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Abstract

High-speed rail (HSR) has brought a number of social and economic benefits, such as shorter trip
times for journeys of between one and five hours; safety, security, comfort and on-time
commuting for passengers; energy saving and environmental protection; job creation; and
encouraging sustainable use of renewable energy and land. The recent development in HSR has
seen the pervasive applications of artificial intelligence (AI). This paper first briefly reviews the
related disciplines in HSR where AI may play an important role, such as civil engineering,
mechanical engineering, electrical engineering and signalling and control. Then, an overview of
current AI techniques is presented in the context of smart planning, intelligent control and
intelligent maintenance of HSR systems. Finally, a framework of future HSR systems where AI is
expected to play a key role is provided.
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1. Introduction

Artificial intelligence (AI) refers to agents or sys-
tems that are capable of learning in similar
ways to human cognitive processes and that
autonomously reason and solve problems by imi-
tating biological processes. With the rapid devel-
opment of new technologies and breakthroughs in
computation power and cloud computing, nowa-
days AI not only has the capacity to adapt to
changing environments, but can also improve its
own performance over time. There are plenty

of successful AI applications which have proven
effectiveness. For example, researchers found that
AI-based automated analysis of chest CT images
can help radiologists save time on diagnosis and
consequently create a $3 billion economic saving
per year [1]. In the transportation sector, espe-
cially in HSR systems, AI can make a huge con-
tribution to addressing growing concerns about
ride comfort, system safety and stability and rail
expansion-related energy consumption.

The first commercial HSR line, also known as
Tokaido Shinkansen, was launched by Japanese
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National Railways in 1964 between Tokyo and
Osaka at a running speed of 210 km/h. The techni-
cal innovation quickly attracted substantial atten-
tion worldwide for its convenience, high capac-
ity, reliability, safety and sustainability in compe-
tition with the aviation and automotive sectors.
Several European countries, particularly France,
Italy, Spain and Germany, one after another
expanded and proliferated their HSR network ser-
vices. Meanwhile, the world commercial speed
record has been constantly broken in the follow-
ing decades. It is notable that China has scaled
up the development of HSR in both new high-
speed line distance and trainset numbers enor-
mously in the past decade. Up to February 2020,
there are 52 484 km high-speed lines in oper-
ation with speeds above 250 km/h around the
world, and China alone accounts for 67.4% with
35 388 km in total [2]. Although there is no univer-
sal definition of HSR, standards have become uni-
fied around the world in recent years. The Euro-
pean Union (EU) Directive 96/48 [3] defines the
speed as over 250 km/h for dedicated new lines
and over 200 km/h for upgraded lines in respect
of the infrastructure capabilities.

The development of HSR relies on technolog-
ical advancement. The emergency of new tech-
nologies such as AI has brought new opportuni-
ties as well as challenges for the development of
HSR. This paper presents a comprehensive review
of the state-of-the-art development of HSR, and
in particular the approaches to increase the per-
formance of design, operation and maintenance
by utilizing AI techniques. The remainder of the
paper is organized as follows. Section 2 gives a pre-
liminary discussion on the safety, reliability, avail-
ability and cost of key subsystems in HSR. Section
3 presents a summary of different AI techniques
and their applications in HSR, and then future
requirements and opportunities are discussed in
section 4. Finally, conclusions and challenges for
further study are presented in Section 5.

2. A brief introduction to the high-speed rail
system

The HSR system is an integration of a large num-
ber of subsystems and techniques from differ-
ent subject areas. A new HSR line often con-
sists of specialized rolling stocks and dedicated
tracks. The construction cost increases propor-
tionally with the design speed. According to [4],
the average cost of 11 European lines (with no
tunnelling projects) stands at €25 million per km.

The staggering costs of building infrastructure for
high-speed (above 300 km/h) operation require
careful system design and high-quality arrange-
ments.

2.1 Civil engineering related factors

The track system is a critical part of HSR,
and corrections are very difficult to make after
construction. Daily maintenance is also costly
and is mainly arranged based on the construc-
tion design. For wheel/rail technology, rails are
designed to withstand enormous load when trains
pass through. Traditional track structure consists
of rails, fasteners, sleepers, ballast and underly-
ing subgrade. The sleepers, laid perpendicular to
the rails, can separate the pressure evenly to the
track ballast and subgrade and fix track gauge. The
track technologies vary from country to country.
The French rail network adopts traditional bal-
lasted track for HSR, whereas in other European
countries and parts of the world ballastless tracks
(slab tracks) are preferred because of the reduced
weight, low demand for maintenance, long ser-
vice life and no damage from flying ballasts to
running HSR [5]. In [6], Zhai et al. show that the
requirements of stiffness and settlement for HSR
tracks are strict to ensure track regularity. Track
safety would be severely affected by track stress
and vibration.

