
This is a repository copy of Optimizing GPU Memory Transactions for Convolution 
Operations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164433/

Version: Accepted Version

Proceedings Paper:
Lu, G, Zhang, W and Wang, Z orcid.org/0000-0001-6157-0662 (2020) Optimizing GPU 
Memory Transactions for Convolution Operations. In: Proceedings of 2020 IEEE 
International Conference on Cluster Computing. 2020 IEEE International Conference on 
Cluster Computing (Cluster 2020), 14-17 Sep 2020, Kobe, Japan (Online). IEEE . ISBN 
978-1-7281-6678-0 

https://doi.org/10.1109/CLUSTER49012.2020.00050

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Optimizing GPU Memory Transactions for

Convolution Operations

Gangzhao Lu

Computer Science and Technology

Harbin Institute of Technology

China

lugangzhao@hit.edu.cn

Weizhe Zhang

Computer Science and Technology

Harbin Institute of Technology

China

wzzhang@hit.edu.cn

Zheng Wang

School of Computing

University of Leeds

United Kingdom

z.wang5@leeds.ac.uk

prove the memory performance of convolution operations. The

first technique exploits column reuse by utilizing shuffle in-

structions (supported by both CUDA and OpenCL and hence is

applicable to mainstream GPUs) to exchange elements among

threads within the same GPU warp (or working group). In this

way, we can avoid reloading the same elements shared among

different threads. We further extend the shuffle instructions

to facilitate dynamic indexing. The second technique targets

row reuse by multiplying one input row with multiple rows of

a convolutional kernel (or filter) to compute multiple output

elements. This strategy improves the data locality of elements

within a row, reducing the number of memory transactions

compared with that of the existing convolution processing

pipeline.

We apply our optimization techniques to 2D and multi-

channel 2D convolution operations and evaluate them on an

NVIDIA 2080Ti GPU. We compare our approach against

a range of highly optimized convolution libraries, including

cuDNN [9]. Experimental results show that our approach

delivers over 2× faster performance over the best-performing

competitive strategy.

This paper makes the following technical contributions:

• It presents a novel algorithm for column reuse (Sec-

tion II-A), which has a better generalization ability over

prior work.

• It presents a novel row reuse algorithm to improve the

data locality and reduce the number of global memory

transactions when performing convolution in the row

direction (Section II-B).

• It describes a novel method for transforming dynamic

indices into static indices. Our approach enhances register

promotion, leading to better performance (Section IV).

II. OUR APPROACH

In this section, we describe our two optimizations, column

reuse (Section II-A) and row reuse (Section II-B), for reducing

GPU memory transactions for convolution operations.

A. Column Reuse Optimization

1) Standard convolution: Figure 1a shows a standard 2D

convolution operation, operating on a single-channel input.

Here, each thread loads the first corresponding input elements

Abstract—Convolution computation is a common operation 
in deep neural networks (DNNs) and is often responsible for 
performance bottlenecks during training and inferencing. Ex-
isting approaches for accelerating convolution operations aim 
to reduce computational complexity. However, these strategies 
often increase the memory footprint with extra memory accesses, 
thereby leaving much room for performance improvement. This 
paper presents a novel approach to optimize memory access 
for convolution operations, specifically targeting GPU execution. 
Our approach leverages two optimization techniques to reduce 
the number of memory operations for convolution operations 
performed on the width and height dimensions. For convolu-
tion computations on the width dimension, we exploit shuffle 
instructions to exchange the overlapped columns of the input for 
reducing the number of memory transactions. For convolution 
operations on the height dimension, we multiply each overlapped 
row of the input with multiple rows of a filter to compute multiple 
output elements to improve the data locality of row elements.

We apply our approach to 2D and multi-channel 2D con-
volutions on an NVIDIA 2080Ti GPU. For 2D convolution, 
our approach delivers over 2x faster performance than the 
state-of-the-art image processing libraries. For multi-channel 2D 
convolutions, we obtain up to 2× speedups over the quickest 
algorithm of cuDNN.

Index Terms—Performance Optimization, Convolution, Mem-
ory Optimization, GPUs

I. INTRODUCTION

Convolution is a fundamental building block for many

application tasks, including image and video processing and

machine learning models. However, convolution operations are

computation and memory intensive for representative image

and machine learning processing tasks. Therefore, there is a

critical need for accelerating convolution operations.

