�−1)
� = �

(�)
��� (h

(�−1)
�) =

∑

� ∈N�
�� �h

(�−1)
� , (4)

where �� � is a learnable attention coeicient that indicates the

importance of � � to �� . But convolution aggregator in LGCL is not

permutation-invariant function, for the output of the aggregator

will change if the inputs are reordered, and it can not deal with

variable-sized data directly.

Algorithm 1 LA-GCNMask (one iteration)

Input: G= (V, E,X) with � nodes;

Adjacency matrix A ∈ R�×� ;
Feature matrix X ∈ R�×� ;
Auxiliary model � ;

Output: Vector representation h
(�)
�

for each �� ∈ V do

for � ∈ N� do
m

(�−1)
� = � (∥h(�−1)� , h

(�−1)
�)

s
(�−1)
� =

∑

� ∈N� h
(�−1)
� ∗m(�−1)

�

h
(�)
� = � (W(�) (h(�−1)� + s

(�−1)
�))

end for

end for

Discriminative power study. From the aggregator's expres-

sive capacity, there are mainly three tasks: One is to learn the

interactions between self node and its neighborhood (node-level

distinguish); The second one is to learn the interactions between

diferent dimensions of the node features, which will extract use-

ful combinatory features automatically (feature-level distinguish).

The inal one is to discriminate graph structures (structure-level

distinguish) (D3, D4).

Sum aggregator are injective function in structure-level, while

mean and pooling aggregators are not, which has been proved in

[37]. Notice that this property may suit better for graph classii-

cation task where graph structure plays a key role. Adding up all

neighbors' feature vectors may change the scale of the feature,

which may not be good for node classiication task. However, they

all can not treat the neighborhood information diferently in both

node-level and feature-level.

The aggregation process in GCN and GAT, as shown in Eq. 3

and Eq. 4, can discriminate the neigborhood information in node-

level, however all the features are treated equally within the feature

vector h
(�)
� , for each feature shares the same weight (��� �)−1/2 or

�� � . The convolution aggregator in LGCL allows for feature-level

attention, but it is not an optimal choice to deal with variable size

inputs and unordered graph datasets.

LA-GCNMask CIKM’20, October 19-23, 2020, GALWAY, IRELAND

3.3.2 Mask Aggregator. Based on the theoretical study and anal-

ysis, we design our aggregator function by extending sum aggrega-

tion function . Besides, the expected aggregator could do feature-

wise and node-wise modulation of the neighborhood information

in the aggregation process, which naturally inspires us to ilter

the neighborhood information before aggregation and the mask

aggregator are shown as following:

s
(�−1)
� = �

(�)
��� (h(�−1)�) =

∑

� ∈N�
h
(�−1)
� ∗m(�−1)

� , (5)

where h
(�−1)
� ∈ R��−1 , m(�−1)

� ∈ R��−1 is a speciic mask for each

neighbor, produced by the auxiliary model. Then we Hadamard

product to multiply each neighbor and its corresponding mask

before summation (D3,D4).

Theorem 2. �
(�)
��� is a permutation-invariant function acting on

inite but arbitrary length sequences h
(�−1)
� , � ∈ N� .

Proof. Given� =

{

h
(�−1)
1

, h
(�−1)
2

, ..., h
(�−1)
(|N� |)

}

, a inite multiset,

and h
(�−1)
� ∈ R��−1 , our aggregator aims to fuse it into a ixed

output s
(�−1)
� ∈ R��−1 as follows:

s
(�−1)
� = �

(�)
��� (h(�−1)�) =

∑

� ∈N�
h
(�−1)
� ∗m(�−1)

� , (6)

where m
(�−1)
� ∈ R��−1 is a speciic mask for each neighbor, pro-

duced by the auxiliary model. We irst feed the graph information

to an auxiliary model to get a mask m
(�−1)
� for each node h

(�−1)
� .

For a trained auxiliary model, m
(�−1)
� is a speciic and ixed mask

(vector) for each neighbor's latent vector h
(�−1)
� .

There exists a mapping function � : R
��−1 → R

��−1 that can

formulate h
(�−1)
� ∗m(�−1)

� to � (h(�−1)�), and Eq. 6 can be written

as:

s
(�−1)
� = �

(�)
��� (h(�−1)�) =

∑

� ∈N�
� (h(�−1)�), (7)

and � can be seen as � = 1. Eq. 8 can be seen as a permutation of

H, according to [41].

