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Shakedown of asphalt pavements considering temperature effect 

 

Shakedown limit has been perceived as a useful guidance in pavement structure design 

against rutting. However, temperature, as one of the most important factors influencing 

the shakedown limit of asphalt pavements, has barely been considered in previous 

studies. In this paper, the shakedown phenomenon was first identified from wheel 

tracking tests for a pavement structure consisting of a dense bituminous macadam 

(DBM) layer and a granular layer in a temperature-controlled condition. The friction 

angles, cohesion and stiffness moduli of the granular material and the DBM at the same 

temperature (40°C) were obtained using a series of tests. Based on a previously 

developed shakedown approach and the material properties, lower-bound shakedown 

limits of the layered system were determined and compared with the wheel tracking test 

results. Following that, an empirical relation between temperature and cohesion of 

asphalt mixture was suggested. A temperature-dependent shakedown approach was then 

proposed which can quickly obtain the shakedown limits of asphalt pavements over a 

range of temperatures. Results show that the shakedown limits decrease markedly with 

increasing temperature, accompanied by a shift of the failure mode from a granular 

layer failure to an asphaltic layer failure. It is also found that the most effective and 

economic way to enhance the pavement performance under high temperature is 

improving shear strength properties of asphalt mixtures rather than increasing asphalt 

layer thicknesses. By using this method, pavement stability against rutting can be 

evaluated efficiently at any temperature. 

Keywords: asphalt pavements; wheel tracking test; temperature; shakedown; cohesion 
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Introduction  

An elastic-plastic structure subjected to cyclic or repeated loads could respond in a 

resilient manner when the load applied is above the yield limit but lower than a critical 

load limit. This phenomenon is known as shakedown and the load limit is termed as the 

shakedown limit. Otherwise, a larger load may lead to a continuous accumulation of 

permanent deformation (Yu 2006). In pavement engineering, shakedown theory is useful 

for design against pavement failure in the form of excessive rutting. 

The shakedown behaviour of granular materials and soils has been widely studied 

through laboratory tests. For example, Lekarp et al. (1996) conducted repeated triaxial 

tests on five different aggregates and pointed out that there is a threshold stress ratio under 

which a shakedown behaviour could be observed. A number of cyclic triaxial tests were 

also reported by Wellner and Werkmester (2000) and Werkmeister (2005) for 

granodiorite and sandy gravel. The results were illustrated by plotting cumulative vertical 

permanent strain against vertical permanent strain rate. Shakedown was recognised when 

the accumulated plastic strain rate per cycle became very small. European Standard (BS 

EN 13286-7:8, 2004) suggested that in a cyclic triaxial test, a shakedown status can be 

identified if the difference between plastic strains at 3000 and 5000 load cycles is smaller 

than 0.045×10-3. Considering a more realistic heart-shape stress path due to a moving 

load, cyclic hollow cylinder tests on clay were conducted by Qian et al. (2016) and the 

energy dissipation trend was suggested as an indicator to distinguish shakedown and non-

shakedown status. A series of wheel tracking tests were also reported in Juspi (2007) and 

Brown et al. (2012) using four types of soil and granular materials. Possible ranges of the 

shakedown limits for several single or layered systems were obtained. 

For asphalt pavements, the shakedown phenomena was first identified in the mid-

1980’s (Sharp and Booker, 1984; Sharp 1985; Brett 1987) through analysing data from 



 3 

the AASHO road tests and several road sections in New South Wales, Australia. Allou et 

al. (2010) reported the rutting test data of a full-scale pavement experiment in Nantes, 

France, consisting of an asphalt concrete layer, an unbound granular layer and subgrade 

soil. During around 2 million load applications, shakedown status was demonstrated as 

rutting gradually became stable. In laboratory tests, dense asphalt mixtures also exhibit 

shakedown behavior when the applied stress level is low (Fwa et al. 2004, Wasage et al. 