Due to ecological requirements, such as the
protection of historical culture areas and arable
land, tunnels and bridges (elevated structures) are
widely considered in HSR designs, most notably
in China. The average bridge proportion of total
track length is greater than 50% [7], while more
than 10 000 tunnels with a length of over 8000 km
had been constructed by 2013 [8]. The force
between continuous welded rails (CWRs) and the
ballastless-deck bridge is greater than the sub-
grade, and the influence is magnified for long-
span continuous bridges [9]. Therefore, the anal-
ysis and simulation of the static and dynamic
behaviour of ballastless tracks under various load-
ings and locations are of great significance in
design. Both short- and long-term behaviours,
during the whole life time, equally dominate train
operation conditions.

An early study by Krylov [10] theoretically inves-
tigated the effects of ground vibrations induced
by HSR moving at speeds approaching or exceed-
ing the velocity of Rayleigh waves. The results
show a rise of 70 dB in averaged ground vibration
level for a train’s moving speed from 50 km/h to
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Fig. 1. Simplified diagram of an AC traction system for HSR

500 km/h. Krylov recommended avoiding soft soil
with low Rayleigh wave velocity (around 100 m/s
or 360 km/h) in the design phase, or taking steps
to mitigate the ’noise’. Madshus and Kaynia [11]
analysed the vertical vibration displacement sig-
nal data collected by a series of electronic sen-
sors, accelerometers and seismometers at the top
of the embankment and in the ground in Sweden.
The propagation and attenuation characteristics
of the vibration in the soft soil foundation are fur-
ther investigated in [12]. Unfortunately, very lim-
ited information has been reported in the litera-
ture about the severity of the problem.

2.2 Mechanical engineering related factors

In a train, the bogie is an essential equipment
which steers the car and provides traction and
braking forces. It is joined to the chassis of the
bodyshell, with axles and wheels attached. The
bogie enables trains to turn in a curve by reason-
able design and also guarantees passenger com-
fort and operational safety. To achieve this, two
suspension systems play an important role. The
primary suspension system acts like the tyre on
an automobile. It is placed between the wheel
axles and the bogie. The secondary suspension
system links the bogie to the bodyshell. Thanks
to the suspension system, track irregularities are
absorbed and cut off, leading to a controllable lat-
eral movement of the car. There are two types of
bogies, motorized ones dedicated to the traction
and load-bearing ones for braking and on-track
steering.

One of the main techniques for monitoring
the running status of the train is to collect and
analyse the vibration signals by mounting sen-
sors on the train bogies. Mechanical vibration
analysis based on monitoring data of bogies has
become a hot research topic [13]. According to
Hu et al. [14], the health monitoring of bogies is
entering into the ‘big data’ era. Traditional sig-
nal processing-based and diagnostic experience-
based methods, including empirical mode decom-
position and wavelet analysis, cannot meet the
requirements of the rapid development of HSR
and maintenance work when massive vibration
data are collected. Therefore, a highly efficient and
accurate method is an urgent research need, espe-
cially a deep understanding of signals with the
coupling of fault information.

2.3 Electrical engineering-related factors

A simplified alternating current (AC) traction sys-
tem is illustrated in Fig. 1, including power trans-
mission system, catenary (also known as over-
head contact line) and positive feeder line. The
traction power supply system introduces exter-
nal power supply. In the context of energy con-
servation and environmental protection, the inte-
gration of renewable energy sources and energy
storage units in the railway power systems has
attracted substantial interest worldwide. In [15],
Pankovits et al. propose a hybrid energy sys-
tem composed of PV panels, wind turbines, fore-
seeable sources and storage units for a railway
substation, with minor changes to its natural
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structure. In addition, considerable regenerative
braking power lays out the possibility of energy
recovery by advanced power electronics, since the
traction motor functions as a generator in braking
mode. Aguado et al. [16] take into account regener-
ative braking capabilities and analyse the renew-
able energy impact on a real Spanish HSR case
study. The results show that the new configura-
tion provides a significant improvement on cost
and energy savings, with 33.22% and 9.63% respec-
tively. Liu et al. [17] analyse the optimal sizing and
daily scheduling of energy storage units, which
largely reduces the electricity bill.