Next, we prove there exist an injective mapping function � , so

that �
(�)
��� (h(�−1)�) is unique for each inite multiset H.

Since H is countable, each h
(�−1)
� ∈ H can be mapped to a unique

element to prime numbers � (�): R� → P by a function � (h(�−1)�).
We can choose � (h(�−1)�) = − log� (h(�−1)�). Therefore,

�
(�)
��� (h(�−1)�) =

∑

� ∈N�
� (h(�−1)�) = log� (h(�−1)�) (8)

takes a unique value for each distinct H.

Besides, the dimension ��−1 of the latent space should be at least
as large as the maximum number of input elements |N� |, which is

both necessary and suicient for continuous permutation-invariant

functions [34].

For the universal approximation theorem [17], any continuous

function can be approximated by a neural network, we can use

mutlti-layer perceptrons (MLPs) tomodel and learn� and � = 1. □

Besides the provement, we state the derivatives with regard to

our aggregator. Assume parametrizations�� for � , we have

���
(
∑

� ∈N�
� (h′�

(�−1))) =
∑

� ∈N�
���

� (h′�
(�−1)),

this result shows the ordering is also irrelevant for the optimization

process.

Theorem 2 shows that �
(�)
��� of the multiset is a permutation-

invariant function (D2). The learnedmask can showswhich features

or neighbors are important, and ilter the noisy information, which

makes the aggregation results easier to explain and robust (D5).

A natural follow-up question is how to get the mask m
(�−1)
� .

Under our framework, mask is learned from an auxiliary model and

we hope the auxiliary model can 1) extract useful and high-level

knowledge (e.g., focusing on important nodes and features) from

neighborhood information to guide a better aggregation for the

central node's representation learning; 2) deal with diferent size

input datasets without reorganization.

Motivated by this, we feed both central node and its neighbors

into the auxiliary model. The auxiliary model can be an arbitrary

neural network that has no requirement for size or order of the

input datasets, e.g., MLP can be applied as the auxiliary model,

CNN or RNN can not be (D1). Considering the trade-of between

performance and eiciency, we apply an MLP with a single hidden

layer.

Given node and its neighbors ({ h
(�−1)
� , h

(�−1)
� , � ∈ N� }), we feed

each node-neighbor pair to an auxiliary model, deined as following:

m
(�−1)
� = ��� (�) (∥h(�−1)� , h

(�−1)
�)

= � (W(�)
� (∥h(�−1)� , h

(�−1)
�)),

(9)

where � is the activation function, e.g., sigmoid, RELU, W
(�)
� ∈

R
2��−1×��−1 is the weight matrix and ∥ denotes column-wise con-

catenation. The update rule for �� is

h
(�)
� = � (W(�) (h(�−1)� + s

(�−1)
�)), (10)

where W
(�) ∈ R��×��−1 is the learnable weight matrix. After �

iterations/layers, the inal representation h
(�)
� ∈ R�� .

For multi-class node classiication, h
(�)
� will be passed to a fully-

connected layer with a �� � ���� activation function. The loss func-

tion is deined as the cross-entropy error over all labeled examples:

L = −
∑

� ∈V�

�
∑

� =1

Y� � ln h
(�)
�

, (11)

whereV� is the set of node indices that have labels and �� is the

dimension of output features equaling to the number of classes.

Y� � ∈ R |V� |×� is a label indicator matrix.

For graph classiication, adding up all h
(�)
� or more sophisti-

cated graph-level pooling can be applied to get the entire graph's

representation.

CIKM’20, October 19-23, 2020, GALWAY, IRELAND Li Zhang and Haiping Lu

Table 1: Outline of related work in term of fulilled (
√
) and

missing (×) desirable characteristics (D3-nmeans node-level

attention and D3-f means feature-level attention in Desir-

able 3).