2010, Ahmad et al. 2011, Wang 2015). For example, in the cyclic triaxial tests of a dense 

asphalt mixture, Wang (2015) found no obvious change in dissipated energy per cycle 

during the test when the stress ratio is below a certain value, which was considered as a 

shakedown limit. Despite those interesting observations, limited attention was paid to the 

origin of the distinct values of shakedown limits for different experimental situations, 

which should depend on material properties, loading conditions and pavement layout. A 

sound approach considering those key aspects is significant in the application of 

shakedown theory in asphalt pavement design.  

Finite element simulations were considered as one obvious option. Assuming no 

plastic deformation occurs in the asphalt layer, Chazallon et al. (2009) incorporated a 

shakedown-based permanent deformation model for granular materials with finite 

element analysis to estimate the rutting depth of a pavement. Wang and Yu (2013a) and 

Liu et el. (2016) simulated the shakedown and non-shakedown behaviour of cohesive-

frictional materials under moving surface loads of different magnitudes, but a significant 

computation effort was involved in order to identify the shakedown limit. 

Compared with the numerical step-by-step simulations, theoretical shakedown 

analyses show a clear advance in that the shakedown limit can be determined in a direct 

manner without calculating the full stress-strain history. The theoretical shakedown 

analyses were conducted based on either Melan’s static shakedown theorem (Melan 
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1938) or Koiter’s kinematic shakedown theorem (Koiter 1960), which gives lower or 

upper bound to the actual shakedown limit. Various theoretical shakedown approaches 

for shakedown limits were developed for two-dimensional (2D) situations (e.g. Collins 

and Cliffe 1987, Raad et al. 1988, Boulbibane and Ponter 2005, Chen and Ponter 2005, 

Nguyen 2007, Krabbenhøft et al. 2007, Zhao et al. 2008) and three-dimensional (3D) 

situations (Yu and Wang 2012, Wang and Yu 2014, Liu et al. 2016, Wang et al. 2018). 

These shakedown solutions were solved based on different constraint conditions or 

mathematical optimisation methods for granular roads. More details can be found in 

Wang et al. (2018). In term of flexible pavements, the 3D shakedown approach of Yu and 

Wang (2012) has been applied for the design against rutting considering the effects of 

layer thickness and the elastic and plastic properties of materials. However, little effort 

was made on the evaluation of the effect of temperature on the shakedown limit. Although 

some two-dimensional shakedown limits were obtained by Boulbibane et al. (2000) 

considering several temperatures ranging from -15°C to 35°C, the rutting failure of 

asphaltic pavements is more relevant to material properties at high temperature (³ 40°C). 

Moreover, there is still a lack of direct comparison between the theoretical shakedown 

solutions and experimental shakedown limits for asphalt pavements. Although some two-

dimensional shakedown limits were obtained by Boulbibane et al. (2000) considering 

several temperatures from -15°C to 35°C, the rutting failure of asphaltic pavements is 

more relevant to material properties at high temperature (³ 40°C). Moreover, there is still 

a lack of direct comparison between the theoretical shakedown solutions and 

experimental shakedown limits for asphalt pavements. 

In this paper, shakedown and non-shakedown phenomena of a two-layered 

pavement system, made of an asphaltic layer and an unbound granular layer, are identified 

through wheel tracking tests in a temperature-controlled condition. After a series of 
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laboratory tests on the properties of the asphalt mixture and the unbound granular 

materials, the theoretical shakedown solutions for the pavement system are calculated and 

compared with the results from the wheel tracking tests. Following that, a temperature-

dependent shakedown approach is proposed, which can be used to quickly evaluate the 

influence of temperature on the shakedown limit of an asphalt pavement. 

Experimental identification of shakedown behavior in an asphalt pavement 

system 

In the present study, wheel tracking tests (Figure 1) were performed in a temperature-

controlled room at 40 °C. The surface load was applied by a solid rubber wheel (radius = 

100  mm) mounted between a pair of beams. During the test, the wheel position was fixed. 