There are several feeding modes in the traction
power supply system (TPSS), comprising boost-
ing transformer (BT) feeding system and auto-
transformer (AT) feeding system and track return
feeding system. Compared with other feeding
systems, the AT system has both technical and
economic advantages. It can decrease the volt-
age drop along the catenary, which results in
increased voltage level and reduced power loss
[18]. The distance between two transformers is
longer than in the case of BT, so the number of
substations is lower at the same distance. How-
ever, the most typical and severe power quality
problems in HSR are unbalance, reactive power
and harmonic resonance [19] because the loads on
two power supply arms are seldom balanced. Var-
ious technologies for solving these problems have
been investigated in recent years. The cophase
traction power system can avoid the power quality
problems caused by the split sections in the tra-
ditional system [20]. For such a system equipped
with an active power balance conditioner (APC),
only single-phase current feeds to the catenary.

The simulation and monitoring of traction
power supply systems are very important for fault
prediction and fault location analysis in HSR. The
proliferation of converter-based electrified sys-
tems has resulted in significant voltage and cur-
rent distortions in both the traction power sup-
ply system and the utility system. The dynamic
nature of HSR makes the assessment of power-
quality (PQ) problems quite difficult, and there
is an urgent need for techniques that can quan-
tify the PQ impacts for TPSS planning and design
[21].

2.4 Signalling and control-related factors

Conventional trains rely on manned control and
trackside singling and surveillance devices. But
at high speed it is unrealistic for train drivers to

see the signals. In order to undertake safe driv-
ing of the Shinkansen, an automatic train control
(ATC) system was built and tested in 1964. The sys-
tem replaces the trackside signalling with cab sig-
nalling, providing an auxiliary system of smooth
deceleration patterns that can help energy saving
and brake wearing. The big revolution of train con-
trol systems, from trackcircuit-based train con-
trol to communication-based train control, per-
mits safe movement of trains during operation
under different loading, track and weather condi-
tions [22].

Generally, the ATC system includes Automatic
Train Protection (ATP), Automatic Train Opera-
tion (ATO) and Automatic Train Supervision (ATS)
subsystems [23]. The train’s onboard equipment
stores the track database including curvature, gra-
dient and station information, and calculates the
distance-to-go speed profile for the train by uti-
lizing the real-time location of the train, the per-
mitted speed and environmental data. Most of the
researches on driving regimes are based on opti-
mal control theory [24]. This segments the speed
profile into four modes: maximum acceleration,
cruising, coasting and maximum braking. The sys-
tem is requested to find the optimal sequence
of the driving modes which meet the time and
safety requirements and recent energy efficiency
requirements.

The European Train Control System (ETCS) is
part of the European Rail Traffic Management Sys-
tem (ERTMS). After more than 10 years’ effort from
1996, it brings in interoperability and technical
standards of train control systems of cross-border
HSR in Europe [25]. The similar concept of CTCS
(Chinese Train Control System) was proposed in
2002 in China. If a train is equipped with CTCS
appliance and functionality, it can operate on any
CTCS line without technical restrictions. The sys-
tem consists of an onboard subsystem and a track-
side subsystem. A CTCS level-3 system is illus-
trated in Fig. 2. The onboard equipment includes
Driver-Machine Interface (MMI), Vital Computer
(VC), GSM-R Radio Transmission Unit (RTU), Speed
and Distance processing Unit (SDU), Balise Trans-
mission Module (BTM) and Track Circuit Receiver
(TCR). The trackside outdoor equipment includes
ZPW-2000 track circuit, balise and GSM-R radio
Base Station (BTS). The trackside indoor equip-
ment includes Radio Block Center (RBC), Train
Control Center (TCC), Temporary Speed Restric-
tion Server (TSRS), Computer-Based Interlocking
(CBI), GSM-R Mobile Exchange Center and Central-
ized Traffic Control (CTC).
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Fig. 2. A CTCS level-3 system for HSR [26]