Desirable Mean Mean� Sum Sum�� ���� Mask

D1
√ √ √ √ × √

D2
√ √ √ √ × √

D3-n × √ × √ √ √

D3-f × × × × √ √

D4 × × √ √ √ √

D5 × × × × × √

3.4 Connections with Existing GCN Extensions

We compare our model with prominent GCN based models and we

study all these model from three aspects:

• Aggregator Sum [37] and mean [14] are two most com-

monly seen aggregators. The aggregator in GCN [21] can

be seen as a weighted mean aggregator (mean�), and the

weight is (��� �)−1/2, where �� , � � are the node degree of

central node �� and neighbor � � . In GAT [33], the aggregator

is a learnable weighted summation (sum��). Convolutional

operation (����) is used to aggregate the neighborhood in-

formation in LGCL [10]. Our aggregator function can be seen

as an extention of sum�� , which applies learnable masks to

ilter the neighborhood information before summation. We

summarize the relationship between desiderata and men-

tioned aggregator in Table 1. Our aggregator satisies all

desiderata, enabling a leap in model capacity. Furthermore,

analyzing the learned mask may lead to beneits in inter-

pretability.

• Auxiliary model. GCN, GraphSAGE [14] and GIN [37] do

not use any auxiliary model to guide the aggregation process,

and sum or mean the neighborhood directly. while a shared

convolutional layer and a shared single-layer feed forward

neural network are used in LGCL and GAT respectively.

Considering the limitation of CNN and RNN whose input

data should be ordered and ixed-size, we use a shared single-

layer feed forward neural network.

• Input and output of the auxiliary model. For GAT, the

input is node-neighbor pairs (input), and the auxiliary model

learns from them to get coeicients (output) between nodes,

which allows the aggregator to focus on most relevant nodes.

The aggregator adds up each neighbor corresponding to

the learned weight to get the aggregation output. However,

GAT only learns node-level attention. LGCL uses the reorga-

nized neighbor's embedding (input) that selects the d-largest

values for each feature from neighbors to calculate the con-

volutional ilter's weights (output). This strategy allows for

feature-level attention, but it can not deal with variable size

inputs (the number of adjacent nodes usually varies for dif-

ferent nodes in a graph), due to the limitation of convolution

operation. While we concatenate the central and neighbor

before feed in the auxiliary model, which can be viewed

as a simple form of a ł skip connection ž between diferent

Table 2: Overview of datasets for node classiication.

Dataset Nodes Edges Features Classes Train/Val./Test

Cora 2,708 5,429 1,433 7 1,208/500/1,000

Citeseer 3,327 4,732 3,703 6 1,827/500/1,000

PubMed 19,717 44,338 500 3 18,217/500/1,000

Reddit 232,965 11,606,919 602 41 152K/23K/55K

Table 3: Overview of datasets for graph classiication.

Datasets Graphs Classes Avg. nodes

MUTAG 188 2 18

PROTEINS 1,113 2 39

PTC 344 2 26

search depths and get the learned mask for each given node's

neighbor.

3.5 Computational Complexity

A key part in our method is the auxiliary model, and it is a shared

model by all nodes in a graph. So, the computation of the mask

can be parallelized across all nodes, which is highly eicient. The

computational complexity of Eq. (10) is O(| E | ×�� × ��−1+ | E |
×2��−1 × ��−1) and is in par with GCN (O(| E | ×�� × ��−1)). As
for the memory requirement, it grows linearly in the size of the

dataset and we perform mini-batch training to deal with this issue.

4 EXPERIMENTS

We perform evaluation on node classiication and graph classiica-

tion, and study our model's interpretability and robustness.

4.1 Datasets

We conduct node classiication on three citation graphs (Cora, Cite-

seer and PubMed) and one social network (Reddit), which have

been widely used in [1, 7, 10, 14, 21, 33, 38, 42]. Dataset statistics

are summarized in Table 2 and Table 3.

• Node classiication. In citation graphs, nodes correspond

to documents and edges to (undirected) citations. Node fea-

tures correspond to a sparse bag-of-words representation of

a document or frequency-inverse document frequency (TF-

IDF) of the word in the document. Each node has one class

label, e.g., each document in Cora has one of the seven class

labels (corresponding to seven machine learning subareas)

[30]. Reddit is a large online discussion forum where users

post and comment on content in diferent topical communi-

ties. The node label is the community, or łsubredditž, that a

post belongs to. The link means the same user comments on

both posts. Hamilton et al. [14] concatenates the the average

embedding of the post title, the average embedding of all

the post's comments, the post's score, and the number of

comments made on the post as node features.

LA-GCNMask CIKM’20, October 19-23, 2020, GALWAY, IRELAND

• Graph classiication.We use 3 bioinformatics datasets [37].