The motor-driven shaft spun anti-clockwise to drive the reciprocating table forward and 

backward at an average speed of 0.98 km/hr. A metal mould filled with a two-layered 

specimen was mounted on the reciprocating table. The wheel loads were applied by 

adding weights on the load hanger. Dimensions of the contact patches were measured 

under different load magnitudes by replacing the mounted mould with a digital scale 

covered by a piece of white paper. Several rigid slabs were laid under the digital scale to 

ensure that the top surface of the scale was the same height as the specimen surface. The 

wheel was smeared with black powder so that a print patch can be obtained on the white 

paper when adding weights on the hanger. It was found the shapes of the patches were 

more like rectangles, of which the dimensions were measured by a ruler. The contact 

pressure then can be calculated through dividing the weight by the contact area (Table 1). 

A Linear Variable Differential Transformer (LVDT) was fastened in a movable holder 

(Figure 2) to measure the rutting depth at the central point on the surface of the sample.  
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A two-layered specimen containing an asphaltic layer and an unbound granular 

layer was selected (Figure 3). The thicknesses of the two layers were chosen to be 25 mm 

and 75 mm, so that the ratios of the layer thicknesses to the length of contact area are 

close to realistic situations. Well-graded crushed granite with a maximum particle size of 

2.8 mm was employed in the base layer, the gradation curve of which is shown in Figure 

4. A total of 13.15 kg of crushed granite was divided into four equal parts and compacted 

into the metal mould layer by layer. A thin slab of dense bituminous macadam (DBM) 

comprising 82.1% by volume of broadly graded aggregate, 10.6% bitumen binder (50 

Pen) and 7.3% voids was used as the top layer. The gradation curve of the asphalt 

aggregate is also given in Figure 4, which lies within the upper bound and lower bound 

suggested by British standard BS EN 12697-28 (2001) for high-quality asphalt mixtures.  

Figure 5 presents the rutting depth along with the number of load passes under 

different surface pressures. Each test lasted several days since a very large number of load 

repetitions was applied. As no test could be carried out in the laboratory at night, the 

specimen was stored overnight at a temperature of 40°C. For the specimen subjected to 

360 kPa surface pressure, an identical number of 8000 load passes was applied each day 

to investigate the effect of the overnight storage. It was found that the recovered 

deformation caused by the visco-elasticity of the asphalt was within 3% of the total 

permanent deformation. It is commonly known that most of the recoverable strains could 

be restored within a few hundred seconds. For instance, Bai et al. (2014) conducted creep-

recovery tests for asphalt mixtures at a temperature of 20±2 °C and suggested a recovery 

duration ranging between 500 and 1700 seconds dependent on the stress level considered. 

Similar findings have also been reported by Chen et al. (2015) when considering asphalt 

mixtures with or without ground waste tyre fines at a temperature of 60 °C. In this study, 

since the overnight storage period was more than 8 hours, it is believed that most of the 
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recoverable deformation has been restored during the storage period. Therefore, the 

viscoelasticity of the asphalt mixture has a limited effect on the rutting depth in our study.  

Considering the trend of the stress-strain curves, previous researchers have 

proposed various criteria to distinguish different behaviors of materials under cyclic 

loads. The behaviors were generally divided into three different categories, termed as 

Range A (shakedown status), Range B (plastic creep) and Range C (incremental collapse) 

respectively. It was suggested by Dawson and Wellner (1999) that if the permanent strain 

rate per load cycle decreases until the response becomes entirely resilient and the 

permanent strain rate quickly decreases to a very small level, the structure could be 

considered as being in a shakedown state (i.e. Range A). As can be seen in Figure 5, when 

the load level was relatively small (i.e. 296 kPa), the rutting depth barely changed after 