A wide range of techniques have been proposed to acceler-

ate convolution operations [1], [2], [3], [4], [5], [6], [7], [8].

Among these methods, general matrix multiplication (GEMM)

[6], [7], fast fourier transform (FFT) [2] and winograd [3]

methods are the broadly adopted ones. However, these meth-

ods can incur many GPU global memory transactions (or

memory accesses) during the transformation phase due to the

involvement of matrix multiplications and duplicate elements

of the transformed matrices.

In this work, we introduce two novel optimization tech-

niques for operations performed on columns and rows to im-



t0 0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

step 1 step 2 step 3 step 4 step 5

t1

t2

t3

(a) Direct convolution: Each thread loads 5 input
elements from global memory.

0

1

2

3

2

3

4

5

4

5

6

7

step 1 step 3 step 2

t0

t1

t2

t3

(b) Optimized convolution: each thread retrieves
its third element from the corresponding thread.

0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

step 1 step 4 step 3 step 5 step 2

t0

t1

t2

t3

(c) Our approach: each thread retrieves its second
and fourth elements from corresponding threads.

Fig. 1. Illustration of direct and optimized convolution. We use a 5×5 filter and each thread calculates the convolution for one output element. This example
shows how a thread processes the first 5 corresponding input elements.

from the GPU global memory. Given that the indices of these

elements are contiguous, i.e., 0, 1, 2, and 3 in this example,

concurrent access to these elements will be coalesced to form a

single memory transaction. After completing step 5, each pair

of adjacent threads will have four duplicate input elements.

2) An optimized version: To eliminate the redundant loads,

we could use the shuffle instructions to exchange input el-

ements among different threads. Figure 1b depicts such an

optimization. Specifically, in steps 1 and 2 of Figure 1b, each

thread loads the corresponding first and fifth input elements

from the global memory. In step 3, each thread utilizes the

shuffle instruction to retrieve the third element from another

thread.

Since the indices and the access pattern to iT emp are not

available at compile-time, the compiler cannot decide which

of the elements in iT emp will be frequently accessed and has

to place iT emp in the local memory which would still incur

an access latency of around 500 cycles. If we can promote

register allocation for iT emp, we can then further improve

the performance of convolution.

3) Our approach: Our column reuse approach (Figure 1c)

is described in Algorithm 1. Here, we first load the correspond-

ing first and fifth input elements into iT emp before passing it

to Algorithm 1. Then, we pack two 32-bit elements into a 64-

bit variable exchange, where iT emp[4] and iT emp[0] are the

high and low 32 bits, respectively (Line 2). As threads t0 and

t1 will provide the fifth element of the data they load, which

are the high 32 bits of exchange, we right shift exchange for

both threads by an offset of 32 to place iT emp[4] in the low

32 bits. Next, we unpack exchange into iT emp[2] (high 32

bits) and iT emp[1] (low 32 bits) (Line 5). By doing so, we

can retrieve the element a thread needs to supply from a fixed

location, iT emp[1]. Finally, we use the shuffle instruction to

exchange the elements among the threads (Line 6).

B. Row Reuse Optimization

1) Standard convolution: Assume we use one thread to

calculate one column of output elements. For the working

example given in Figure 2, the convolution will be computed

as follows:

Algorithm 1: RetrieveThirdElement

// iT emp: Buffer for storing input elements

loaded from memory or generated through

shuffle instructions.

Input: iT emp
Output: iT emp

1 tid← threadIdx.x;
2 mov exchange, {iT emp[0], iT emp[4]};
3 shift← ((tid+ 2)&2) << 4;
4 exchange← exchange >> shift;
5 mov {iT emp[1], iT emp[2]}, exchange;
6 iT emp[2]← shfl xor(iT emp[1], 2);

!"#$% &$%#$%'()%*+

rowi0

rowi2

rowi3

rowi4

rowi1 rowf0

rowf1

rowf2

out0

out1

out2

%,+*-./0

Fig. 2. A 3 × 3 filter is used to slide over the input image along height
dimension, which produces a column of output elements.

out0 = rowi0 · rowf0 + rowi1 · rowf1 + rowi2 · rowf2

out1 = rowi1 · rowf0 + rowi2 · rowf1 + rowi3 · rowf2

out2 = rowi2 · rowf0 + rowi3 · rowf1 + rowi4 · rowf2

The above equations suggest that rowi1 and rowi3 are

loaded twice, and rowi2 is loaded three times; nine rows

should be loaded in total. The redundant loads to the same

read-only row thus incur extra memory transactions and addi-

tional overhead.