MUTAG is a dataset of 188 mutagenic aromatic and het-

eroaromatic nitro compounds with 7 discrete labels. PRO-

TEINS is a dataset where nodes are secondary structure

elements (SSEs) and there is an edge between two nodes

if they are neighbors in the amino-acid sequence or in 3D

space. It has 3 discrete labels, representing helix, sheet or

turn. PTC is a dataset of 344 chemical compounds that re-

ports the carcinogenicity for male and female rats and it has

19 discrete labels.

4.2 Baselines and Experimental Setting

Node classiication.We compare against 6 strong baselines: GCN

[21], GAT [33], FastGCN [7], GraphSAGE-mean [14], LGCL [10] and

MixHop [1] using the publicly released implementations. We split

the train/validation/test as [7, 14]. Our code are available online. 1

In our model, we irst utilize one GCN layer to reduce the di-

mension of the node feature to 64-dimension for Cora, PubMed and

128-dimension for Citeseer and Reddit. Then we apply a one-layer

neural network as the auxiliary model to learn masks for neighbors,

whose input dimension is 128×64 (Cora, PubMed) and 256×128
(Citeseer and Reddit). Hyperparameters are optimized with the

validation set [7]. Throughout the experiments, we use the Adam

optimizer [20] with learning rate 0.005 for Cora and PubMed, 0.002

for Citeseer, and 0.01 for Reddit. We ix the dropout rate to 0.5 for

the hidden layers' inputs and add an L2 regularization of 0.0001. We

employ the early stopping strategy based on the validation accuracy

and train 200 epochs at most. For Reddit, we use the mini-batch

training and the batch size (512) is set to be the same as FastGCN

and GraphSAGE.

For a fair comparison, we also use the hidden layer size of 64

units for GCN on Cora, PubMed and 128 for Citeseer, which ensures

the architecture is the same with ours model (except the auxiliary

model part). We use the same architecture as in the original papers

for GAT, LGCL, FastGCN, GraphSAGE and MixHop. We report

results over 20 runs with random weight matrix initialization.

Graph classiication. Here, we report the results for WL sub-

tree, DCNN [2], PATCHYSAN [27], DGCNN [43], AWL [19] and

GIN with its variants as in paper [37]. Following [37], we use 10-

fold cross-validation (nine folds for training and one for testing) for

graph classiication. Because of the small dataset sizes, hyperparam-

eters selection using a validation set is extremely unstable. Thus, we

report the average and standard deviation of validation accuracies

across the 10 folds within the cross-validation as in [27, 37, 39].

We use the following hyperparameters for MUTAG, PTC and PRO-

TEINS: 0.005 (learning rate), 16 (the number of hidden units), 0.5

(dropout ratio), 32 (batch size). We replace the sum aggregator in

GIN with our learnable aggregator and MLPs with two layers are

applied after aggregation. Batch normalization [20] is applied on

each hidden layer.

4.3 Node and Graph classiication Results

4.3.1 Compared with Baselines. Results for node classiication and

graph classiication are summarized in Table 4 and Table 5. We

1https://github.com/LiZhang-github/LA-GCN

Table 4: Node classiication accuracy (%). The best results are

in bold and the second best ones are underlined.

Methods Cora Citeseer PubMed Reddit

GCN 88.0 ± 0.47 77.8 ± 0.13 86.8 ± 0.81 93.0 ± 0.47

GAT 80.4 ± 0.17 75.7 ± 0.30 85.0 ± 0.02 ś

LGCL 86.9 ± 0.20 77.5 ± 0.22 84.1 ± 0.13 ś

FastGCN 85.0 ± 0.30 77.6 ± 0.60 88.0 ± 0.30 93.7 ± 0.62

GraphSAGE 82.2 ± 0.80 71.4 ± 1.00 87.1± 0.60 94.6 ± 0.40

MixHop 88.3± 0.82 ś 85.6 ± 0.71 ś

Ours 89.1± 0.17 78.7 ± 0.53 89.1 ± 0.21 95.1 ± 0.23

Table 5: Graph classiication accuracy (%). The best results

are in bold and the second best ones are underlined.

