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Abstract 
Health economic evaluation models have traditionally been built in 
Microsoft Excel, but more sophisticated tools are increasingly being 
used as model complexity and computational requirements increase. 
Of all the programming languages, R is most popular amongst health 
economists because it has a plethora of user created packages and is 
highly flexible. However, even with an integrated development 
environment such as R Studio, R lacks a simple point and click user 
interface and therefore requires some programming ability. This 
might make the switch from Microsoft Excel to R seem daunting, and 
it might make it difficult to directly communicate results with 
decisions makers and other stakeholders. 
 
The R package Shiny has the potential to resolve this limitation. It 
allows programmers to embed health economic models developed in 
R into interactive web browser based user interfaces. Users can 
specify their own assumptions about model parameters and run 
different scenario analyses, which, in the case of regular a Markov 
model, can be computed within seconds. This paper provides a 
tutorial on how to wrap a health economic model built in R into a 
Shiny application. We use a four-state Markov model developed by the 
Decision Analysis in R for Technologies in Health (DARTH) group as a 
case-study to demonstrate main principles and basic functionality. 
 
A more extensive tutorial, all code, and data are provided in a GitHub 
repository.
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      Amendments from Version 1

The changes made are all in response to the reviewers suggestions. For each comment by the reviewers we have 

responded with the exact change (see responses to reviewer comments below).

None of these changes change the fundamental teaching strategy of the tutorial, or the reasons why this tutorial paper 

was published, they are just relatively minor changes to the text used to clarify things which the reviewers found more 

difficult to follow, or felt we should have explained differently. 

In two cases this resulted in changes to large chunks of text.

Running the model for a specific set of PSA inputs   - We provide more detail on the way in which the f_MM_

sicksicker function works. This was in response to a request by reviewer 2 to do this.

Discussion – we add in more clarity about the limitations and strengths of the apps in response to the reviewers (in 

blue). This is in response to a request by reviewer 1 to do this.

Any further responses from the reviewers can be found at the end of the article

REVISED

Introduction
As the complexity of health economic decision models increase, there is growing recognition of the advantages of 

using high level programming languages (e.g. R, Python, C++, Julia) to support statistical analysis. Depending on 

the model that is being used, Microsoft Excel can be relatively slow. Certain types of models (e.g. individual-level 

simulations) can take a very long time to run or become computationally infeasible, and some essential statistical  

methods can hardly be implemented at all (e.g. survival modelling, network meta-analysis, value of sample  

information), or rely on exporting results from other programs (e.g. R, STATA, WinBUGs).

Of all the high level programming languages, R is the most popular amongst health economists1. R is open source 

and supported by a large community of statisticians, data scientists and health economists. There are extensive  

collections of (mostly free) online resources, including packages, tutorials, courses, and guidelines. Chunks of 

code, model functions, and entire models are shared by numerous authors, which allow R users to quickly adopt  

and adapt methods and code created by others. Importantly for the UK, R is also currently the only programming 

environment accepted by NICE for HTA submissions, the alternative submission formats Excel, DATA, Treeage, and 

WinBUGs are all software applications2.

Despite the many strengths of the script based approach (e.g R) to decision modelling, an important limitation has  

been the lack of an easy-to-understand user-interface, which would be useful as it “facilitates the development and 

communication of the model structure” (p.743)1. While it is common practice for ’spreadsheet models’ to have a  

structured front tab, which allows decision makers to manipulate model assumptions and change parameters to assess 

their impact on the results, up until recently, R models had to be adapted within script files or command lines.

Released in 2012, Shiny is an R-package that can be used to create a graphical, web browser based interface. The  

result looks like a website, and allows users to interact with underlying R models without the need to manipulate 

the source code3. Shiny has already been widely adopted in many different areas and by various organisations to  

present the results of statistical analysis4. Within health economics Shiny is currently being used to conduct network 

meta analysis5 and value of information analysis6,7.

Using Shiny, it is possible to create flexible user interfaces that allow users to specify different assumptions,  

change parameters, run underlying R code and visualise results. The primary benefit of this is that it makes script 

based computer models accessible to those with no programming knowledge - opening models up to critical  

inquiry from decision makers and other stakeholders8. Other benefits come from leveraging the power of R’s  

many publicly available packages; for example, allowing for publication quality graphs and tables to be  

downloaded, user specific data-files to be uploaded, open-access data to be automatically updated and,  

perhaps most importantly, to efficiently run comprehensive probabilistic sensitivity analyses in a fraction of 

the time that it would take in Microsoft Excel. Shiny web applications for R health economic decision models  

seem particularly useful in cases where model parameters are highly uncertain or unknown, and where  

analysis is conducted with heterogeneous assumptions (e.g. for different populations). Examples of well-designed 

shiny applications include, for example, the the Innovation and Value Initiative’s open-source rheumatoid arthritis  

individual patient simulation model, Bresmed’s ‘IntRface’ application, and the SHARP CKD-CVD outcomes  

model9–11.

While, from a transparency perspective, it is preferable that models constructed in R are made open-access to  

improve replicability and collaboration, it is not a requirement12. Sensitive and proprietary data and/or models can  
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be shared internally, or through password-protected web applications, negating the need to email zipped folders.  

Once an R model and a Shiny application have been created, they can also be easily adapted, making it pos-

sible to quickly update the model when new information becomes available. Several authors have pos-

tulated that there is considerable potential in using Shiny to support and improve health economic deci-

sion making. Incerti et al. (2019) identified web applications as being an essential part of modelling,  

stating that they “believe that the future of cost-effectiveness modeling lies in web apps, in which graphical  

interfaces are used to run script-based models” (p.577)13. Similarly, Baio and Heath (2017) predicted that R Shiny 

web apps will be the “future of applied statistical modelling, particularly for cost-effectiveness analysis” (p.e5)14.  

Despite these optimistic prognoses, adoption of R in health economics has been slow and the use of Shiny seems 

to have been limited to only a few cases. A reason for this might be the lack of accessible tutorials tailored  

towards an economic modeller audience.

