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prove the memory performance of convolution operations. The

first technique exploits column reuse by utilizing shuffle in-

structions (supported by both CUDA and OpenCL and hence is

applicable to mainstream GPUs) to exchange elements among

threads within the same GPU warp (or working group). In this

way, we can avoid reloading the same elements shared among

different threads. We further extend the shuffle instructions

to facilitate dynamic indexing. The second technique targets

row reuse by multiplying one input row with multiple rows of

a convolutional kernel (or filter) to compute multiple output

elements. This strategy improves the data locality of elements

within a row, reducing the number of memory transactions

compared with that of the existing convolution processing

pipeline.

We apply our optimization techniques to 2D and multi-

channel 2D convolution operations and evaluate them on an

NVIDIA 2080Ti GPU. We compare our approach against

a range of highly optimized convolution libraries, including

cuDNN [9]. Experimental results show that our approach

delivers over 2× faster performance over the best-performing

competitive strategy.

This paper makes the following technical contributions:

• It presents a novel algorithm for column reuse (Sec-

tion II-A), which has a better generalization ability over

prior work.

• It presents a novel row reuse algorithm to improve the

data locality and reduce the number of global memory

transactions when performing convolution in the row

direction (Section II-B).

• It describes a novel method for transforming dynamic

indices into static indices. Our approach enhances register

promotion, leading to better performance (Section IV).

II. OUR APPROACH

In this section, we describe our two optimizations, column

reuse (Section II-A) and row reuse (Section II-B), for reducing

GPU memory transactions for convolution operations.

A. Column Reuse Optimization

1) Standard convolution: Figure 1a shows a standard 2D

convolution operation, operating on a single-channel input.

Here, each thread loads the first corresponding input elements
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I. INTRODUCTION

Convolution is a fundamental building block for many

application tasks, including image and video processing and

machine learning models. However, convolution operations are

computation and memory intensive for representative image

and machine learning processing tasks. Therefore, there is a

critical need for accelerating convolution operations.

A wide range of techniques have been proposed to acceler-

ate convolution operations [1], [2], [3], [4], [5], [6], [7], [8].

Among these methods, general matrix multiplication (GEMM)

[6], [7], fast fourier transform (FFT) [2] and winograd [3]

methods are the broadly adopted ones. However, these meth-

ods can incur many GPU global memory transactions (or

memory accesses) during the transformation phase due to the

involvement of matrix multiplications and duplicate elements

of the transformed matrices.

In this work, we introduce two novel optimization tech-

niques for operations performed on columns and rows to im-
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(a) Direct convolution: Each thread loads 5 input
elements from global memory.
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(b) Optimized convolution: each thread retrieves
its third element from the corresponding thread.
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(c) Our approach: each thread retrieves its second
and fourth elements from corresponding threads.

Fig. 1. Illustration of direct and optimized convolution. We use a 5×5 filter and each thread calculates the convolution for one output element. This example
shows how a thread processes the first 5 corresponding input elements.

from the GPU global memory. Given that the indices of these

elements are contiguous, i.e., 0, 1, 2, and 3 in this example,

concurrent access to these elements will be coalesced to form a

single memory transaction. After completing step 5, each pair

of adjacent threads will have four duplicate input elements.

2) An optimized version: To eliminate the redundant loads,

we could use the shuffle instructions to exchange input el-

ements among different threads. Figure 1b depicts such an

optimization. Specifically, in steps 1 and 2 of Figure 1b, each

thread loads the corresponding first and fifth input elements

from the global memory. In step 3, each thread utilizes the

shuffle instruction to retrieve the third element from another

thread.

Since the indices and the access pattern to iT emp are not

available at compile-time, the compiler cannot decide which

of the elements in iT emp will be frequently accessed and has

to place iT emp in the local memory which would still incur

an access latency of around 500 cycles. If we can promote

register allocation for iT emp, we can then further improve

the performance of convolution.

3) Our approach: Our column reuse approach (Figure 1c)

is described in Algorithm 1. Here, we first load the correspond-

ing first and fifth input elements into iT emp before passing it

to Algorithm 1. Then, we pack two 32-bit elements into a 64-

bit variable exchange, where iT emp[4] and iT emp[0] are the

high and low 32 bits, respectively (Line 2). As threads t0 and

t1 will provide the fifth element of the data they load, which

are the high 32 bits of exchange, we right shift exchange for

both threads by an offset of 32 to place iT emp[4] in the low

32 bits. Next, we unpack exchange into iT emp[2] (high 32

bits) and iT emp[1] (low 32 bits) (Line 5). By doing so, we

can retrieve the element a thread needs to supply from a fixed

location, iT emp[1]. Finally, we use the shuffle instruction to

exchange the elements among the threads (Line 6).