40000 load passes; and the curve demonstrated a distinct trend that its tangent slope 

becomes shallower. Moreover, Figure 6 demonstrates the strain rate was very small below 

the magnitude of 6×10-7 or even slightly negative. The negative strain rate could be 

induced by the overnight storage or measurement errors. Therefore, the asphalt pavement 

under this load was in a shakedown state (Range A). When the load was 494 kPa or 560 

kPa, the permanent deformation grew continuously with increasing number of load 

passes, and therefore the structure was in an obvious non-shakedown state, which can be 

defined as Range C (incremental collapse). When the load was at an intermediate level 

(i.e. 360 kPa or 444 kPa), the pavement behavior fell into Range B, where the permanent 

strain continuously developed after a large number of load passes, but the permanent 

strain rate tended to be constant (Figure 6). As a result, it can be inferred that the 

shakedown limit of this asphalt pavement system is between 296 kPa and 360 kPa. In 

pavement design, Range A is highly recommended, whereas Range C should be avoided 
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as much as possible. Range B is still acceptable if the rutting depth can be controlled 

within a sustainable value during the service life. 

Comparison between theoretical and experimental results 

Lower-bound shakedown approach 

The theoretical shakedown approach for pavements adopted in the present study was first 

proposed by Yu and Wang (2012) and Wang and Yu (2013b) based on the static 

shakedown theorem of Melan (1983). The static shakedown theorem states that an elastic-

plastic structure under cyclic or variable loads will shakedown if a self-equilibrated 

residual stress field  exists such that its superposition with the load-induced elastic 

stress field  does not exceed the yield criterion anywhere in the structure. This can be 

expressed as Eq. 1, where λ is a load factor. In the theoretical lower-bound shakedown 

approach for pavements, two critical residual stress fields  were derived. By 

substituting either of the critical residual stress fields, the unit load-induced elastic stress 

fields, and the Mohr-Coulomb criterion into Eq. 1, the problem becomes a unified 

mathematical optimisation problem as shown in Eq. 2, where f represents the Mohr-

Coulomb yield function; cn and φn are the cohesion and friction angle of the material at 

the nth layer. represents the elastic stress field induced by a unit load P. The critical 

residual stresses  at any depth z = j are functions of M and N, which also depend on 

the elastic stresses at every point i and the load factor. Their values at any depth z = j can 

be calculated by searching for the minimum value of or the maximum value 

of  among all points. For each layer, the maximum admissible load factor is 

the shakedown limit of the layer, denoted as P. Finally, the shakedown limit of the 
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whole pavement structure is the minimum among the layer shakedown limits, as shown 

in Eq. 3. To calculate the theoretical shakedown limit for the experimental case, material 

property parameters required in Eq. 2 were determined through a series of laboratory tests. 

A flow chart is given in Figure 7 to demonstrate the main process. 

 
 (1)

 

  (2) 

  (3) 
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around 0.91. The general set-up of the triaxial cell is described in Rees (2013). Following 

previous works (Seed et al. 1954, Juspi 2007, Svoboda 2014), the loading rate was set as 

1%/min for dry materials and 0.1 %/min for fully-saturated materials. The stress-strain 

curves are given in Figure 8.  

According to Lambe and Whitman (2008), the stiffness moduli of granular 

materials under different confining pressures can be estimated from the slope of the line 

connecting the origin and the point corresponding to one-half of the peak deviator stress. 

Figure 9 demonstrates a linear relationship between the stiffness modulus and the 

confining pressure. This agrees with the findings of Kohata et al. (1997). In this study, 

the stiffness moduli under unconfined conditions (18.3 MPa for dry sample and 11.1MPa 

for saturated sample) were selected for the theoretical calculation. Plastic parameters were 

determined by plotting Mohr circles using the peak deviator stresses. A matching method 

proposed by Chen et al. (2009) was adopted to seek the failure lines. According to Figure 

10, the friction angle and cohesion of the dry crushed granite are 50.9° and 45.6 kPa 

respectively. For the fully saturated materials, these values are 46.1° and 68.1 kPa 

respectively. 