Here, we provide a simple example of a Shiny web app, using a general four-state Markov model. The model is 

based on the ’Sick-Sicker model’, which has been described in detail in previous publications15,16 and in open 

source teaching materials by the DARTH workgroup17. The model was slightly adapted to implement probabilistic  

sensitivity analysis. This paper aims to provide a tutorial, designed specifically for those familiar with decision  

modelling in R, to create web-based user interfaces for R models using R Shiny.

Methods
While the focus of this tutorial is on the application of Shiny for health economic models, below we provide a brief 

overview of the “Sick-Sicker model”. For further details, readers are encouraged to consult previous publications by 

the DARTH group15,16,18 and the DARTH group website17.

The Sick-Sicker model is a four-state (Healthy, Sick, Sicker or Dead) time-independent Markov model. The  

cohort progresses through the model in cycles of equal duration, with the proportion of those in each health state 

in the next cycle being dependant on the proportion in each health state in the current cycle and a time constant  

transition probability matrix.

The analysis incorporates probabilistic sensitivity analysis (PSA) by creating a data-frame of PSA inputs (one 

row being one set of model inputs) based on cost, utility and state transition probability distributions using  

the function f_gen_psa and then running the model for each set of PSA inputs using the model function  

f_MM_sicksicker.We therefore begin by describing the two functions f_gen_psa and f_MM_sicksicker in more  

detail before moving on to demonstrate how to create a user-interface. In this tutorial, we follow Alarid-Escudero  

et al.’s (2019) coding framework and add to it the prefix ‘f_’ to denominate functions15.

Functions
The f_gen_psa function (see the file f_gen_psa.R in the open access repository: https://doi.org/10.5281/ 

zenodo.372705219) returns a data-frame of probabilistic sensitivity analysis inputs: transition probabilities between  

health states using a beta distribution, hazard rates using a log-normal distribution, costs using a gamma distribu-

tion and utilities using a truncnormal distribution. It relies on two inputs, the number of simulations (PSA inputs),  

and the cost (which takes a fixed value). We set the defaults to 1000 and 50, respectively.

Running the model for a specific set of PSA inputs
The function f_MM_sicksicker (see the file f_MM_sicksicker in the open access repository: https://doi.org/10.5281/

zenodo.3727052) makes use of the with function, which applies an expression (in this case the rest of the code) to a 

data-set (in this case params, which will be a row of PSA inputs). 

The function first calculates transition probabilities from each health state to each health state and uses these to fill 

a transition probability matrix (m_P). It then creates a matrix for the markov trace (m_TR) which has t+1 nrows and  

four columns (one for each health state). The ‘PROCESS’ part of the code then ‘loops’ through the markov  

model, using matrix multiplication (elicited using %*% in R), iteratively computing, for each period, the proportion  

of the population that is in each state. 

In the ‘OUTPUT’ section of the code the markov trace (m_TR) is multiplied (again using matrix multiplication) with 

vectors of health state utilities (e.g. v_u_trt) and costs (e.g. v_c_trt), giving a vector of total costs and utilities in  

each time interval. These vectors are then discounted using a discount weight vector (e.g. v_dwe & v_dwe) to arrive 

at a single cost/QALY value. The resulting total discounted costs and QALY estimates for the treatment and the  

no-treatment group then are combined into a vector and returned from the function. In this simple example,  
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treatment only influences utilities and costs, not transition probabilities. For further details on the underlying  

model, we refer to the published source code19

Creating the model wrapper
When using a web application,  it is likely that the user will want to be able to change parameter inputs and rerun 

the model. In order to make this simple, we recommend wrapping the entire model into a function. We call this  

function f_wrapper, using the prefix f_ to denote that this is a function.

The wrapper function has as its inputs all the parameters that we may wish to vary using R-Shiny. We set the 

default values to those of the base model in any report/publication. The model then generates PSA inputs using the  

f_gen_psa function, creates an empty table of results, and runs the model for each set of PSA inputs (a row  

from df_psa) in turn. The function then returns the results in the form of a data-frame with n=5 columns and  

n=psa rows. The columns contain the costs and QALYs for treatment and no treatment for each PSA run, as well as an 

ICER for that PSA run.

Model wrapper function

f_wrapper <— function(

#—— User adjustable inputs ——#

# age at baseline

n_age_init = 25,

# maximum age of follow up

n_age_max  = 110,

# discount rate for costs and QALYS

d_r     = 0.035,

# number of simulations

n_sim   = 1000,

# cost of intervention treatment in states sick and sicker

c_Trt   = 50

 ){

#—— Unadjustable inputs ——#

# number of cycles

n_t <— n_age_max — n_age_init

# the 4 health states of the model:

v_n <— c("H" , "S1" , "S2" , "D")

# number of health states

n_states <— length(v_n)

#—— Create PSA Inputs ——#

df_psa <— f_gen_psa(n_sim = n_sim,

                    c_Trt =  c_Trt)

#—— Run PSA ——#

# Initialize matrix of results outcomes

m_out <— matrix(NaN,

                nrow = n_sim,

                ncol = 5,

                dimnames = list(1:n_sim,

                c("Cost_NoTrt", "Cost_Trt",

                  "QALY_NoTrt", "QALY_Trt",

                  "ICER")))
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Figure 1. Diagram depicting how the Sick-Sicker app is structured.

# run model for each row of PSA inputs

for(i in 1:n_sim){

 # store results in row of results matrix

 m_out[i,] <— f_MM_sicksicker(df_psa[i, ])

  } # close model loop

#—— Return results ——#

# convert matrix to dataframe (for plots)

 df_out <— as.data.frame(m_out)

# output the dataframe from the function

 return(df_out)

  

 } # end of function

Integrating into R-Shiny
The next step is to integrate the model function into a Shiny web-app. This is done within a single R file, which we  

call app.R. This can be found within the GitHub repository here .

The app.R script has three main parts, each are addressed in turn below:

•set-up (getting everything ready so the user-interface and server can be created)

•user interface (what people will see)

•server (R code running in the background)

Figure 1 depicts the relationship between the server and the user interface within the Shiny application. On a  

conceptual level, the user interface has three components: Shiny inputs (objects that the user can specify, e.g. by  

inputting a number), Shiny outputs (objects created on the server side, e.g. plots and tables), and non-interactive  

features (any fixed elements, such as texts, headings, logos etc.). The server works almost like a normal R session. 