B. Row Reuse Optimization

1) Standard convolution: Assume we use one thread to

calculate one column of output elements. For the working

example given in Figure 2, the convolution will be computed

as follows:

Algorithm 1: RetrieveThirdElement

// iT emp: Buffer for storing input elements

loaded from memory or generated through

shuffle instructions.

Input: iT emp
Output: iT emp

1 tid← threadIdx.x;
2 mov exchange, {iT emp[0], iT emp[4]};
3 shift← ((tid+ 2)&2) << 4;
4 exchange← exchange >> shift;
5 mov {iT emp[1], iT emp[2]}, exchange;
6 iT emp[2]← shfl xor(iT emp[1], 2);
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Fig. 2. A 3 × 3 filter is used to slide over the input image along height
dimension, which produces a column of output elements.

out0 = rowi0 · rowf0 + rowi1 · rowf1 + rowi2 · rowf2

out1 = rowi1 · rowf0 + rowi2 · rowf1 + rowi3 · rowf2

out2 = rowi2 · rowf0 + rowi3 · rowf1 + rowi4 · rowf2

The above equations suggest that rowi1 and rowi3 are

loaded twice, and rowi2 is loaded three times; nine rows

should be loaded in total. The redundant loads to the same

read-only row thus incur extra memory transactions and addi-

tional overhead.

2) Our optimization: To remove redundant loads to the

same row, we redesign the execution flow of the convolution.

Specifically, after loading a row from the input, we compute

the number of output elements that depend on the loaded row.

Our approach translates the execution flow of the working

example presented in Figure 2 to:



Algorithm 2: RowReuse

Input: row, index, filter, Out
Output: Out

1 if index<FH − 1 then
2 for i← 0 to index+ 1 do
3 Out[i]← Out[i] + row · filter[index− i];
4 end
5 end
6 else if index ≥ FH − 1 and index<IH − FH + 1 then
7 for i← 0 to FH do
8 oindex ← index− FH + 1 + i;
9 Out[oindex]← Out[oindex]+row ·filter[FH−1− i];

10 end
11 end
12 else
13 for i← FH − 1 to 0 do
14 oindex ← IH − FH + 1;
15 Out[oindex]← Out[oindex] + row · filter[FH − i];
16 end
17 end

load rowi0 : out0 = rowi0 · rowf0

load rowi1 : out0 = out0 + rowi1 · rowf1

out1 = rowi1 · rowf0

load rowi2 : out0 = out0 + rowi2 · rowf2

out1 = out1 + rowi2 · rowf1

out2 = rowi2 · rowf0

load rowi3 : out1 = out1 + rowi3 · rowf2

out2 = out2 + rowi3 · rowf1

load rowi4 : out2 = out2 + rowi4 · rowf2

In this new implementation, we would only issue loads

to five rows to calculate the output elements. We note that

although the number of accesses to the output column out

is increased, the overhead is negligible because out is much

smaller than multiple rows and hence can be stored in registers.

We describe a general solution for row reuse in Algorithm

2, where row denotes the row loaded from the input, index

denotes the index of row, filter denotes the vector of filter

rows and filter[i] means the ith row of the filter. Pseudo code

at Lines 1-5 process the first FH − 1 rows (rowi0 and rowi1

in Figure 2) that are needed by less than FH output elements.

Code at lines 6-11 process the rows needed by exact FH output

elements (e.g., rowi2 in Figure 2). Finally, code at Lines 12-

17 process the last FH − 1 rows, which are needed by less

than FH output elements (e.g., rowi3 and rowi4 in Figure 2).

III. EXPERIMENTAL SETUP

We evaluate our approach on an NVIDIA RTX 2080Ti

GPU, which integrates 4350 CUDA cores for floating point

computation and 4350 CUDA cores for integer operations. We

use CUDA Toolkit version 10.2.

We compare our approach against the following state-of-the-

art image and convolution libraries: (1) cuDNN version 7.6.4.

cuDNN is a state-of-the-art convolution implementation that

TABLE I
LAYER CONFIGURATIONS USED FOR MULTI-CHANNEL 2D

CONVOLUTIONS†.

