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Abstract 14 

Geopolymers are low-calcium, sustainable cementitious materials. The role of Zn, a known 15 

retardant used in Portland cement, in geopolymer systems is not well understood. This study 16 

scrutinises the effect of Zn on metakaolin-based geopolymer reaction mechanisms and kinetics, 17 

and investigates the incorporation mechanism of Zn in geopolymer gels. Isothermal 18 

calorimetry and X-ray diffraction analyses show that substitution of ZnO (20 mol.% c.f. 19 

metakaolin) significantly hinders reaction, likely due to preferential formation of a Na/K-Zn 20 

containing phase. Solid-state nuclear magnetic resonance spectroscopy shows that Zn2+ 21 

partially substitutes for Na+/K+ in charge-balancing sites within the geopolymer gel. Setting 22 

time and leaching tests show that the retarding effect of Zn on reaction kinetics is significantly 23 

greater in Na-activated geopolymers compared with K-activated geopolymers, whereas Na-24 

activated geopolymers exhibit superior fixation capacity to Zn. A lab-scale experiment 25 
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demonstrates that metakaolin-based geopolymers are promising candidates for the 26 

stabilisation/solidification of Zn-rich hazardous waste. 27 

 28 

Keywords: geopolymer; alkali-activation; reaction kinetics; retarding mechanism; hazardous 29 

waste immobilisation. 30 

 31 

Highlights: 32 

• High-dosage of ZnO significantly hindered the geopolymer reaction process. 33 

• Crystalline ZnO consumed in alkali-activation reaction to form new amorphous material. 34 

• Zn2+ partially replaced Na+/K+ in charge-balancing sites within geopolymer gel framework. 35 

• Retarding effect of Zn on reaction kinetics was significantly greater in Na-activated 36 

geopolymers compared with K-activated geopolymers. 37 

• Na-activated geopolymer performed with superior efficiency in Zn-immobilisation. 38 

 39 

1. Introduction 40 

Geopolymers are alternative cementitious materials comprised of a three-dimensionally cross-41 

linked, highly polymerised, and non-crystalline alkali aluminosilicate network [1]. 42 

Geopolymers are produced via reaction of aluminosilicate precursors, such as metakaolin 43 

(MK), blast furnace slag, and pulverised fuel ash, with alkaline solutions, typically alkali 44 

silicate or alkali hydroxide [2]. Geopolymer cements offer up to 80% reduction of CO2 45 

emissions compared to Portland cement (PC) by avoidance of CO2 release from limestone 46 

calcination and the need for high temperature (1400 °C) treatment during cement clinker 47 

production [3,4]. As a consequence, geopolymers are low-carbon, sustainable cementitious 48 

materials and viable substitutions for PC in certain applications. The nanostructure of 49 

geopolymer cements is different from that of PC, primarily due to the low-Ca content of 50 
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geopolymer systems [5]. Calcium silicate hydrate (C-S-H) gel is the main hydration product of 51 

PC and exhibits a tobermorite-like structure, whereas the sodium/potassium aluminosilicate 52 

hydrate ((N/K)-A-S-H) gel formed in geopolymer cements exhibits a fully polymerised and 53 

disordered structure [2]. When properly formulated, geopolymer cements exhibit superior 54 

performance to PC in many applications, including fire-resistant composites, acid-resistant 55 

concrete, and hazardous and radioactive waste immobilisation [6-9]. 56 

 57 

Cement-based stabilisation/solidification (S/S) is a widely accepted and reliable technology for 58 

soil remediation and hazardous waste treatment via chemical fixation and physical 59 

encapsulation of toxic or hazardous components [10-12]. Cementation of toxic or hazardous 60 

wastes offers advantages over other solidification approaches, such as low cost, ease of use, 61 

rapid waste processing, and high durability [13]. Furthermore, S/S products can be recycled 62 

and used as sustainable and value-added construction materials [14,15]. However, in PC-based 63 

S/S system, many toxic or hazardous elements can delay hydration and compromise the 64 

physicochemical properties of S/S products. Zinc (Zn) is particularly problematic, and is a well-65 

known retarder in PC systems [16,17]. Previous research showed that the presence of 0.2 wt% 66 