It runs various R operations, including the model function, which takes non-Shiny inputs (defined only on the server  

side) and some Shiny inputs from the user interface. The results are then sent to the user interface and displayed as 

Shiny outputs.
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Initial set-up
The set-up is relatively simple. First, load the R-Shiny package from your library so that you can use the shinyApp 

function. The next step is to use the source function in baseR to run the script that creates the f_wrapper function, being 

careful to ensure your relative path is correct (’./wrapper.R’ should work if the wrapper.R file is in the same folder as 

the app.R file).

Code initialization (within app.R)

#  install 'shiny' if haven't already.
#  # install.packages("shiny")  # necessary if you don’t already have the function 

'shiny' installed.

# we need the function shiny installed, this loads it from the library.

library(shiny)

#  source the wrapper function.

  source("./wrapper.R")

Creating the user interface function
The user interface is extremely flexible, we show the code for a very simple structure (fluidpage) with a sidebar  

containing inputs and a main panel containing outputs. We have done very little formatting in order to minimize 

the quantity of code while maintaining basic functionality. In order to get an aesthetically pleasing application, we  

recommend much more sophisticated formatting, relying on CSS, HTML and Javascript.

The example user interface displayed in Figure 2 and online on this website. The user interface is a fluidpage in  

a sidebarLayout (other types of layout are available). The sidebarLayout is made up of two components, a titlepanel 

and a sidebar layout display (which itself is split into a sidebar and a main panel). This is a basic structure used for 

teaching purposes, there are a plethora of templates available online.

The title panel contains the title “Sick Sicker Model in Shiny”, the sidebar panel contains two numeric inputs and 

a slider input (“Treatment Cost”, “PSA runs”, “Initial Age”) and an action button (“Run / update model”). The  

values of the inputs have ID tags (names), which are recognised and used by the server function, we denote these 

with the prefix “SI” to indicate they are ’Shiny Input’ objects (SI_c_Trt, SI_n_sim, SI_n_age_init). The action 

button also has an ID, this is not an input into the model wrapper f_wrapper so we leave out the SI and call  

it run_model.

Figure 2. Screen-print of Sick-Sicker model user interface.
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The main panel contains two objects that have been output from the server: tableOutput(“SO_icer_table”) is a table 

of results, and plotOutput(“SO_CE_plane”) is a cost-effectiveness plane plot. It is important that the format (e.g. 

tableOutput) matches the format of the object from the server (e.g. SO_icer_table). Again, the SO prefix reflects the 

fact that these are Shiny Outputs. The two h3() functions are simply headings, which appear as “Results Table” and 

“Cost-effectiveness Plane”.

Shiny user interface code

ui <— fluidPage (    # creates empty page

  #  title of app

  titlePanel("Sick Sicker Model in Shiny"),

  # layout is a sidebar—layout

  sidebarLayout(

    sidebarPanel( # open sidebar panel

# input type numeric

    numericInput(inputId = "SI_c_Trt",

                 label = "Treatment Cost",

                 value = 200,

                 min = 0,

                 max = 400),

    numericInput(inputId = "SI_n_sim",

                 label = "PSA runs",

                 value = 1000,

                 min = 0,

                 max = 400),

# input type slider

    sliderInput(inputId = "SI_n_age_init",

                label = "Initial Age",

                value = 25,

                min = 10,

                max = 80),

# action button runs model when pressed

    actionButton(inputId = "run_model",

                 label   = "Run model")

                ),  # close sidebarPanel

# open main panel

  mainPanel(

# heading (results table)

    h3("Results Table"),

# tableOutput id = icer_table, from server

    tableOutput(outputId = "SO_icer_table"),

# heading (Cost effectiveness plane)

    h3("Cost—effectiveness Plane"),

# plotOutput id = SO_CE_plane, from server

    plotOutput(outputId = "SO_CE_plane")

            ) # close mainpanel

      ) # close side barlayout

  ) # close UI fluidpage
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Creating the server function
The server is marginally more complicated than the user interface. It is created by a function with inputs and 

outputs. The observe event indicates that when the action button run_model is pressed the code within the  

curly brackets is run. The code will be re-run if the button is pressed again. Setting the parameter ignoreNULL to  

False lets the model run when it is initialised, i.e. when the app is started.

The first thing that happens when the run_model button is pressed is that the model wrapper function f_wrapper 

is run with the user interface inputs (SI_c_Trt, SI_n_age_init, SI_n_sim) as inputs to the function. The input prefix  

indicates that the objects have come from the user interface. The results of the model are stored as the data-frame object 

df_model_res.

The ICER table is then created and output (note the prefix output) in the object SO_icer_table. The func-

tion renderTable generates a table from the model results to display it on the web interface See previous section 

on the user interface and note that the *tableOutput* function has as an input SO_icer_table. The function  

renderTable rerenders the table continuously so that the table always reflects the values from the data-frame of  

results created above. In this simple example we have created a table of results using code within the script.  

Normally we would use a custom function that creates a publication quality table that is aesthetically pleasing. There 

are different packages that provide this functionality15,20,21.

The cost-effectiveness plane is created in a similar process, using the renderPlot function to continuously update 

a plot, which is created using baseR plot function using incremental costs and QALYs calculated from the results  

dataframe df_model_res. For aesthetic purposes we recommend this is replaced by a ggplot2 or plotly plot, which 

have much improved functionality22,23. As with the results table, there are also numerous health economic modelling  

specific R packages that have plotting features15,20,21.