2) Our optimization: To remove redundant loads to the

same row, we redesign the execution flow of the convolution.

Specifically, after loading a row from the input, we compute

the number of output elements that depend on the loaded row.

Our approach translates the execution flow of the working

example presented in Figure 2 to:



Algorithm 2: RowReuse

Input: row, index, filter, Out
Output: Out

1 if index<FH − 1 then
2 for i← 0 to index+ 1 do
3 Out[i]← Out[i] + row · filter[index− i];
4 end
5 end
6 else if index ≥ FH − 1 and index<IH − FH + 1 then
7 for i← 0 to FH do
8 oindex ← index− FH + 1 + i;
9 Out[oindex]← Out[oindex]+row ·filter[FH−1− i];

10 end
11 end
12 else
13 for i← FH − 1 to 0 do
14 oindex ← IH − FH + 1;
15 Out[oindex]← Out[oindex] + row · filter[FH − i];
16 end
17 end

load rowi0 : out0 = rowi0 · rowf0

load rowi1 : out0 = out0 + rowi1 · rowf1

out1 = rowi1 · rowf0

load rowi2 : out0 = out0 + rowi2 · rowf2

out1 = out1 + rowi2 · rowf1

out2 = rowi2 · rowf0

load rowi3 : out1 = out1 + rowi3 · rowf2

out2 = out2 + rowi3 · rowf1

load rowi4 : out2 = out2 + rowi4 · rowf2

In this new implementation, we would only issue loads

to five rows to calculate the output elements. We note that

although the number of accesses to the output column out

is increased, the overhead is negligible because out is much

smaller than multiple rows and hence can be stored in registers.

We describe a general solution for row reuse in Algorithm

2, where row denotes the row loaded from the input, index

denotes the index of row, filter denotes the vector of filter

rows and filter[i] means the ith row of the filter. Pseudo code

at Lines 1-5 process the first FH − 1 rows (rowi0 and rowi1

in Figure 2) that are needed by less than FH output elements.

Code at lines 6-11 process the rows needed by exact FH output

elements (e.g., rowi2 in Figure 2). Finally, code at Lines 12-

17 process the last FH − 1 rows, which are needed by less

than FH output elements (e.g., rowi3 and rowi4 in Figure 2).

III. EXPERIMENTAL SETUP

We evaluate our approach on an NVIDIA RTX 2080Ti

GPU, which integrates 4350 CUDA cores for floating point

computation and 4350 CUDA cores for integer operations. We

use CUDA Toolkit version 10.2.

We compare our approach against the following state-of-the-

art image and convolution libraries: (1) cuDNN version 7.6.4.

cuDNN is a state-of-the-art convolution implementation that

TABLE I
LAYER CONFIGURATIONS USED FOR MULTI-CHANNEL 2D

CONVOLUTIONS†.

IN IC = FC IH × IW FN FH × FW

CONV1 128 1,3 28× 28 128 3× 3

CONV2 128 1,3 56× 56 64 3× 3

CONV3 128 1,3 12× 12 64 5× 5

CONV4 128 1,3 14× 14 16 5× 5

CONV5 128 1,3 24× 24 256 5× 5

CONV6 128 1,3 24× 24 64 5× 5

CONV7 128 1,3 28× 28 16 5× 5

CONV8 128 1,3 28× 28 512 3× 3

CONV9 128 1,3 56× 56 256 3× 3

CONV10 128 1,3 112× 112 128 3× 3

CONV11 128 1,3 224× 224 64 3× 3

† We use I , F , and O to represent the input, the filter, and the output
respectively, N , C, H , and W to denote the batch size, the channel,
the height, and the width, respectively.

supports 2D and multi-channel 2D convolutions on GPU. (2)

ArrayFire [10], version 3.6.4. ArrayFire is a popular image and

signal processing library. (3) NVIDIA Performance Primitives

(NPP). This is an image and signal processing library. (4)

GEMM-im2col. We extract the implementation of the GEMM-

im2col from Caffe [11]. We apply our approach to 2D and

multi-channel 2D convolutions.

IV. EXPERIMENTAL RESULTS

A. 2D Convolution

1) Setup: In this experiment, we compare our approach

against the 2D convolution implementations from cuDNN,

GEMM-im2col, ArrayFire, and NPP. As cuDNN provides

multiple implementations, we empirically choose the fastest

version, denoted as cuDNN-fastest, for evaluation. We apply

each method to images with sizes ranging from 256× 256 to

4K × 4K .