2.5 Transportation engineering-related factors

Compared with the requirements of conventional
train lines, train timetabling problems (TPPs) for
HSR become very challenging for the Railway Dis-
patching Department, as the train frequency dra-
matically increases due to the high speed and pas-
senger demand [27]. It is observed that the passen-
ger traffic figure almost tripled between 2010 and
2018, increasing from 245.1 billion passengers per
km to 956.1 billion passengers per km [28]. There-
fore, the objective of a train time is to provide a
feasible service time for passengers to plan their
journey and meanwhile to maintain low energy
consumption over the corridor. It must take into
account the actual infrastructure utilization ratio
(such as tracks and rolling stocks) and accommo-
date the fluctuation of passenger volumes over
time. Also, the trajectory and operation speed of
HSR have close ties to the train operation.

A basic train timetable example consisting of
multiple trains among five stations within two
hours is illustrated in Fig. 3. The physical model
is then expressed as a graph G = (V, E) in Fig. 3(a),
comprising a set V of stations together with a set
E of train line sections. For each section, the run-
ning time is a summation of the minimum run-
ning time over the corridor and the dwelling time.
It can be seen from Fig. 3(b) that some train lines
increase the dwelling time at stations, while some
others skip a few stops.

To solve the problem, some restricted con-
ditions are imposed, such as constraints on

minimum headway, station capacity, mainte-
nance window and minimum dwell time. For such
a complex and busy system, there is no tolerance
of signal delays or command errors. Even a short
delay on a single train may cause a large-scale sys-
tem collapse due to the strict punctuality require-
ment. As a result, there is an urgent need for a reli-
able control and signalling system which can bal-
ance efficiency and potential unforeseen circum-
stances.

3. AI techniques for HSR systems

As a sub-field of computer intelligence, the real
potential of AI techniques has not been fully real-
ized due to the late 1990s vigorous growth of com-
putational power following Moore’s law. The pow-
erful learning capabilities have led to an unprece-
dented tie of AI with many other fields such as
economics, statistics and mathematics [29]. In
this section, AI-related methods that have been
successfully employed in HSR systems will be
reviewed.

3.1 Smart planning

Smart planning, also refering to automated plan-
ning and scheduling, is a branch of AI focusing
on the strategies or action sequences for designed
goals in a multidimensional space [30]. Models
and policies are adaptive according to the envi-
ronment and usually solutions are acquired by

D
ow

nloaded from
 https://academ

ic.oup.com
/tse/article/2/4/247/5891609 by guest on 21 April 2021



252 Yin et al.

Fig. 3. A basic timetable for HSR. (a) The physical model; (b) The running time.

resorting to iterative processes of trial and error.
Dynamic programming, reinforcement learning
and local search algorithms and heuristic opti-
mization are involved.

Researches about planning in HSR have covered
a wide range of topics, such as train timetable
planning (see section 2.5), rolling stock planning
and crew scheduling planning for train opera-
tion companies. They also include reliable digital
rail solutions that help operators improve perfor-
mance and provide a better customer experience.

3.1.1 Timetable synchronization and optimization.
Passenger demand is the fundamental issue [31].
An efficient planning should consider operation
effectiveness such as safety, ride comfort and con-
venience, which always refers to trip time from
the passengers’ viewpoint [32]. Ghoseiri et al. [33]
introduced the total passenger time as the passen-
ger satisfaction criterion.

In [34], the research is focused on minimiz-
ing the total passenger waiting time at stations.
The train stop pattern is given. Further, Jiang et
al. [35] employed a heuristic solution to exam-
ine the maximum train frequency and suitable
stopping plans that have minimal impact on orig-
inal timetables for a congested Chinese high-
speed JingHu line containing 387 trains in a given
time interval. The model used explicitly takes into

account the deceleration and acceleration times at
stations, as well as the overtaking constraints. The
results show that with effective stopping plans,
additional trains can be scheduled with minor
changes of existing ones.