Shiny server function

server <— function(input, output){

# when action button pressed ...

 observeEvent(input$run_model,

               ignoreNULL = F, {

# Run model function with Shiny inputs

 df_model_res = f_wrapper(

        c_Trt = input$SI_c_Trt,

        n_age_init = input$SI_n_age_init,

        n_sim = input$SI_n_sim)

#—— CREATE COST EFFECTIVENESS TABLE ——#

# renderTable continuously updates table

 output$SO_icer_table <— renderTable({

 

 df_res_table <— data.frame( # create dataframe

 Option = c("Treatment","No Treatment"),

 QALYs  = c(mean(df_model_res$QALY_Trt),

            mean(df_model_res$QALY_NoTrt)),

 

 Costs  = c(mean(df_model_res$Cost_Trt),

            mean(df_model_res$Cost_NoTrt)),

 

 Inc.QALYs = c(mean(df_model_res$QALY_Trt) —

               mean(df_model_res$QALY_NoTrt),

               NA),
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Inc.Costs = c(mean(df_model_res$Cost_Trt) —

               mean(df_model_res$Cost_NoTrt),

               NA), 

  ICER = c(mean(df_model_res$ICER), NA)
 
  ) # close data—frame
# round the data—frame to two digits
df_res_table[,2:6] = round(
        df_res_table[,2:6],digits = 2)

# print the results table
  df_res_table
   
  }) # table plot end.
  
#—— CREATE COST EFFECTIVENESS PLANE ——#

# render plot repeatedly updates.
output$SO_CE_plane <— renderPlot({

# calculate incremental costs and qalys
df_model_res$inc_C <— df_model_res$Cost_Trt —
                      df_model_res$Cost_NoTrt

df_model_res$inc_Q <— df_model_res$QALY_Trt —
                      df_model_res$QALY_NoTrt

# create cost effectiveness plane plot

plot(
# x y are incremental QALYs Costs
x = df_model_res$inc_Q,
y = df_model_res$inc_C,

# label axes
xlab = "Incremental QALYs",
ylab = "Incremental Costs",

# set x—limits and y—limits for plot.
xlim = c( min(df_model_res$inc_Q,
                df_model_res$inc_Q*—1),
           max(df_model_res$inc_Q,
                df_model_res$inc_Q*—1)),

ylim = c( min(df_model_res$inc_C,
                df_model_res$inc_C*—1),
           max(df_model_res$inc_C,
                df_model_res$inc_C*—1)),

# include y and y axis lines.
abline(h = 0,v = 0)

 ) # CE plot end

 }) # renderplot end

 }) # Observe event end

  } # Server end
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Running the app
The app can be run within the R file using the function shinyApp, which depends on the ui and server that have  

been created and described above. Running this creates a Shiny application in the local environment (e.g. your 

desktop). It is also possible to deploy the application onto the web from RStudio using the shinyapps.io server  

(using the publish button in the top right corner of the R-file in R-Studio). Alternatively, apps can be hosted on  

private servers and integrated into existing websites. Server specifications should be chosen to match model  

requirements: while simple Markov chain state transition models may run on almost any server, more computa-

tionally burdensome models (e.g. agent-based models) may require considerable computing power. A step by step  

guide to the process of publishing applications can be found on the R-Shiny website or other online resources3,24.

Running the app

shinyApp(ui , server)

Additional functionality
The example Sick-Sicker web-app that has been created is a simple, but functional, R-Shiny user interface for a  

health economic model. There are a number of additional functionalities, many of which are covered in an online  

book by Hadley Wickham24.

•fully customised user interface aesthetics. Since the user interface is translated into HTML and CSS it is  

possible to customise all components (such as colors, fonts, graphics, layouts and backgrounds)3,25.

•leverage many popular R packages to visualise model inputs (e.g. distributions) and outputs (e.g. plots  

and results tables)22,23,26.

•upload files containing input parameters and data to the app24.

•download specific figures and tables from the app24.

•create a downloadable full report including model inputs and outputs24.

•send model results/report to an email address once the model has finished running27.

It is also possible to integrate all of the steps of health economic evaluation into one program. After select-

ing a subgroup of studies to use as inputs for a network meta-analysis, and economic model assumptions, the user  

would be required to simply click a ’run’ button. They would then be presented with results of the network  

meta-analysis, economic model and value of information analysis in one simple user-interface. The app user 

would then also be able to download a report (or have it sent to an email address) with the model results and  

appropriate visualisations updated to reflect their assumptions. 

Discussion
In this paper, we demonstrated how to generate a user-friendly interface for an economic model programmed in R, 

using the Shiny package. This tutorial shows that the process is relatively simple and requires limited additional  

programming knowledge than that required to build a decision model in R.

The movement towards script based health economic models with web based user interfaces is particularly  

useful in situations where a general model structure has been created with a variety of stakeholders in mind,  

each of which may have different assumptions (input parameters) and wish to conduct sensitivity analysis specific  

to their decision. For example, the World Health Organisation Department of Sexual and Reproductive Health  

and Research recently embedded a Shiny application into their website28. The application runs a heemod model20  

in R in an external server, and allows users to select their country and specify country specific assumptions  

(input parameters), run the model and display results. 

A well designed user interface can allow users to explore and better understand the relationship between 

model input and results. This allows users to tailor the health economic model to their specific situation and  

assumptions, without the expense of creating a new model. This may be  particularly useful in the following  

scenarios: Firstly, in areas where one health economic decision model is applied in range of circumstances (e.g. in 

public health, models are often built to be used in a number of different countries). Secondly, when the full model  

source code can or may not be shared (e.g. for proprietary or privacy reasons). R-Shiny apps can be made  

available in a way that allows users to interact with the web interface, without revealing the model behind it.  

Finally, R shiny apps may enable stakeholders and decision makers, who would otherwise not be able to interact 

directly with statistical computer models, to experiment with and to reflect on various scenarios and the validity of 

model inputs and outputs.
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However, in all of these scenarios, the ability for users to test different assumptions is not without limits: the  

available options to vary point estimates or the uncertainty around input parameters are defined by the model  

developer, and it is also not possible to specify alternative model structures or test any other aspect that the  

developer did not implement. Therefore, the model source code and data will still need to be made available to  

reviewers to allow for a thorough assessments of health economic models. Further investigation into how to  

communicate economic decisions models in a transparent and inclusive way is an important avenue of future research

The authors’ experience of creating user-interfaces for decision models has led to the conclusion that the most  

efficient method is to work iteratively, starting with a very simple working application, and adding functionality step 

by step, testing the app at each iteration to ensure it works as intended. It is worth noting that the simple model 

chosen as an exemplar is a markov model, however the method described can be applied to any model built using 

R, regardless of model type. For example, in this case, the f_MM_sicksicker function could also be replaced by a  

function containing any other type of model (e.g. a DES model).