IN IC = FC IH × IW FN FH × FW

CONV1 128 1,3 28× 28 128 3× 3

CONV2 128 1,3 56× 56 64 3× 3

CONV3 128 1,3 12× 12 64 5× 5

CONV4 128 1,3 14× 14 16 5× 5

CONV5 128 1,3 24× 24 256 5× 5

CONV6 128 1,3 24× 24 64 5× 5

CONV7 128 1,3 28× 28 16 5× 5

CONV8 128 1,3 28× 28 512 3× 3

CONV9 128 1,3 56× 56 256 3× 3

CONV10 128 1,3 112× 112 128 3× 3

CONV11 128 1,3 224× 224 64 3× 3

† We use I , F , and O to represent the input, the filter, and the output
respectively, N , C, H , and W to denote the batch size, the channel,
the height, and the width, respectively.

supports 2D and multi-channel 2D convolutions on GPU. (2)

ArrayFire [10], version 3.6.4. ArrayFire is a popular image and

signal processing library. (3) NVIDIA Performance Primitives

(NPP). This is an image and signal processing library. (4)

GEMM-im2col. We extract the implementation of the GEMM-

im2col from Caffe [11]. We apply our approach to 2D and

multi-channel 2D convolutions.

IV. EXPERIMENTAL RESULTS

A. 2D Convolution

1) Setup: In this experiment, we compare our approach

against the 2D convolution implementations from cuDNN,

GEMM-im2col, ArrayFire, and NPP. As cuDNN provides

multiple implementations, we empirically choose the fastest

version, denoted as cuDNN-fastest, for evaluation. We apply

each method to images with sizes ranging from 256× 256 to

4K × 4K .

2) Overall results: Figure 3 reports the speedups of

cuDNN, ArrayFire, NPP and our approach over GEMM-

im2col. While cuDNN has been heavily optimized for

NVIDIA GPUs, it does not show a notable performance

advantage. When using a 3 × 3 filter, our approach gives the

best overall speedup of 5.4× (up to 9.7× for the largest input),

which translates to an improvement of more than 30% over

the second-best method, NPP. We note that our approach is

based on the standard 2D direct convolution by applying the

column and row reuse algorithms. Therefore, the performance

gain is mainly attributed to the reduction of the number of

memory transactions. When using a 5× 5 filter, our approach

achieves a better overall speedup of 7.7×.

B. Multi-channel 2D Convolution

1) Setup: In this experiment, we compare our approach

against the multi-channel 2D convolution implementations in

cuDNN and use GEMM-im2col as the baseline. Since our

work focuses on optimizing memory transactions of convo-

lutions but not operations on input channels, we apply our

approach to convolutions with one and three input channels,

which are typically used in the first layer of a CNN. We use the
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Fig. 3. Speedups of 2D convolutions of four implementations over GEMM-im2col when using a 3× 3 (a) and a 5× 5 filter (b).
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Fig. 4. Speedups of our approach and cuDNN over GEMM-im2col for one (left) and three (right) input channels.

layer configurations from four popular CNN models, namely,

AlexNet [12], VGG [13], ResNet [14] and GoogleLeNet [15].

We use 3× 3 and 5× 5 filters with a batch size of 128. Table

I lists the layer configurations used in this experiment.

2) Overall results: Figure 4 shows that our implementa-

tion achieves an average speedup of 19.5× and 25.6× over

GEMM-im2col for one and three input channels, respectively.

This translates to an improvement of 1.3× and 1.1× over the

fastest algorithm in cuDNN, for one and three input channels,

respectively. Since our approach does not optimize for input

channels, it does not give performance improvement for layer

configurations that have a large number of channels. This

can be improved by careful optimizations on input channels.

Nonetheless, our approach improves the performance of con-

volution layers with a small number of channels.

V. RELATED WORK

Numerous efforts have been dedicated to optimizing con-

volution operations. As previously mentioned, GEMM-, FFT-

and Winograd-based convolutions are broadly adopted convo-

lution algorithms. Chellapilla et al. [7] developed an unrolling

convolution algorithm. Mathieu et al. [16] proposed an FFT-

based convolution to compute convolutions as pointwise prod-

ucts in the Fourier domain. Lavin et al. [3] used Winograd’s

minimal filtering algorithm to accelerate the convolution on

GPU. This algorithm can reduce the arithmetic complexity

of convolution by up to four times compared with direct

convolution.

Recent studies have looked into minimizing the memory

overhead of the transformation phases. Cho et al. [4] reduced

the memory overhead of GEMM-based convolutions using a

compact lowering scheme to reduce the redundancy in the

lowered matrix and then performed multiple small matrix

multiplications in parallel. Iandola et al. [1] reduced mem-

ory communication of 2D convolutions on GPU. They also

prefetched the image regions to the registers.

VI. CONCLUSION

Our approach improves the data locality for convolutional

operations performed on the row and column directions to

reduce the memory access. We evaluate our approach by

applying it to 2D and multi-channel 2D convolutions and

evaluate it on an NVIDIA RTX 2080Ti GPU platform. We

compare our approach against a wide range of heavily opti-

mized convolution algorithms. Experimental results show that

our approach consistently outperforms the competing methods

by delivering the best overall performance for the convolution

tasks.
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