Methods MUTAG PROTEIN PTC

WL subtree 90.4 75.0 59.9

B
as
el
in
es DCNN 67.0 61.3 56.6

PATCHYSAN 92.6 75.9 60.0

DGCNN 85.8 75.5 58.6

AWL 87.9 ś ś

GIN 89.4 76.2 64.6
G
N
N
v
ar
ia
n
ts Sum-1-Layer 90.0 76.2 63.1

Mean-MLP 83.5 75.5 66.6

Mean-1-Layer 85.6 76.0 64.2

Max-MLP 84.0 76.0 64.6

Max-1-Layer 85.1 75.9 63.9

LA-GCNMask (Ours) 90.0 80.5 72.2

Improvement - 4.30 5.60

observe that LA-GCNMask outperforms all the mentioned methods

across all datasets except MUTAG.

For node classiication, GCN outperforms GAT, which is consis-

tent with the results reported in [1, 38]. FastGCN and GraphSAGE

focus on improving the training eiciency so they have slightly

worse results than GCN. LGCL reorganizes the original embedding

in the process of constructing feature maps and it does not per-

form well particularly on PubMed. MixHop utilizes diferent hop

neighbors information and gets the second best performance on

Cora, but does not perform well on Citeseer and PubMed. One pos-

sible reason is that it does not ilter the neighborhood information,

which may aggregate some noisy information from higher-order

neighbors.

For graph classiication, Table 5 compares LA-GCNMask with

GIN, other GNN variants, as well as other strong baselines. In

general, GNN variants perform better than the mentioned baselines,

and the main reason is that they can not combine node features,

which might limit the models' capacity. GNNs with sum aggregator

tend to it the training sets better than mean and max-pooling

aggregators. Further, we can see that replacing the sum aggregator

in GIN can signiicantly improve the accuracy on PROTEIN and

PTC datasets by 4.5% and 5.6%, excluding MUTAG. One possible

reason for the poor performance on MUTAG is that our model may

not be fully trained due to the small training sample size.

CIKM’20, October 19-23, 2020, GALWAY, IRELAND Li Zhang and Haiping Lu

Table 6: Node classiication with diferent label size (%). The best results are in bold and the second best ones are underlined.

Datasets Methods 1% 2% 3% 4% 5% 10% 20% 30% 40% 50% Average

GCN 58.41 71.70 75.83 79.27 82.28 85.50 85.57 86.93 87.00 86.27 79.87

Cora GAT 45.31 58.79 68.12 71.23 77.49 85.20 85.90 86.70 87.10 86.20 74.66

LGCL 60.58 71.25 75.55 79.28 82.53 84.85 86.03 86.58 86.85 87.13 80.06

Ours 63.50 73.61 76.70 79.49 81.11 84.34 85.58 86.58 87.68 87.72 80.60

GCN 42.76 69.29 71.66 72.50 73.32 76.90 77.77 77.93 77.83 78.17 70.93

Citeseer GAT 47.78 63.57 54.38 50.48 72.10 75.40 74.60 75.20 77.00 77.02 64.95

LGCL 57.80 66.92 72.32 71.28 73.10 76.34 76.38 76.86 77.07 77.02 72.51

Ours 57.35 69.52 71.02 72.03 72.16 76.48 78.49 78.12 79.29 79.35 73.26

GCN 79.92 80.46 79.18 79.28 79.62 82.47 84.30 83.40 84.70 85.07 81.48

PubMed GAT 78.56 79.48 78.02 78.62 78.64 81.60 83.00 83.20 83.20 83.20 80.48

LGCL 81.95 82.70 83.10 82.93 81.30 82.50 85.37 84.60 85.46 85.74 83.32

Ours 80.00 82.44 81.35 83.13 82.67 85.50 86.70 87.50 87.50 87.30 84.09

4.3.2 Training Size Study. Wealso compare ourmethodwith closely

related methods, GCN (mean� aggregator), GAT (sum�� aggrega-

tor) and LGCL (���� aggregator), in two scenarios: small training

size (1%, 2%,..., 5% for Cora and Citeseer, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%

for PubMed 2) and large training size (10%, 20%,..., 50%) for Cora,

Citeseer and PubMed. Results are summarized in Table 6. Note

that Reddit is too large for GAT, so we only report results on three

citation graphs.

Table 6 shows node classiication results with diferent training

sample sizes. On the whole, our model has achieved competitive

performance in small training sample size and got better perfor-

mance, especially with more training data. The main reason is that

our model has more parameters than GCN, and we briely summa-

rized the number of parameters of GCN, GAT and LA-GCN. GCN's

parameter is less than ours on Cora, Citeseer and PubMed 8.16%,

6.46% and 20.0%, respectively. Compared with GCN, our model

need more training samples. For a more intuitive comparison, we

average these results for each method under diferent training size.