Regarding the railway company, cost has long
been the top factor under consideration. Yue et al.
[36] used a train trajectory’s profit model to opti-
mize the TPP, including stopping times and num-
ber of stops. An iterative process based on the
column generation-based algorithm improves the
profit by 30% and line capacity by 27% in the case
study of the Beijing-Shanghai corridor. To main-
tain competitiveness against other transportation
modes, Cadarso et al. [37] developed an integrated
scheduling model associating to frequency plan-
ning, timetable, rolling stock schedule and pas-
senger demand. For the sake of robustness, Sels et
al. [38] introduced a fast and robust timetable gen-
erating method which was proven on the Belgian
railway network with 196 hourly passenger trains.
The aforementioned off-line train timetable gen-
erating methods are designed to solve the prob-
lem within two hours. In [39], an online re-
scheduling following a small perturbation is pro-
posed. The aim is to find the minimal total accu-
mulated delay by adjusting departure and arrival
times for each train and station resources based
on a permutation-based evolutionary algorithm.
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More comprehensive insights can be found in
[40, 41].

Another important issue related to the HSR
is energy consumption [24], which has drawn
substantial interest in recent years on the plan-
ning of renewable energy integrated with hybrid
energy storage devices. Pankovits et al. [15] pro-
pose a generic architecture of hybrid railway
power substation and evaluate the optimal plan-
ning of energy sources and storage units for a
day based on an iterative optimization process.
Another study focusing on the optimal sizing of
energy storage systems is carried out in [17]. The
authors adopt a heuristic algorithm, namely grey
wolf optimization with CPLEX solver for a mixed
integer linear programming model. A real case
study for a Spanish HSR supplied with renewable
energies with regenerative braking capabilities is
analysed in [16]. An improvement in cost savings
of 33.22% and energy savings of 9.63% has been
achieved.

3.1.2 Knowledge-based customer service. Insuffi-
cient information of delayed or cancelled trains
and slow responses at railway terminals can make
the journey a daunting experience for customers.
The frontline staff of train companies are in need
of instant access to a reference library and ser-
vice information to improve customer service. An
expert system is a good solution to solve such
complex problems by reasoning through a knowl-
edge base. This system can perform as a decision-
making tool like a human expert.

A typical sales operator of a railway network
issues pricing periodically. Meanwhile, the pas-
senger capacity allocation of HSR is decided based
on internal conditions, such as remaining seats
and time to departure, as well as external condi-
tions such as seasonal factors and weather con-
ditions. Recently, Kamandanipour et al. [42] bor-
rowed the idea of revenue management from air
transportation to develop an expert system to
maximize the profit of an independent operator by
integrating dynamic pricing and capacity manage-
ment. Their model also provides a choice of mul-
tiple service classes that will change the demand
over a planning horizon. Due to the complexity of
the problem, an efficient metaheuristic algorithm
is used to solve the data-driven non-convex opti-
mization problem and a simulation-based algo-
rithm is applied to calculate the fitness. In [43],
an analytical two-stage model is proposed for
the dynamic pricing and seat allocation problem

with additional consideration of multiple origin-
destination pairs. The results of the case study of
the Beijing-Shanghai HSR line in China show that
the final revenue can be increased from 4.47% to
4.95% by using the dynamic pricing mechanism.
In addition, demand increases for short-haul jour-
neys and decreases for long-haul journeys.

Although the aforementioned model provides
useful insights for HSR to enhance service qual-
ity, some important features in HSR services and
management are still ignored, such as different
groups of passengers and ticket booking prefer-
ences. By leveraging machine learning methods,
the prediction of customers’ train choice can be
enhanced and evolve with time [44]. It is there-
fore of great potential to integrate them in revenue
management tools for HSR.

3.2 Intelligent control

Intelligent control achieves automation using var-
ious AI computing approaches like fuzzy logic,
artificial neural network (ANN) and genetic algo-
rithm (GA) [45]. Fuzzy control, in contrast to clas-
sical discrete logic, introduces fuzzy logic which
is used to represent continuous values between
0 and 1. It is a good interpretation of manual
operations. In many cases where a mathematical
model does not exist, a system based on empir-
ical rules is more effective. ANN is a framework
to implement different machine learning algo-
rithms and has the ability to process complex data
inputs. It mimics the behaviour of biological neu-
rons. The learning paradigms can be categorized
into three types: supervised learning, unsuper-
vised learning and reinforcement learning. ANNs
have the ability to learn and model non-linear and
complex relations. Also there are many variants,
such as convolution neural networks, long short-
term memory, deep belief networks and com-
pond hierarchical-deep models, etc. The combina-
tion of fuzzy logic and ANN leads to the develop-
ment of neural fuzzy systems. Genetic algorithms
are metaheuristic-inspired methods that are com-
monly used to generate high-quality solutions to
optimization and search problems. They belong to
evolutionary algorithms that can effectively find
the optimal or quasi-optimal solution through an
iterative mechanism within limited time.