There are several challenges that exist with the movement toward script based models with web-based  

user-interfaces. The first is the challenge of up-skilling health economic modeller used to working in Microsoft  

Excel. We hope that this tutorial provides a useful addition to previous tutorials demonstrating how to construct  

decision models in R16. A second, and crucial challenge to overcome, is a concern about deploying highly sensi-

tive data and methods to an external server. While server providers such as ShinyIO provide assurances of SSR  

encryption and user authentication clients with particularly sensitive data may still have concerns. This problem 

can be avoided in two ways: firstly, if clients have their own server and the ability to deploy applications they can  

maintain control of all data and code, and secondly, the application could simply not be deployed, and instead  

simply created during a meeting using code and data shared in a zip file. Finally, a challenge (and opportunity) exists 

to create user-interfaces that are most user-friendly for decision makers in this field; this is an area of important  

research that requires closer collaboration between decision makers, stakeholders and health economic decision  

model developers.

Conclusion
The creation of web application user interfaces for health economic models constructed in high level  

programming languages should improve their usability, allowing stakeholders and third parties with no program-

ming knowledge to conduct their own sensitivity analysis remotely. This tutorial provides a reference for those  

attempting to create a user interface for a health economic decision model created in R. Further work is necessary to 

better understand how to design interfaces that best meet the needs of different decision makers.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
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License: MIT license
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This paper provides a tutorial for those that have developed state transition models in R to be able 
to develop a Shiny interface allowing stakeholders to scrutinize the assumptions. Overall this is a 
well written paper for its specific audience, especially in the context of an increasing trend of 
developing models in R. it also pointed to some useful references for people who are interested in 
developing state transition models in R at first place, as well as those who have some experience 
in R but want to build an interface. I particularly like figure 1 which is a very nice diagram depicting 
the relationship between the ui.R and server.R. 
 
Please find my comments as below.

In the Introduction, it will be useful to clarify what audience this paper is intended to. 
Clearly this is not a tutorial for those people who never used R to develop models. 
 

1. 

In the Methods, the PSA section complicates the purpose of this tutorial which is teaching 
people how to build a Shiny app for their models. Putting all the functions here in the main 
text makes the tutorial look daunting than it should be. If the authors have to keep it, 
probably consider moving it to appendix, or later on in the text, if the interface has an input 
into the PSA. Afterall, my understanding is that this paper is not teaching people how to 
build a state transition model and PSA in R. 
 

2. 

The authors mentioned a few times the use of ggplots/plotly or other programming 
languages to make the interface aesthetically pleasing. For the benefit of users, can the 
authors provide an example of an economic model app that embedded the codes that 
provide aesthetically pleasing interface? if they don’t have one, it will be helpful if they could 
reference a few existing Shiny apps for EE models that incorporated these features and 
have codes openly available. 
 

3. 

The discussion section could be improved by further discussing the following points:4. 
      a. Can this tutorial be scaled well to other types of economic models, e.g. Discrete event 
simulation? It will be helpful to point the differences in building the ui and server when applied to 
other type of models, and discuss the issues and caveats. 
        
       b. The authors could further discuss the usefulness of a Shiny interface for decision makers. 
Although Shiny can achieve some level of visualisation of the results making it easier for decision 
makers to examine the impact on the results when conducting sensitivity analysis, decision 
makers can’t use it to further check the essential calculations and relationships between the 
parameters. In other words, If decision makers have the knowledge of R coding, they may not 
need to the Shiny interface to help visualise, whereas if they lack the knowledge of R coding, it is 
still a barrier for them to check the fundamental structure of model which are coded in the 
server.R file. 
 
        c. Does the Shiny app encounter capacity issues when running a large complex economic 
model, especially when running PSA, or value of sample information? In our experience, a Shiny 
app running complex simulations is memory demanding and developers will need to purchase the 
plans provided by R Studio to be able to run on the server after publishing. It will be useful for the 
authors to provide some suggestions or solutions if they have similar experiences.  
   
Minor points:

There are some page numbers in bracket in the manuscript – is this required by the journal? 1. 
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some of them are not books but journal articles, and in some places where a journal article 
was cited, these page numbers are not shown. 
 
Page 7, after figure 2, first paragraph, “The title panel contains the title “Sick Sicker Model….. 
and an Action Button (“Run/update model”).” Please be consistent in terms of upper/lower 
case when referring to the input widget, i.e. “action button”. 
 

2. 

Same paragraph as above, line 4, it said ‘Note that this is an addition of the coding 
framework provided by Alarid-Escudro et al., (2019)’. Not sure why this sentence is put here, 
perhaps consider moving it to somewhere else as it seems can be applied to the whole 
Shiny app development. Also, there is an extra ‘,’ at the end of the sentence. 
 

3. 

Page 8, ‘ Creating the server function’ section, third paragraph, line 2/3: “The function 
renderTable rerenders the table continuously so that the table always reflects the values …” 
Calling it ‘rerender’ is a little confusing when describing the function 'renderTable'. It just 
means it updates the output table each time after the input is updated by the end user. 
 

4. 

Page 9, in the Server.R codes, ‘# when action button pressed ... 
observeEvent(input$run_model,  ignoreNULL = F, {…”, what does the part ‘ignoreNULL = F’ 
do? 
 

5. 

In the discussion, it will be useful to provide a reference for the WHO Shiny app.6. 
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Trial and model based economic evaluations, network meta-analysis, outcome 
research, development of Shiny apps.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 22 Jul 2020
Robert Smith, University of Sheffield, Regents Court, Sheffield, UK 

Thank-you for reviewing this paper and for your constructive comments, we have taken both 
reviewers’ comments into account and tried to make changes where possible to improve the 
paper. I provide responses to the comments one-by-one below:  
 
R1: This paper provides a tutorial for those that have developed state transition 
models in R to be able to develop a Shiny interface allowing stakeholders to scrutinize 
the assumptions. Overall this is a well written paper for its specific audience, 
especially in the context of an increasing trend of developing models in R. it also 
pointed to some useful references for people who are interested in developing state 
transition models in R at first place, as well as those who have some experience in R 
but want to build an interface. I particularly like figure 1 which is a very nice diagram 
depicting the relationship between the ui.R and server.R. 
  