LGCL and LA-GCNMask outperform GCN and GAT, which indi-

cates that being discriminative to feature-level is crucial for node

classiication.

4.3.3 Aggregator Study. To show the efectiveness of our aggrega-

tor, we compare our aggregator with three fundamental aggregators:

mean, sum and maxpooling3. Results are summarized in Table 8.

Table 7: Node structure and feature statistics. (H.Nd.: Highest Node

degree, L.Nd.: Lowest Node degree, M.Nd.: Median Node degree, and

A.Nd: Average node degree. Fea.De. means feature density).

Dataset H.Nd. L.Nd. M. Nd. A.Nd Fea.De.

Cora 168 1 4 4.9 1.26%

Citeseer 99 1 3 3.7 0.84%

PubMed 171 1 3 5.5 1.00%

2Comparedwith Cora and Citeseer, PubMed hasmore nodes. So, we choose the training
size with smaller percentages.
3We use the same model architecture, besides the aggregator, and we name them as:
GCN���� , GCN��� and GCN������� .

Table 8: Diferent aggregators for node classiication (%).

Dataset Cora Citeseer PubMed

GCN���� 87.7 ± 0.21 77.7 ± 0.22 86.0 ± 0.13

GCN��� 85.5 ± 0.49 77.1 ± 0.45 85.2 ± 0.52

GCN������� 84.7 ± 3.26 79.1 ± 0.44 86.2 ± 0.30

Ours 89.1± 0.17 78.7 ± 0.53 89.1 ± 0.21

Table 8 shows that our aggregator works better on Cora and

PubMed than other aggregators, but not on Citeseer. The main

reason is that Citeseer is more sparse in both graph structure and

node feature, as shown in Table 7. The median of the neighbors'

number is 3 and the feature density is 0.84% (3703 is divided by 18,

the average number of ł1ž in a feature vector). So, max-pooling

may be the best way that can collect most information from the

neigborhood, which beneits the later feature transformation stage.

But the result of pooling aggregator may not be very stable, and

the standard deviation (3.26%) is almost ten times higher than other

aggregators on Cora. As for mean and sum aggregator, mean ag-

gregator performs better both in accuracy and stability in general.

Adding up all neighbors' feature vectors may change the scale of

the feature, which may not be good for node classiication task.

4.4 Interpretability

Sum, mean, pooling and���� aggregators mix or reorganize neigh-

borhood information, which makes it diicult to interpret the

learned representation because we can not distinguish which node

and feature have a salient inluence on the prediction result. While

our aggregator provides a learned mask for each neighbor, which

provide a qualitative and quantitative understanding of the rela-

tionship between input nodes and the prediction. In this subsection,

we aim to answer the following Questions: (1) what we expected,

(2) what we learned and (3) what we concluded.

For Q1, the expectation intuitively is that the learned mask

should assign more weights to important neighbors and features.

In order to answer Q2, we visualize the learned masks for a

representative node: Node 4 in Cora with neighbors from diferent

LA-GCNMask CIKM’20, October 19-23, 2020, GALWAY, IRELAND

1025

Each row is the learned mask for each neighbor with 16-dimensional
feature, the value means the weights for each feature.

Feature dimension
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node 1016

Node 1025

Node 1761

Node 2175

Node 2176

1016

1761

2175

2176

4

Purple node: Class 2

Red node: Class 3

Figure 4: Visualization of the learned mask. The proposed

aggregator can focus on important neighborhood informa-

tion (e.g. the neighbors from the same class, or some highly

relevant features)with the learnedmask. The values showed

in the heat map are the real values of the weights.

classes, as shown in Fig. 4. Central node 4 and its neighbors 1016,

1025 and 2176 belong to the same class, while neighbors 1761, 2175

belong to another class (class 2). From Fig. 4, we see that neighbors

(1016, 1025, 2176) from the same class are assigned more weights

(the values in the learned mask) than the other two neighbors (1761,

2175) on the whole. Besides, the mask gives high importance scores

to some speciic feature dimensions. We also analyze how GCN and

GAT aggregate node 4's neighbors. GCN assigns weights - 0.2, 0.16,

0.16, 0.17, 0.2 to nodes 1016, 1025, 2176, 1761, 2175 respectively,

depending on node 4 and its neighbors' node degree. The neighbors

are treated diferently in node-level, but it is not as we expected. It

is reasonable to expect that node 1025 and 2176 (from the same class

with central node) should be given higher scores than node 1761

and 2175. For GAT, the learned attention weights are all around

0.17, and the neighbors are not treated signiicantly diferently.