3.2.1 Speed control and trajectory control. The
researches related to speed and trajectory con-
trol of HSR are an active field, and usually the
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proposed methods are hybrid for specific condi-
tions. In 1998, Hwang [46] proposed a fuzzy control
model to optimize the trajectory of a single train
by compromising trip time and energy consump-
tion. Sun et al. [47] developed a genetic algorithm-
based train control method for a multi-objective
optimization model of the train routing problem.
The model takes into account average travel time,
energy consumption and user satisfaction. Simi-
larly, particle swam algorithm is used in a simu-
lation system of HSR to optimize the energy con-
sumption problem [48]. Three commonly adopted
searching algorithms—GA, ant colony optimiza-
tion (ACO) and dynamic programming—are com-
paratively studied in a distance-based train tra-
jectory model [49]. As a result, the authors rec-
ommend the adoption of more than one method.
Unlike the aforementioned models, Cucala et al.
[50] define the uncertainty in delays as fuzzy
numbers and use a GA-based ecodriving design
for a real Spanish HSR. In comparison with cur-
rent commercial data, a significant energy sav-
ing of 6.7% is achieved. In [51], an adaptive itera-
tive learning control strategy for HSR is proposed,
while Song et al. [52] developed a dual optimiza-
tion speed curve method. A guidance speed curve
is searched by offline global optimization before
the train moves. The reference speed curve is
optimized in real time by online local optimiza-
tion, where predictive control and slope analy-
sis are combined for the actual operation. Fur-
ther, a T-S fuzzy bilinear model is proposed in
[53] based on the nonlinear dynamics of the train,
and an adaptive predictive control approach is
then used for online adjustment of the model’s
parameters.

An astonishing breakthough is the application
of intelligent control in the ATO system (see also
in section 2.4). On 30 December 2019, a new Chi-
nese high-speed train (also known as the Beijing-
Zhangjiakou railway line) was operated at speeds
of up to 350 kph, and is widely recognized as the
world’s first driverless train [54]. The train can
automatically depart, operate between stations
and adjust its operation status to meet the pre-
cise timetable without human drivers. However,
the increasing frequency and intensity of extreme
weather events will bring new challenges to the
operation and control of HSR [55]. Further research
is needed to evaluate the impacts of weather con-
ditions on the train operation and punctuality of
the HSR system under different probabilities of
unexpected events.

3.2.2 Intelligent equipment. The intelligent control
system of HSR can monitor and predict abnormal
conditions and automatically switch to different
driving modes. All of these new features rely on
new technologies and designs such as cloud com-
puting, big data and the Internet of Things. Dong
et al. [56] proposed a novel and practical vehicular
cloud computing (VCC) for HSR. After taking into
account the key obstacles of frequent handover at
high speed, large volumes of data and complex
degrees of importance situations, a three-layer
architecture of secure VCC system to improve
the safety and efficiency is proposed. The real-
life experiments in China show that the proposed
system outperforms its counterparts in respect
of authentication, data encryption and transmis-
sion efficiency. Gong et al. [57] developed a novel
cyber fusion system that can deal with hetero-
geneous multi-source train location data. A colli-
sion avoidance warning system is proposed in [58].
The system is based on a Linux-based hardware
and Internet of Things-based signalling system to
improve the predictability of collision occurrence.
In [59], several representative railway communi-
cation scenarios are reviewed, including train-
to-infrastructure communications, inter-car com-
munications, intra-car communications, commu-
nications inside the station, infrastructure-to-
infrastructure communications and wireless sen-
sor networks. The analyses raised new require-
ments for the Internet of Things and smart
trains, such as standardization, interoperability,
scalability, energy efficiency and cyber security.
A more secure paradigm requires redundancies
and alternative control methods. For example, in
case of failure, the system needs to switch to
the redundant equipment without disturbing the
safety control of the train through the signalling
system.