2) Overall results: Figure 3 reports the speedups of

cuDNN, ArrayFire, NPP and our approach over GEMM-

im2col. While cuDNN has been heavily optimized for

NVIDIA GPUs, it does not show a notable performance

advantage. When using a 3 × 3 filter, our approach gives the

best overall speedup of 5.4× (up to 9.7× for the largest input),

which translates to an improvement of more than 30% over

the second-best method, NPP. We note that our approach is

based on the standard 2D direct convolution by applying the

column and row reuse algorithms. Therefore, the performance

gain is mainly attributed to the reduction of the number of

memory transactions. When using a 5× 5 filter, our approach

achieves a better overall speedup of 7.7×.

B. Multi-channel 2D Convolution

1) Setup: In this experiment, we compare our approach

against the multi-channel 2D convolution implementations in

cuDNN and use GEMM-im2col as the baseline. Since our

work focuses on optimizing memory transactions of convo-

lutions but not operations on input channels, we apply our

approach to convolutions with one and three input channels,

which are typically used in the first layer of a CNN. We use the



256×256 512×512 1K×1K 2K×2K 4K×4K0

2

4

6

8

10

Sp
ee
du

p

1.
1

0.
9

0.
9

0.
9

0.
9

0.
7 1.

5

0.
7

1.
8

3.
5

4.
7

4.
0

3.
7 3.
9 4.
0

1.
9 2.
4

5.
2

7.
8

9.
7

cuDNN fastest
ArrayFire
NPP
ours

(a) 3× 3 filter

256×256 512×512 1K×1K 2K×2K 4K×4K0

2

4

6

8

10

12

14

Sp
ee
du

p

1.
1

1.
0 1.
3

1.
3

1.
5

1.
5 2.
1

1.
7

3.
9

5.
5

5.
0 5.
5

5.
5 6.
1 6.
4

2.
0 3.

3

6.
6

11
.6

14
.8

cuDNN fastest
ArrayFire
NPP
ours

(b) 5× 5 filter

Fig. 3. Speedups of 2D convolutions of four implementations over GEMM-im2col when using a 3× 3 (a) and a 5× 5 filter (b).

implicitpreco
mp

gemm fft tilingwinog
rad
nonfu

sed ours

CONV1
CONV2
CONV3
CONV4
CONV5
CONV6
CONV7
CONV8
CONV9

CONV10
CONV11

5.9 9.3 5.5 3.3 3.4 3.1 2.6 12.3
4.5 8.1 4.3 2.6 1.8 2.3 1.8 5.2
28.9 32.7 24.6 16.1 7.8 0.0 12.9 52.8
16.2 17.2 14.2 11.8 7.8 0.0 10.4 39.4
10.3 14.5 9.2 3.8 3.9 0.0 2.9 23.0
18.3 23.4 15.9 8.1 8.3 0.0 6.8 39.9
13.1 14.9 11.6 8.7 8.7 0.0 7.4 32.9
2.5 4.8 2.5 1.3 1.3 1.3 1.0 5.4
1.7 3.2 1.7 0.9 0.7 0.9 0.6 1.9
0.7 1.5 0.7 0.2 0.3 0.4 0.3 0.7
0.6 1.1 0.6 0.1 0.2 0.3 0.2 0.5

implicitpreco
mp

gemm fft tilingwinog
rad
nonfu

sed ours

CONV1
CONV2
CONV3
CONV4
CONV5
CONV6
CONV7
CONV8
CONV9

CONV10
CONV11

9.0 14.8 8.2 5.2 5.3 5.0 4.1 16.7
8.1 15.7 6.4 4.4 3.5 4.3 3.3 4.2
42.9 50.2 38.9 27.5 12.9 0.0 21.2 91.8
17.5 18.1 15.5 13.8 9.3 0.0 11.7 40.6
21.1 38.6 23.3 13.8 14.2 0.0 10.3 40.8
25.2 37.6 23.4 16.1 16.7 0.0 13.4 48.9
10.7 13.9 8.4 10.3 10.3 0.0 8.5 27.5
4.9 10.1 4.6 2.7 2.8 2.7 2.1 9.1
1.9 4.0 1.7 1.0 0.8 1.0 0.7 0.9
0.9 2.0 0.8 0.2 0.3 0.5 0.4 0.8
0.9 1.8 0.8 0.2 0.3 0.5 0.4 0.7

Fig. 4. Speedups of our approach and cuDNN over GEMM-im2col for one (left) and three (right) input channels.

layer configurations from four popular CNN models, namely,

AlexNet [12], VGG [13], ResNet [14] and GoogleLeNet [15].