Thank-you, we hope it is useful for others trying to improve model transparency and aim to build 
further teaching resources around it. 
  
  
R1: In the Introduction, it will be useful to clarify what audience this paper is intended 
to. Clearly this is not a tutorial for those people who never used R to develop models. 
 
We have changed the text to specifically mention this, we have added the following sentence to 
the last paragraph of the introduction section:  “This paper aims to provide a tutorial for those 
familiar with decision modelling in R to create web based user interfaces for R models using R 
Shiny.” 
 
R1: In the Methods, the PSA section complicates the purpose of this tutorial which is 
teaching people how to build a Shiny app for their models. Putting all the functions 
here in the main text makes the tutorial look daunting than it should be. If the 
authors have to keep it, probably consider moving it to appendix, or later on in the 
text, if the interface has an input into the PSA. Afterall, my understanding is that this 
paper is not teaching people how to build a state transition model and PSA in R. 
 
There is a conflict here between what different people may want from the paper (the other 
reviewer wanted more detail on this function). The aim was to step the reader through this 
example in detail, and since this deviates from the Sick-Sicker resources provided by DARTH we 
think it should remain in the paper. We would have ideally put this in the appendix but Wellcome 
Open Research does not allow appendices. 
 
The authors mentioned a few times the use of ggplots/plotly or other programming 
languages to make the interface aesthetically pleasing. For the benefit of users, can 
the authors provide an example of an economic model app that embedded the codes 
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that provide aesthetically pleasing interface? if they don’t have one, it will be helpful if 
they could reference a few existing Shiny apps for EE models that incorporated these 
features and have codes openly available. 
 
To address this ee have added examples in the text of some existing shiny applications that we 
feel are well designed. In particular a lot of thought has been put into BresMed’s InterRface 
(described in Rose Hart’s recent paper referenced in this amendment). However the code for the 
InteRface tool has not been made open-source. 
 
Can this tutorial be scaled well to other types of economic models, e.g. Discrete event 
simulation? It will be helpful to point the differences in building the ui and server 
when applied to other type of models, and discuss the issues and caveats. 
  
We have added the following text to the discussion section, but in short, yes… and we hope to do 
so in the future but for this paper we aimed for simplicity.  
“It is worth noting that the simple model chosen as an exemplar is a markov model, however the 
method described can be applied to any model built using R, regardless of model type. For 
example in this case, the f_MM_sicksicker function could be replaced by a function containing any 
type of model (e.g. a DES model).”  
 
The authors could further discuss the usefulness of a Shiny interface for decision 
makers. Although Shiny can achieve some level of visualisation of the results making 
it easier for decision makers to examine the impact on the results when conducting 
sensitivity analysis, decision makers can’t use it to further check the essential 
calculations and relationships between the parameters. In other words, If decision 
makers have the knowledge of R coding, they may not need to the Shiny interface to 
help visualise, whereas if they lack the knowledge of R coding, it is still a barrier for 
them to check the fundamental structure of model which are coded in the server.R 
file. 
  
We added the following paragraphs in the discussion section to clarify this important issue and 
better explain the benefits (and limitations) of using R shiny applications to communicate health 
economic decision models: 
A well designed user interface can allow users to explore and better understand the relationship 
between model input and results. This allows users to tailor the health economic model to their 
specific situation and assumptions, without the expense of creating a new model. This may be  
particularly useful in the following scenarios: Firstly, in areas where one health economic decision 
model is applied in range of circumstances (e.g. in public health, models are often built to be 
used in a number of different countries). Secondly, when the full model source code can or may 
not be shared (e.g. for proprietary or privacy reasons). R shiny apps can be made available in a 
way that allows users to interact with the web interface, without revealing the model behind it. 
Finally, R shiny apps may enable stakeholders and decision makers, who would otherwise not be 
able to interact directly with statistical computer models, to experiment with and to reflect on 
various scenarios and the validity of model inputs and outputs. 
However, in all of these scenarios, the ability for users to test different assumptions is not without 
limits: the available options to vary point estimates or the uncertainty around input parameters 
are defined by the model developer, and it is also not possible to specify alternative model 
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structures or test any other aspect that the developer did not implement. Therefore the model 
source code and data will still need to be made available to reviewers to allow for a thorough 
assessments of health economic models. Further investigation into how to communicate 
economic decisions models in a transparent and inclusive way is an important avenue of future 
research. 
 
Does the Shiny app encounter capacity issues when running a large complex economic 
model, especially when running PSA, or value of sample information? In our 
experience, a Shiny app running complex simulations is memory demanding and 
developers will need to purchase the plans provided by R Studio to be able to run on 
the server after publishing. It will be useful for the authors to provide some 
suggestions or solutions if they have similar experiences.  
  
Again, a really useful point. We have never had an issue running a model remotely with ShinyIO… 
It generally seems as fast or faster than a moderately expensive laptop. We know others use it for 
PSA/VOI so suspect that the servers would be able to handle most models. That being said we 
have never tried to do anything super-computationally burdensome - for this other providers 
used to dealing with big data/big computation (e.g. Amazon Web Services) may be more suitable. 
We have added the below text: 
  
“Server specifications should be chosen to match model requirements: while simple Markov chain 
state transition models may run on almost any server, more computationally burdensome 
models e.g. agent-based models may require considerable computing power” 
   
There are some page numbers in bracket in the manuscript – is this required by the 
journal? some of them are not books but journal articles, and in some places where a 
journal article was cited, these page numbers are not shown. 
 
These are correct – they only apply to the print version of the documents, they are on the 
published paper PDF versions. 
  
Page 7, after figure 2, first paragraph, “The title panel contains the title “Sick Sicker 
Model….. and an Action Button (“Run/update model”).” Please be consistent in terms 
of upper/lower case when referring to the input widget, i.e. “action button”. 
 
 
Thank-you for this, our mistake, now corrected in the text to all be lower case. 
  