3.3 Intelligent maintenance

Intelligent maintenance, or e-maintenance,
addresses the fundamental needs of monitoring
degradation through collected data of machinery.
It utilizes predictive intelligence tools to detect
faults rather than the traditional ‘fail and fix’
maintenance mechanism [60]. With evolving
technologies of tether-free communication, the
behavior of a complex system can be analysed
by means of advanced sensors, data collection,
data storage/transfer and data analytic tools
developed for a specific purpose. More hidden
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information from the historical data can be
extracted through intelligent prognostics that
continuously track health conditions and extrap-
olate risks. A cyber-physical-based maintenance
system enables applications of AI technologies
for Prognostic and Health Management (PHM)
[61]. It includes fault prediction, risk assessment,
health evaluation and reliability analysis [62].
By taking advantage of real-time data streams,
advanced algorithms and data analytics perform
as a knowledge-based expert system which aims
at an optimal decision of the system. There are
four major types of maintenance modes, namely
breakdown maintenance (BM), preventive main-
tenance (PM), hazard detection (HD) and condition
based maintenance (CBM) [63]. In [64], a high-
level preventive maintenance planning method
is proposed for HSR. A simulated annealing-
based optimization algorithm is developed to
decide whether a train needs maintenance or
not.

3.3.1 Data mining. An important feature of the
HSR system is that the data used to analyse is
multi-source and heterogeneous, as a variety of
different assets are incorporated such as on-board
equipment, traction supply system and tracks.
Feature extraction is one of the key steps in data
mining for HSR. However, a lot of problems appear
in practical applications. For example, traditional
signal processing methods are restricted by the
number of samples. Hence, big data technologies
are suitable to data mining and analysis of HSR
[65].

Xie et al. studied the vibration signal spec-
trum through a set of data of locomotive shock
absorbers preprocessed by FFT [66]. The result
shows that a four-layer Deep Belief Network (DBN)
performs well in terms of both accuracy and
stability for a data set of 14 000 cases. Unlike
the shallow architecture models, DBN has many
advantages. It can realize nonlinear approxima-
tion of complex dynamics and avoid over-fitting
problems. However, the DBN model is vulnera-
ble to the change of the number of network lay-
ers and the size of hidden units, and the perfor-
mance is not stable. In [67], Guo et al. combine
the DBN with classification ensemble technolo-
gies (including SVM, KNN and RBF) in a hierar-
chical way. By taking advantage of self-learning
deep neural networks, Hu et al. [14] developed
an accurate recognition method for six fault sce-
narios of bogies using big data analytics. Intel-
ligent diagnosis is realized as the fault features

are self-adaptive and no signal processing tech-
nologies and engineering experience are needed.
The accuracy of the proposed method is the
highest compared with multihidden layer BPNN,
single-hidden layer BPNN and GA-BPNN. In addi-
tion, the feature extraction capabilities of the
previous algorithms are also analysed based on
the clustering method and the scatter diagram
shows the superiority of deep neural networks.
[32] presents a joint neural network CRNN that
integrates 1D-CNN (convolutional neural network)
and SRN (Simple Recurrent Unit). The 1D-CNN
part of the presented CRNN extracts the depth
characteristics of the bogie signals. The stacked
SRU section learns the sequence information of
the signal frame in each layer of the forward deliv-
ery. Therefore, the proposed method can quickly
identify bogie sequence information to ensure
the real-time and accuracy requirements of
diagnosis.

The current strategy of TPSS maintenance is
passive maintenance, relying on preventive main-
tenance, fault repair and artificial inspection [68].
It brings an inefficient repair problem which is
costly and imposes a heavy workload. Although
many sensors are employed in TPSS, the perfor-
mance of existing approaches is limited due to the
available real-time data collected from the mon-
itoring system. A vast number of historic data
are under-utilized, which demands the develop-
ment of more advanced maintenance analysis
tools. For example, a data-driven incipient fault
estimate of inverters in HSR [69] is proposed to
detect minor abnormalities and it can be extended
to other electrical systems through nonlinear
projections.

3.3.2 Computer vision. Computer vision is capa-
ble of acquiring, processing, analysing and under-
standing digital images. When it acts as a vision
sensor, high-level information will be transmitted
to AI system for further interpretation. As a non-
contact detection method, computer vision-based
robotics can replace the manual detection with
asset detection. The benefits of significant cost
reductions on investigation and operation have
gained much attention from railway operation
departments. Several applications of computer
vision can be found in track [70, 71], bridge [72],
pantograph [18, 73] and catenary maintenance
[74]. An automatic visual inspection of fasteners of
track is presented in [70]. The authors use fastener
samples to train a generative and data-driven
probabilistic model. The proposed model achieves
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Fig. 4. A systematic framework for future HSR system