Properties of asphalt mixture 

Tests on the asphalt mixture were conducted under a temperature of 40. An Instron 1332 

loading frame (Figure 11) with a temperature-controlled cabinet and a servo-hydraulic 

actuator (load capacity = ± 100 kN, maximum axial stroke = ± 50 mm) was used. A 

triaxial chamber with a confining pressure capacity of 1.7 MPa was mounted inside the 

Instron universal tester cabinet. The cell pressure was controlled by an air pressure gauge 

attached to the triaxial chamber. Cylindrical asphalt specimens, 100 mm in diameter and 

110 mm in height, were prepared and sealed with membranes. The temperature of the 
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cabinet was adjusted to 40°C and left overnight for preheating. During the test, the axial 

pressure was applied by lifting the base pedestal gradually at a rate of 1 mm/min until 

the peak axial load was reached. The tests were carried out under confining pressures of 

50 kPa, 150 kPa and 200 kPa. Figure 12 demonstrates that the friction angle and cohesion 

of the asphalt were 34.1° and 315.1 kPa respectively.  

The stiffness modulus of the asphalt mixture was determined using axial dynamic 

compression tests (ADCT) under a strain control condition. Considering different contact 

lengths and wheel moving speeds in the wheel tracking tests, the loading frequency was 

estimated to be 5~10Hz, and a frequency of 10 Hz was selected for this study. Further 

studies revealed that though the frequency has an obvious effect on the stiffness modulus 

of the asphalt mixture, its influence on the shakedown limit of the overall structure is 

small, because the relationship between layer stiffness and shakedown limit is nonlinear, 

as demonstrated in Wang and Yu (2013b). Figure 13 shows that the stiffness modulus 

became almost constant after a number of load cycles. Therefore, the stiffness modulus 

was taken as the slope of the secant connecting the zenith and the nadir of the last cycle 

(shown as the red line in Figure 13). The test was carried out twice and an averaged value, 

891.8MPa, was taken finally. Table 2 summarises the material properties for the crushed 

granite and the asphalt mixture. 

It should be noted that the permanent deformation of asphalt mixture is controlled 

by both the internal structure of aggregate skeletons and the viscous behavior of bitumen 

(Li et al. 2018). For an asphalt mixture with a good skeleton, the permanent deformation 

was largely affected by the interlocking of aggregate particles. However, in the case of a 

less good skeleton, such as Hot Rolled Asphalt, the viscous behavior of bitumen would 

dominate the permanent deformation, and therefore the shakedown theory is no longer 

applicable. 
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Comparison 

Shakedown analyses were carried out considering a three-dimensional (3D) loading 

situation. The elastic stress fields were obtained by Finite Element (FE) analyses using 

ABAQUS. The 3D model was similar to that in Wang and Yu (2013b) which simulated 

one half of the pavement system, but a rectangular contact area was used instead. 

Sensitivity studies were conducted to obtain results of reasonable accuracy. Finally, a 3D 

model with 86060 C3D20R elements was used. For the mesh directly under the contact 

area, very small elements of size 1.7 mm (length) × 1.67mm (width) × 1.25mm (depth) 

were applied. The mesh gradually became coarser farther away from the contact area. 

The material parameters and layer thickness were used in the analysis. A typical value of 

0.3 was selected as the Poisson ratio for both materials. There was an elastic steel layer 

(E = 206 GPa, n = 0.31) under these two layers, which represents the steel mould in the 

test. The surface pressure (P) was distributed uniformly over the rectangular contact area. 

Although the length of the contact area changes linearly with the load magnitude, its 

influence on the pavement shakedown limit was found to be very small. A contact length 

of 0.032 m was selected for all the simulations in Table 3. The contact width was equal 

to the width of the wheel (i.e. 0.05m). The horizontal surface traction was assumed to be 

correlated with the vertical pressure by a frictional coefficient µ, which however is 

difficult to be measured accurately. The frictional coefficient for a wheel moving at a 

constant speed is typically between 0.1 and 0.3, but the alternative acceleration and 

deceleration of the moving wheel in a short periodic time could result in a larger frictional 

coefficient. Therefore, various frictional coefficients were selected in the analysis. In 

Table 3, Cases 1 to 3 considered the dry crushed granite, while Cases 4 to 6 assumed a 

fully-saturated condition for the crushed granite. It is found the shakedown limits exceed 

the experimental shakedown range (i.e. 296 kPa to 360 kPa) if a small/zero surface 
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traction is considered (Cases 1, 2, 4 and 5). If the frictional coefficient is 1 (Cases 3 and 

6), the shakedown solutions fall within the experimental shakedown limit range.  