Same paragraph as above, line 4, it said ‘Note that this is an addition of the coding 
framework provided by Alarid-Escudro et al., (2019)’. Not sure why this sentence is put 
here, perhaps consider moving it to somewhere else as it seems can be applied to the 
whole Shiny app development. Also, there is an extra ‘,’ at the end of the sentence. 
 
We have moved this to the top of the methods section. Thank-you this is much clearer. 
 
 
Page 8, ‘ Creating the server function’ section, third paragraph, line 2/3: “The function 
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renderTable rerenders the table continuously so that the table always reflects the 
values …” Calling it ‘rerender’ is a little confusing when describing the function 
'renderTable'. It just means it updates the output table each time after the input is 
updated by the end user. 
 
We have simplified this paragraph to read:  “The function renderTable generates a table from the 
model results to display it on the web interface.” 
  
Page 9, in the Server.R codes, ‘# when action button pressed ... 
observeEvent(input$run_model,  ignoreNULL = F, {…”, what does the part ‘ignoreNULL 
= F’ do? 
 
Apologies we should have explained, we have added “Setting the parameter ignoreNULL to False 
lets the model run when it is initialised, i.e. when the app is started.”  to that paragraph. 
  
In the discussion, it will be useful to provide a reference for the WHO Shiny app. 
Thanks we have added a reference to this.  

Competing Interests: No competing interests.

Reviewer Report 01 July 2020
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© 2020 Feenstra T. This is an open access peer review report distributed under the terms of the Creative 
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Talitha L. Feenstra  
Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands 

This tutorial clearly explains the use of R shiny to present results from HE decision models to a 
general audience, allowing them to change several input parameters and see the effects on the 
model outcomes.  
 
The text and R code that comes along with it on GitHub is mostly clear. I tried the code and it 
worked without any issues after downloading. With just the paper in hand that would have been 
somewhat more difficult, since parts of code are presented and it is not fully clear how they link 
together. 
 
The sourcing part is not complete e.g. 
 
Overall this tutorial is a nice illustration and helpful if you want to start working with HE models 
using Shiny. However the example is strongly simplified, up to the unrealistic (an intervention 
which does not affect transition rates). 
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Since it is a tutorial, this paper has no results section. 
 
In the introduction maybe it is relevant to refer to actual existing applied HE decision models in R 
with Shiny interface 
(e.g.http://dismod.ndph.ox.ac.uk/kidneymodel/app/, https://github.com/InnovationValueInitiative, 
both with publications available: 
Pharmacoeconomics 2019 ;37(6):829-843. doi: 10.1007/s40273-018-00765-2. A Flexible Open-
Source Decision Model for Value Assessment of Biologic Treatment for Rheumatoid Arthritis, D 
Incerti, JR Curtis et al1. 
Heart. 2017;103(23):1880-1890. 
doi: 10.1136/heartjnl-2016-310970. A Policy Model of Cardiovascular Disease in Moderate-To-
Advanced Chronic Kidney Disease. I Schlackow, S Kent et al2. , I guess more will exist) 
 
The argumentation/opinion that the future of health economics is in automated click and run 
models is not at its place in the methods section. This should go to the discussion and be more 
thoroughly supported by arguments. I wonder how conceptual model selection and input data 
analysis to fill a HE decision model could be really performed using a pre-specified framework. 
Surely this framework should  be very flexible. It also seems to prohibit involvement of 
stakeholders in decisions concerning model structure and input data analysis/interpretation. 

How will the problem of structural uncertainty be addressed by models made available to 
HE decision makers and other users to perform their own uncertainty analysis? The text in 
the paper can improve from further clarification at some points. 
 

○

The PSA function is not explained in the paper and this is the new part compared to the 
SickSicker publication. So I would rather have expected some explanation on this (and 
maybe less on the SickSicker, which is already published/explained) 
 

○

What distributions were chosen for what model parameters? How could modelers apply this 
code as a basis for adding a PSA into their own application and have it serve as input for a 
Shiny? Ideally: the user would have the option to choose some of the PSA settings other 
than just the number of runs, e.g. the type of distribution and/or the parameters in this 
distribution. 
 

○

The initial set-up part is unclear, and the code is not the same as the R code available online. 
 

○

The discussion refers to "inform teaching content", what teaching is meant here? And whom 
are taught?

○

Minor unclarities: 
Using cost to refer to intervention cost is confusing. It also presumes the control has zero costs. It 
is not clear whether the intervention cost is one-off or annually. But that might be explained in the 
SickSicker paper. 
 
Using numerous for the number of available packages and then referring to three seems a bit 
overdone. 
 
Health economics is more than HE decision modeling, I would refer to HE decision modeling, or 
cost-effectiveness analysis rather than health economics which is a very broad field.

For some jurisdictions it would be functional to allow for two different discount rates (on ○
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costs and on health outcomes). 
 
The app uses limits for the axes in the graph that move with numbers provided. This is of 
course needed when users are unrestricted in the values they provide regarding 
intervention costs, however as a result, seeing the results of having different intervention 
costs, requires proper attention for the values at the y-axis, which change with every new 
value provided by the user. It would be more informative to see the c/e cloud move rather 
than the axis scale. Maybe that could be solved by having a range for the intervention costs 
pre-specified (or alternatively let the axis limits depend on the treatment costs more like a 
step function).

○
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Author Response 22 Jul 2020
Robert Smith, University of Sheffield, Regents Court, Sheffield, UK 

Thank-you for taking the time to review this paper, the feedback is much appreciated and 
we hope the new version addresses all of your comments. 
 
R2: This tutorial clearly explains the use of R shiny to present results from HE decision 
models to a general audience, allowing them to change several input parameters and 
see the effects on the model outcomes. 
Thank you, we are glad it was useful and clear. 
 
R2: The text and R code that comes along with it on GitHub is mostly clear. I tried the 
code and it worked without any issues after downloading. With just the paper in hand 
that would have been somewhat more difficult, since parts of code are presented and 
it is not fully clear how they link together. 
This is a difficult issue since preferences for code in paper vary from person to person (e.g. 
between yourself and the other reviewer). Unfortunately Wellcome Open Research does not allow 
appendices so we therefore did not provide all the R model code in the paper. The full, 
commented version of the code is available on the Zenodo data repository. 
 