We use 3× 3 and 5× 5 filters with a batch size of 128. Table

I lists the layer configurations used in this experiment.

2) Overall results: Figure 4 shows that our implementa-

tion achieves an average speedup of 19.5× and 25.6× over

GEMM-im2col for one and three input channels, respectively.

This translates to an improvement of 1.3× and 1.1× over the

fastest algorithm in cuDNN, for one and three input channels,

respectively. Since our approach does not optimize for input

channels, it does not give performance improvement for layer

configurations that have a large number of channels. This

can be improved by careful optimizations on input channels.

Nonetheless, our approach improves the performance of con-

volution layers with a small number of channels.

V. RELATED WORK

Numerous efforts have been dedicated to optimizing con-

volution operations. As previously mentioned, GEMM-, FFT-

and Winograd-based convolutions are broadly adopted convo-

lution algorithms. Chellapilla et al. [7] developed an unrolling

convolution algorithm. Mathieu et al. [16] proposed an FFT-

based convolution to compute convolutions as pointwise prod-

ucts in the Fourier domain. Lavin et al. [3] used Winograd’s

minimal filtering algorithm to accelerate the convolution on

GPU. This algorithm can reduce the arithmetic complexity

of convolution by up to four times compared with direct

convolution.

Recent studies have looked into minimizing the memory

overhead of the transformation phases. Cho et al. [4] reduced

the memory overhead of GEMM-based convolutions using a

compact lowering scheme to reduce the redundancy in the

lowered matrix and then performed multiple small matrix

multiplications in parallel. Iandola et al. [1] reduced mem-

ory communication of 2D convolutions on GPU. They also

prefetched the image regions to the registers.

VI. CONCLUSION

Our approach improves the data locality for convolutional

operations performed on the row and column directions to

reduce the memory access. We evaluate our approach by

applying it to 2D and multi-channel 2D convolutions and

evaluate it on an NVIDIA RTX 2080Ti GPU platform. We

compare our approach against a wide range of heavily opti-

mized convolution algorithms. Experimental results show that

our approach consistently outperforms the competing methods

by delivering the best overall performance for the convolution

tasks.



REFERENCES

[1] F. N. Iandola, D. Sheffield, M. J. Anderson, P. M. Phothilimthana,
and K. Keutzer, “Communication-minimizing 2d convolution in gpu
registers,” in IEEE International Conference on Image Processing, 2014.

[2] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance eval-
uation,” in 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.
[3] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-

works,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 4013–4021.
[4] M. Cho and D. Brand, “Mec: memory-efficient convolution for deep

neural network,” in Proceedings of the 34th International Conference

on Machine Learning-Volume 70. JMLR. org, 2017, pp. 815–824.
[5] J. Zhen, A. Zlateski, F. Durand, and L. Kai, “Optimizing n-dimensional,

winograd-based convolution for manycore cpus,” in Acm Sigplan Sym-

posium on Principles & Practice of Parallel Programming, 2018.
[6] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel

convolution using general matrix multiplication,” in IEEE International

Conference on Application-specific Systems, 2017.
[7] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional

neural networks for document processing,” Tenth International Workshop

on Frontiers in Handwriting Recognition, 2006.
[8] W. Zhang, A. M. Cheng, and J. Subhlok, “Dwarfcode: a performance

prediction tool for parallel applications,” IEEE Transactions on Com-

puters, vol. 65, no. 2, pp. 495–507, 2015.
[9] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” CoRR,
vol. abs/1410.0759, 2014.

[10] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev,
B. Kloppenborg, J. Malcolm, and J. Melonakos, “ArrayFire -
A high performance software library for parallel computing with
an easy-to-use API,” Atlanta, 2015. [Online]. Available: https:
//github.com/arrayfire/arrayfire

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in International Conference

on Neural Information Processing Systems, 2012.
[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” in 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 2016,
pp. 770–778.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, 2015,
pp. 1–9.

[16] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” arXiv preprint arXiv:1312.5851, 2013.