It should be noted that the lower the loading frequency the lower the stiffness 

modulus of the asphalt mixture. For the case studied here, the stiffness modulus of the 

asphalt mixture under a 5 Hz cyclic load was found to be 811.6 MPa, which is 9% lower 

than that at 10 Hz; however, the corresponding shakedown limit is only increased slightly 

(e.g. from 601.1 kPa to 613.9 kPa for Case 4). This is because when the first layer is 

much stiffer than the lower layer, the shakedown limit tends to decrease with increasing 

stiffness ratio, as depicted in Wang and Yu (2013b); and the impact of the first layer 

stiffness on the elastic stress distribution gets smaller as the stiffness ratio increases 

further. 

Shakedown analysis of asphalt pavements 

A temperature-dependent shakedown approach 

Although design of asphalt pavement is usually conducted considering a 

moderate temperature (e.g. 20°C in the UK), pavement surface temperature could easily 

reach 60°C (Hofstra and Klopm 1972). A shakedown approach would become very 

attractive if the effect of temperature could be quickly evaluated. In this section, the 

previous lower bound shakedown approach of Wang and Yu (2013b) was extended to 

address this point by introducing two empirical equations related to stiffness modulus 

and cohesion of asphalt mixtures. The first empirical equation was given in the UK 

Highways Agency Design Manual (Highways agency 2006), which defined the 

relationship between stiffness modulus and temperature. By using this equation, the 

stiffness moduli (ET) of an asphalt mixture at any temperature (T) can be estimated 

according to a given stiffness modulus (ET’) at a certain temperature (T’) (Eq. 4). This 
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empirical equation is called the HA equation and has been compared with a number of 

experimental data (Thom 2008). The second empirical equation (Eq. 5) is proposed by 

the authors based on the results from a variety of tests (Fwa et al. 2004; Wang et al. 2008; 

Li et al. 2011; Kim et al. 2017) as shown in Figure 14. By using Eq. 5, the cohesion (cT’) 

at any temperature (T’) can be predicted according to the cohesion of an asphalt mixture 

(cT) at a certain temperature (T) which is recommended to be no less than 40°C. An 

example representing Eq. 5 is shown in Figure 14 (the red curve), which considers the 

asphalt mixture used in the current study (i.e. cT = 315.1 kPa at 40°C). Note that the 

friction angle of an asphalt mixture mainly depends on its aggregate skeleton rather than 

the binder properties, and therefore the temperature has a negligible effect on the friction 

angle (Goetz 1989, Tan et al. 1994, Wang 2015). Finally, a temperature-dependent 

shakedown approach is established based on the Eq. 2-5. It should be noticed that the 

shakedown approach is most applicable for those asphalt mixtures in which the aggregate 

skeleton takes most of the stresses. 

  (4) 

   (5) 

Influence of temperature on the shakedown limit of the experimental case 

Based on the test data at 40°C, the stiffness and cohesion of the asphalt mixture and 

thereby the shakedown limit of the experiment pavement system can be obtained at 

different temperatures. Figure 15 shows the variation of the shakedown limit for Case 6 

in Table 3 considering a range of temperatures from 20°C to 60°C. It demonstrates that 

increasing temperature leads to reducing the shakedown limit. The critical layer is the 

asphaltic layer. The pavement will lose its strength against any repeated moving wheel 

load at a pavement temperature of around 60°C.  
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Influence of temperature on the shakedown limit of a typical asphalt pavement  

Further studies were conducted considering a typical three-layer asphalt pavement in 

TRRL Report LR1132 (Powell et al. 1984). In the report, the wheel load was assumed to 

be distributed uniformly in a circular contact area with a radius of 0.151m, and the elastic 

parameters (E, u) of the materials at a design temperature of 20°C were also provided, 

as exhibited in Table 4. In order to perform shakedown analysis, typical strength 

parameters (c, f) were also selected considering the test results in previous research (e.g. 