R2: The sourcing part is not complete e.g. 
I’m not sure what you mean, when we checked the two were the same, we are happy to make any 
changes where inconsistencies exist. 
 
 
 
R2: Overall this tutorial is a nice illustration and helpful if you want to start working 
with HE models using Shiny. However the example is strongly simplified, up to the 
unrealistic (an intervention which does not affect transition rates). 
Since it is a tutorial, this paper has no results section. 
This example takes an existing model used as a teaching tool by the DARTH group. We did this 
because many people have learnt R for HTA from their courses so it made sense to extend upon 
this.  
 
R2: The argumentation/opinion that the future of health economics is in automated 
click and run models is not at its place in the methods section. This should go to the 
discussion and be more thoroughly supported by arguments. I wonder how 
conceptual model selection and input data analysis to fill a HE decision model could be 
really performed using a pre-specified framework. Surely this framework should  be 
very flexible. It also seems to prohibit involvement of stakeholders in decisions 
concerning model structure and input data analysis/interpretation.  
Agreed – we removed the sentence, and don’t feel an elaboration in the discussion section to be of 
additional value. 
 
R2: How will the problem of structural uncertainty be addressed by models made 
available to HE decision makers and other users to perform their own uncertainty 
analysis? The text in the paper can improve from further clarification at some points. 
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We completely agree, a similar point was raised by the other reviewer. We have added the below 
section to the discussion. We hope that this clarifies things: 
 
A well designed user interface can allow users to explore and better understand the relationship 
between model input and results. This allows users to tailor the health economic model to their 
specific situation and assumptions, without the expense of creating a new model. This may be  
particularly useful in the following scenarios: Firstly, in areas where one health economic decision 
model is applied in range of circumstances (e.g. in public health, models are often built to be 
used in a number of different countries). Secondly, when the full model source code can or may 
not be shared (e.g. for proprietary or privacy reasons). R shiny apps can be made available in a 
way that allows users to interact with the web interface, without revealing the model behind it. 
Finally, R shiny apps may enable stakeholders and decision makers, who would otherwise not be 
able to interact directly with statistical computer models, to experiment with and to reflect on 
various scenarios and the validity of model inputs and outputs. 
However, in all of these scenarios, the ability for users to test different assumptions is not without 
limits: the available options to vary point estimates or the uncertainty around input parameters 
are defined by the model developer, and it is also not possible to specify alternative model 
structures or test any other aspect that the developer did not implement. Therefore the model 
source code and data will still need to be made available to reviewers to allow for a thorough 
assessments of health economic models. Further investigation into how to communicate 
economic decisions models in a transparent and inclusive way is an important avenue of future 
research. 
 
R2: The PSA function is not explained in the paper and this is the new part compared 
to the SickSicker publication. So I would rather have expected some explanation on 
this (and maybe less on the SickSicker, which is already published/explained). 
This point contradicted the preference of the other reviewer, but in fact we agree with you on this 
one. We have added much more detail on the PSA function (but kept the existing detail for the 
SickSicker). 
 
 
 
 
R2: What distributions were chosen for what model parameters? How could modelers 
apply this code as a basis for adding a PSA into their own application and have it serve 
as input for a Shiny? Ideally: the user would have the option to choose some of the PSA 
settings other than just the number of runs, e.g. the type of distribution and/or the 
parameters in this distribution. 
 
We state that the function “returns a data-frame of probabilistic sensitivity analysis inputs: 
transition probabilities between health states using a beta distribution, hazard rates using a log-
normal distribution, costs using a gamma distribution and utilities using a truncnormal 
distribution”.    
 
R2: The initial set-up part is unclear, and the code is not the same as the R code 
available online. 
Thank-you, we have updated the paper to match the Zenodo repository. 
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R2: The discussion refers to "inform teaching content", what teaching is meant here? 
And whom are taught? 
Thanks- changed to read: “Finally, a challenge (and opportunity) exists to create user-interfaces 
that are most user-friendly for decision makers in this field; this is an area of important research 
that requires closer collaboration between decision makers, stakeholders and health economic 
decision model developers.” 
 
 
R2: Using cost to refer to intervention cost is confusing. It also presumes the control 
has zero costs. It is not clear whether the intervention cost is one-off or annually. But 
that might be explained in the SickSicker paper. 
 
“To clarify the issue we have revised the comment # cost of treatment to #cost of intervention 
treatment in states sick & sicker.”  
 
R2: Using numerous for the number of available packages and then referring to three 
seems a bit overdone. 
I was slightly unsure what you mean, but we have changed the word numerous for “different”.  
 
 
R2: Health economics is more than HE decision modeling, I would refer to HE decision 
modeling, or cost-effectiveness analysis rather than health economics which is a very 
broad field. 
The sentence you may be referring to (‘we believe this is the future of health economics’) was 
removed from the paper in response to a comment from the other reviewer In other instances, we 
changed ‘health economic models’ to ‘health economic decision models’, if appropriate. 
We also changed ‘health economists’ to ‘health economic modellers’ e.g. (“The first is the 
challenge of up-skilling health economic modellers used to working in Microsoft Excel.”) 
 
 
 
R2: For some jurisdictions it would be functional to allow for two different discount 
rates (on costs and on health outcomes). 
This is an interesting conceptual issue for cost-effectiveness modelling in general, but it doesn't 
seem within the scope of this paper on the use of R/R shiny for HE modelling. 
 
 
R2: The app uses limits for the axes in the graph that move with numbers provided. 
This is of course needed when users are unrestricted in the values they provide 
regarding intervention costs, however as a result, seeing the results of having 
different intervention costs, requires proper attention for the values at the y-axis, 
which change with every new value provided by the user. It would be more 
informative to see the c/e cloud move rather than the axis scale. Maybe that could be 
solved by having a range for the intervention costs pre-specified (or alternatively let 
the axis limits depend on the treatment costs more like a step function). 
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We decided not to have a limit for the axes, or use any other additional style element, to provide a 
‘minimal working code example’. This is common practice in coding tutorials. A more 
sophisticated application could/should use a Plotly function to create an interactive plot, but this 
would still change depending on the range of values generated by the PSA.  
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