This indicates that the auxiliary model learns the expected rules

(focusing on the important neighbors and features), which is used

to assist our aggregator to jointly consider node-level as well as

feature-level modulation of neighborhood information in the ag-

gregation process (Q3). However, all features in one feature vector

share the same weights in both GCN and GAT.

4.5 Robustness

Because real-world graphs are noisy, an essential criterion is that

the model should be robust. As shown in [46], permutations to

both graph structures and node features are harmful. To study the

robustness of LA-GCNMask, we test our model on both structure

noisy graphs, i.e., changes to adjacency matrix, and node feature

noisy graphs, i.e., changes to node feature matrix.

We follow [8] to utilize the simplest attack methods. Given a

target node, we randomly delete or add edges to the graph. For

structure attack, the budget for each node is from one to ive, which

means that we are allowed to randomly add or delete one to ive

neighbors for each node. Following [47], per-node changes to the

node attributes are at most 5% of the node feature dimension. The

node feature vector in Cora and Citeseer only contains 0 or 1, so we

randomly lip the features for feature attack. We compare our model

with GCN, GAT and LGCL on both structure and node feature noisy

graphs. Considering the unstable problem caused by the noisy data

for these models, we report the average of top 10 results over 40

runs for each method, as shown in Fig 5.

Fig. 5a and Fig. 5b shows that the performance gets worse with

the attack budget increasing. Our model gets the best performance,

1 2 3 4 5

Structure permutations
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85

No
de

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy GCN
GAT
LGCL
Ours

(a) Cora with structure noise

1 2 3 4 5

Structure permutations
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79 GCN

GAT
LGCL
Ours

(b) Citeseer with structure noise

10 20 30 40 50 60 70

Feature permutations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
de

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

GCN
GAT
LGCL
Ours

(c) Cora with feature noise

10 20 30 40 50 60 70

Feature permutations

0.3

0.4

0.5

0.6

0.7

0.8

GCN
GAT
LGCL
Ours

(d) Citeseer with feature noise

Figure 5: Robustness studies: (a) and (b) show the node clas-

siication accuracy on structure noisy graphs, and (c) and (d)

show the node classiication accuracy on node feature noisy

graphs.

especially with more structures changed. When the structure per-

mutation is 5, the second best can only achieve 62% and 54 % clas-

siication accuracy on Cora and Citeseer respectively, while ours

are 72% and 68%. In this case, the feature vector of the central node

is still well preserved and our aggregator can efectively identify

those features good for the classiication of the central node from

noisy neighborhood information.

For node feature noisy graphs, as shown in Figs. 5c and 5d, GAT

and LGCL degrades signiicantly and our method shows strong

robustness. Compared with GCN, the improvement is not as signii-

cant as in structure attack experiments. In this scenario, the central

node's feature is also polluted in some extend, which may mislead

the learned mask in the neighborhood aggregation process.

5 CONCLUSION

In this paper, we uniied current aggregators in a framework: LA-

GCN, with an auxiliary model to guide the neighborhood aggre-

gation process. Considering most real-world graphs with no reg-

ular connectivity and order, we carefully designed the auxiliary

model under this framework and proposed a new aggregator: mask

aggregator. The proposed model allows end-to-end training and

both node-level and feature-level attention for neighborhood infor-

mation. LA-GCNMask provides a variety of beneits, from an easy

implementation with a much better performance, to interpretability,

to robustness in noisy graphs. We evaluated LA-GCNMask against

six state-of-the-art methods on variable type and size graphs for

node classiication and six strong baselines on graph classiica-

tion. Experimental results showed the superior performance of

LA-GCNMask over other methods on the whole, particularly a re-

markable improvement on noisy graphs. Furthermore, analyzing

the learned mask provided a straightforward interface for make

CIKM’20, October 19-23, 2020, GALWAY, IRELAND Li Zhang and Haiping Lu

sense out of prediction and quantiied understanding of the relation-

ship between input nodes and prediction. In addition, the proposed

mask aggregator can be integrated with other GCN variants such

as FastGCN [7], jumping knowledge networks [38], GMWW [28]

and MixHop [1].