Kulhawy and Mayne 1990, MnDOT 2007, Fwa 2004, Wang 2015). Based on these 

parameters, the stiffness moduli and cohesion of the asphalt mixture at various 

temperatures were calculated by Eqs.4-5, as presented in Figure 16. The elastic stress 

fields were obtained by using a 3D model with a circular contact area, similar to that in 

Wang and Yu (2013b). Figure 17 demonstrates the change of the shakedown limit of 

each layer with the temperature when h1 = 300 mm and h2 = 450 mm. It can be seen that 

the shakedown limit of each layer always decreases with increasing temperature. 

Moreover, the reduction is more pronounced for the asphaltic layer than the granular 

layer. Therefore, the asphalt layer failure becomes the main failure mode when the 

temperature is high. 

Influence of layer thicknesses at a high temperature 

Hofstra and Klopm (1972) indicated that the temperature of the pavement surface can 

reach as high as 60°C in the UK. Considering this high temperature, the variation of the 

shakedown limit with the thicknesses of the first and second layers for the typical asphalt 

pavement is plotted in Figure 18, which demonstrates that when the layer combination 

is on the left-hand side of the red line, the pavement failure is controlled by the stresses 

in the second layer; whereas on the right-hand side, pavement failure initiates in the first 

layer instead. It also demonstrates that when failure occurs in the first layer, increasing 
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the layer thicknesses barely changes the shakedown limit. Further studies (Figure 19) 

show that, under such a high temperature, though the increase of layer thicknesses can 

significantly raise the shakedown limits of the second and third layers, its influence on 

the first layer shakedown limit is minor; and the first layer shakedown limit gradually 

converges to a constant value with increasing thicknesses. Therefore, solely changing the 

layer thicknesses is not an efficient and economical way of improving the pavement 

stability against rutting. Instead, efforts should be made to improve the shear strength 

properties of the asphalt mixtures at high temperatures. 

Conclusions 

In the present study, an experimental shakedown limit range was obtained for a layered 

asphalt pavement system using wheel tracking tests at a temperature of 40°C. The friction 

angles, cohesion and stiffness of the asphalt mixture and the crushed granite were 

obtained through a series of laboratory tests and then used as input values for the 

theoretical shakedown analysis. This was developed based on the assumption that the 

asphalt mixtures have a very good aggregate skeleton and the viscous properties of 

bitumen barely contribute to the final permanent deformation in the mixture.It was found 

that the theoretical shakedown limits broadly agree with the experimental result.  

A relation between the cohesion of asphalt mixture and the pavement temperature 

was also proposed in this study. This relation, as well as the HA equation for asphalt 

stiffness, was introduced in the shakedown analysis of asphalt pavements, and a 

temperature-dependent shakedown approach was thus developed. Early indications are 

that this approach will be able to discriminate between rut-susceptible and non-rut-

susceptible constructions. By using this approach, pavement rutting failure under any 

required temperature could be evaluated in a convenient and rapid manner. 
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It was found that for a typical asphalt pavement, the shakedown limits of all layers 

decrease with increasing temperature. The asphalt layer failure becomes the main failure 

mode when the temperature is high. It was also revealed that, to improve the pavement 

stability against excessive rutting, a sound choice is to improve the properties of the 

asphaltic material at the average maximum temperature for a pavement rather than solely 

increasing the layer thicknesses. 
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Figure 1. Schematic of Wheel Tracking Equipment  
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Figure 2 LVDT and movable holder 
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Figure 3 Sketch of the two-layered asphalt pavement system 
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Figure 4 Grading curves of granular materials and aggregates in the asphalt mixture 
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Figure 5 Development of rutting depth under different magnitudes of load 