the highest accuracy, compared with conventional
classifiers, i.e. boosted tree, latent SVM and neu-
ral networks. In [72], a probabilistic model is con-
structed in order to predict the vertical deflection
of a railway bridge. The bridge data are acquired
from two HDTV video cameras which are installed
at the end of the bridge. Han et al. [74] present
a deformable part model (DPM) algorithm for the
catenary system. The method can quickly extract
the target image instead of scanning the entire
image. In [73], Canny edge detection and Hough
transform algorithms are used to determine the
height of a pantograph system. Experimental
results show that the proposed method works
efficiently in real time. Zhu et al. [75] study the
abrasion condition of a pantograph slipper based
on Canny edge detection. Instead of artificial
inspection, computer vision techniques consider-
ably improve the accuracy and reliability of asset
management.

4. Requirements and architecture of future
HSR

HSR construction is always a critical national
project. To date, over 20 countries have had high-
speed lines in operation worldwide [2]. More
cross-border railways such as the corridor from
Turin to Lyons are being planned, shortening
the commute time between cities, regions and
countries. However, various standards and system
incompatibilities hinder the development of HSR.
Fig. 4 illustrates a designed framework for a future
HSR system that satisfies the requirements of cus-
tomer comfort and operation efficiency.

Based on the AI methodologies described
before, the architecture is supposed to achieve:

(i) An online analytic tool to support system oper-
ation and management. Four parallel function
modules are required: rolling stock modelling,
Driver Advisory System (DAS), fault prediction
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and emergency timetable rescheduler. Since
each computation module requires a huge
amount of input data and generates many raw
outputs, a common data format may be gener-
ated for cross-platform applications. With the
further development of technology, driverless
module will replace DAS.

(ii) A user-friendly traction power analytic tool.
The package is run by an integrated platform
that obtains input data from TPSS, and during
operation time the simulation is run in order to
ensure the steady and high efficient operation
of the supply system. An advanced database
management technique should be developed
to support the smooth running.

(iii) A decision support tool system running
through the design phase, construction phase
and operation phase. In previous analysis, AI-
related techniques show great performance
on the operation phase. But the applications
in the design and construction stages are
limited. One reason for the problem is the
loose connection between civil engineering
and AI. In fact, AI-aided analysis such as
soil-structure interaction and terrain layout
can reshape the customary procedures, in
particular with the further maturity of 5G
communication and big data technologies.

In recent years, some attempts have been made
to use AI to analyse HSR dynamics. Hitachi [76]
collected 13 daily basis operation data of UK’s
High Speed 1 project, such as rolling stock oper-
ation information and track infrastructure infor-
mation, and used them to estimate the effect
of energy consumption under different traction
modes. Some startups like D-Rail are introducing
new technologies into infrastructure monitoring,
operation trend analyses and automated alarms
with cutting-edge AI solutions [77]. It is projected
that AI will continue to play a crucial role in sup-
porting decision and analysis for new locomotives
and TPSS. As parts of smart city initiatives, the
design of intelligent HSR is required to be coin-
cided with the development of railway stations
and other transportation means to improve the
efficiency of energy consumption, on-board secu-
rity and labour saving.

5. Conclusions

This paper has presented a comprehensive survey
of cross-disciplinary researches on the application
of AI techniques in the HSR system, as well as an

insight into the future direction of the integrated
platform and analysis tools. The main AI tech-
niques discussed include, but are not confined to,
fuzzy logic, machine learning, genetic algorithms,
data mining and computer vision, which are used
for: (1) smart planning, (2) intelligent control and
(3) intelligent maintenance.

But many challenges need to be considered
before the full potential of the AI techniques can
be achieved in HSR. First, the robustness of algo-
rithms should be carefully verified. As there are
many ‘black box’ models which lack interpreta-
tion of the inner dynamics, it will trigger cascad-
ing failures even if a small error appears in the
design phase. Second, from the eco-tech aspect,
the deployment of new AI-based instruments and
devices for the railway system is still costly, and it
will also consume a lot of the resources for staff
training. It is not in the railway operation compa-
nies’ interest in the short term. Third, the security
and stability of the AI system can be confronted
with various new challenges. Cryptographic tech-
niques and other new methods are needed to
tackle these various challenges relating to secu-
rity.
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