6 ACKNOWLEDGMENTS

This work was supported in part by the China Scholarship Council

(CSC) under Grant 201706080010 and in part by the UK Engineer-

ing and Physical Sciences Research Council (EPSRC) under Grant

EP/R014507/1. We would like to thank Dr Nikolaos Aletras, Prof.

Eleni Vasilaki, Dr. Mark Stevenson, and our group member - Yan

Ge, Shuo Zhou, Heda Song for their helpful discussions.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin

Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:
Higher-Order Graph Convolutional Architectures via Sparsiied Neighborhood
Mixing. In ICML.

[2] James Atwood and Don Towsley. 2016. Difusion-convolutional Neural Networks.
In NeurIPS.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[5] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research (2006).

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
networks and locally connected networks on graphs. In ICLR.

[7] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2019. Adversarial Attack on Graph Structured Data. In International Conference
on Machine Learning (ICML).

[9] Michaël Deferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
NeurIPS.

[10] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-Scale Learnable
Graph Convolutional Networks. In SIGKDD.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML.

[12] Michele Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005. 2 (2005), 729ś734.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. IEEE Data Eng. Bull. (2017).

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. (1997).

[17] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks (1991).

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks (1989).

[19] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous Walk Embeddings. In
ICML.

[20] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[21] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classiication with graph
convolutional networks. In ICLR.

[22] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Difu-
sion Improves Graph Learning. In NeurIPS.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Hafner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE (1998).

[24] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh.
2019. Attention models in graphs: A survey. ACM Transactions on Knowledge
Discovery from Data (TKDD) 13, 6 (2019), 1ś25.

[25] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3, 2 (2000), 127ś163.

[26] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro.
2019. Janossy Pooling: Learning Deep Permutation-Invariant Functions for
Variable-Size Inputs. In ICLR.

[27] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML.

[28] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. GMNN: Graph Markov Neural
Networks. In ICML.

[29] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural
Networks (2009).

[30] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classiication in network data. AI magazine
(2008).

[31] Otilia Stretcu, Krishnamurthy Viswanathan, DanaMovshovitz-Attias, Emmanouil
Platanios, Sujith Ravi, and Andrew Tomkins. 2019. Graph Agreement Models for
Semi-Supervised Learning. In NeurIPS.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS.

[33] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[34] Edward Wagstaf, Fabian B. Fuchs, Martin Engelcke, Ingmar Posner, and
Michael A. Osborne. 2019. On the Limitations of Representing Functions on Sets.
In ICML.

[35] B. Yu. Weisfeiler and A. A. Leman. 1968. Reduction of a graph to a canonical
form and an algebra arising during this reduction.

[36] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. 2012. Deep
learning via semi-supervised embedding. In Neural networks: Tricks of the trade.
Springer, 639ś655.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[38] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML.

[39] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1365ś1374.

[40] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks. In
NeurIPS.

[41] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan
Salakhutdinov, and Alexander J. Smola. 2017. Deep Sets. In NeurIPS.

[42] Li Zhang, Heda Song, and Haiping Lu. 2018. Graph node-feature convolution for
representation learning. arXiv preprint arXiv:1812.00086 (2018).

[43] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
End-to-End Deep Learning Architecture for Graph Classiication. In AAAI.

[44] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. 2018. Deep
mutual learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 4320ś4328.

[45] Xiaojin Zhu, Zoubin Ghahramani, and John D Laferty. 2003. Semi-supervised
learning using gaussian ields and harmonic functions. In ICML.

[46] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In SIGKDD.

[47] Daniel Zügner and Stephan Günnemann. 2019. Certiiable robustness and robust
training for graph convolutional networks. In SIGKDD.

	Abstract
	1 Introduction
	2 Related Work
	3 LA-GCN
	3.1 Notation and Problem Definition
	3.2 Framework
	3.3 Methodology
	3.4 Connections with Existing GCN Extensions
	3.5 Computational Complexity

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Experimental Setting
	4.3 Node and Graph classification Results
	4.4 Interpretability
	4.5 Robustness

	5 Conclusion
	6 Acknowledgments
	References