  

1 10 100 1000 10000 100000
0

-2

-4

-6

-8

-10

S
u
rf

ac
e 

d
ef

o
rm

at
io

n
 (

m
m

)

Number of load passes

 296kPa

 360kPa

 444kPa

 494kPa

 560kPa



 28

 

 

Figure 6 Change of vertical strain rate against surface deformation 
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Figure 7 Flow chat of the experiment methodology 
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Figure 8 Stress - strain responses under different confining pressures 

(a) Dry specimen   
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Figure 9 Stiffness moduli against confining pressures for the crushed granite 

(a) Dry specimen    

 (b) Saturated specimen 
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Figure 10 Mohr circles and failure lines of the crushed granite 

(a) Dry specimen    
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Figure 11 Instron Universal Testing Machine (UTM) at the University of Nottingham 
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Figure 12 Mohr circles and failure line of the asphalt mixture 
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Figure 13 Cyclic stress-strain response of the asphalt mixture 
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Figure 14 Change of the cohesion of different asphalt mixtures with temperature  

40°C 
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Figure 15 Effect of temperature on the shakedown limit of the experimental case 
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Figure 16 Elastic modulus and cohesion of the DBM at different temperatures 
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 Figure 17 Effect of temperature on the shakedown limit of each layer (h1 = 300mm, h2 

= 450mm) 
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Figure 18 Counter plot of shakedown limits for an asphalt pavement at 60˚C and µ = 0 

(kPa) 
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 Figure 19 Effect of layer thicknesses on the shakedown limit of each layer at 60˚C and 

µ = 0 

(a) First layer 
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Table 1. Calculations of the contact pressure under different magnitudes of load  

 Test 1 Test 2 Test 3 Test 4 Test 5 

Load applied (N) 473.3 606.6 807.0 941.4 1139.5 

Length of contact area 2a (m) 0.0320 0.0337 0.0364 0.0381 0.0407 

Width of contact area (m) 0.05 0.05 0.05 0.05 0.05 

Contact pressure (kPa) 296 360 443 494 560 

 

Table 2 Materials properties 

Materials Stiffness modulus E 

(MPa) 

Cohesion c 

(kN) 
Friction angle f 

(°) 

Asphalt (at 40°C) 891.8 315.1 34.1 

Crushed granite (dry) 18.3 45.6 50.9 

Crushed granite (saturated) 11.1 46.1 68.1 

 

Table 3 Theoretical shakedown solutions for the wheel tracking cases  

Case 
E1 

(MPa) 

c1 

(kPa) 

ϕ1 

(°) 

υ1 

 

E2 

(MPa) 

c2 

(kPa) 

ϕ2 

(°) 

υ2 

 
 µ 

shakedown 

limit 

(kPa) 

1 891.8 315.1 34.1 0.3 18.3 45.6 50.9 0.3 0 676.4 

2 891.8 315.1 34.1 0.3 18.3 45.6 50.9 0.3 0.3 663.3 

3 891.8 315.1 34.1 0.3 18.3 45.6 50.9 0.3 1 319.3 

4 891.8 315.1 34.1 0.3 11.1 68.1 46.4 0.3 0 601.1 

5 891.8 315.1 34.1 0.3 11.1 68.1 46.4 0.3 0.3 591.1 

6 891.8 315.1 34.1 0.3 11.1 68.1 46.4 0.3 1 316.6 
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Table 4 Properties of a flexible pavement structure at 20˚C 

Layer Type hn (mm) En (MPa) cn (kPa) υn fn (°) 

1 DBM 150~600 3100 850 0.35 40 

2 Granular material 150~600 150 10 0.3 44 

3 Subgrade soil ∞ 50 20 0.45 18 

Note: the subscript n represents layer number. 

 