ZnO in PC paste prolongs the initial and final setting times by 4 times and 3.5 times, 67 

respectively [18]. Zn in cement clinker should therefore be below a threshold of 0.7 wt%; 68 

higher content of Zn can significantly delay, and even halt, PC hydration [19,20]. Such adverse 69 

effects limit the application of PC for S/S of Zn-rich industrial waste [21]. The retarding 70 

mechanism has been attributed to the formation of Ca(Zn(OH)3)2·2H2O which surrounds 71 

clinker particles [18], hindering the further dissolution and reaction, and depletes soluble 72 

calcium [22], limiting nucleation and growth of C-S-H gel or calcium aluminium silicate 73 

hydrate (C-A-S-H) gels. In both cases, the retarding mechanism results from the interaction of 74 

Ca and Zn in the cement system. Low-Ca or Ca-free geopolymer cements are have therefore 75 
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gained significant interest for S/S of Zn-contaminated waste.   76 

 77 

Although there remains an absence in the literature of a complete mechanistic understanding 78 

of the interaction of Zn and geopolymer cement systems, recent findings [22] have shown that 79 

the presence of low-dosage ZnO of up to 1 wt% has a negligible inhibitory effect on the 80 

reaction process of low-Ca alkali-activated materials. Furthermore, MK-based geopolymers 81 

have the potential to adsorb Zn ions due to the porous and amorphous nature of MK [23], 82 

further reducing any inhibitory effect on reaction kinetics. However, many industrial processes 83 

produce Zn-rich by-products or wastes via different physicochemical processes (e.g. 84 

coagulation/precipitation and sedimentation). As a result, highly concentrated Zn is observed 85 

in mine tailings, smelter waste, and industrial sludge [24-26]. In particular, electroplating 86 

sludge contains approximately 46.6 wt% ZnO, and is therefore a severe threat to human health 87 

and to ecosystem. Therefore, to develop appropriate S/S technologies for the safe treatment of 88 

Zn-rich waste, the inhibitory effect of high amounts of Zn on the reaction mechanisms and 89 

kinetics in geopolymer systems must be investigated.  90 

 91 

Ion retention, dictated by the incorporation mechanisms and mass transport processes, is the 92 

primary indicator of S/S efficiency when encapsulating toxic waste. Recent work has shown 93 

that the fully polymerised alkali aluminosilicate framework structure in geopolymer cements 94 

is beneficial for encapsulation of toxic elements within the structure [27], and that the negative 95 

charge due to Al(III) in fourfold coordination in (N,K)-A-S-H gels can be charge-balanced by 96 

alkaline earth cations Ca2+ and Sr2+ [28]. However, there remains an absence from the literature 97 

of a detailed understanding of the effect of high amounts of Zn on the reaction mechanisms 98 

and kinetics in the MK-based geopolymer cements. 99 

 100 



5 

To provide insight into the effect of Zn on the reaction mechanisms, kinetics and Zn-101 

incorporation mechanisms of geopolymer cements, and to offer engineering solutions for the 102 

application of geopolymer-based S/S for Zn-rich waste, this study aims to: (i) elucidate the role 103 

of Zn in the reaction processes occurring during the formation of different (N,K)-A-S-H gels, 104 

including any inhibitory effects; (ii) assess the incorporation mechanisms of Zn in different 105 

geopolymer cement systems with varying alkalinity; (iii) evaluate the efficiency of geopolymer 106 

for S/S of Zn-rich sludge in terms of setting time, compressive strength, and leachability.  107 

 108 

2. Materials and Methods 109 

2.1 Materials  110 

In this study, MK was used as a precursor, and sodium or potassium silicate solutions were 111 

used as activators. High purity MK was purchased from BASF, Germany, with a SiO2/Al2O3 112 

ratio of 2.0 and a particle size d50 of 25 µm. The activating solutions were made of either 113 

sodium or potassium silicate (PQ Silicates, UK) mixed with reagent grade MOH (M 114 

representing either Na or K; Fisher, UK). Zn-rich industrial sludge (46.6 wt% ZnO), used for 115 

geopolymer-based S/S, was collected from an electroplating factory in Zhejiang Province, 116 

China. The chemical composition and XRD patterns of this sludge are illustrated in Table S1 117 

and Figure S1 (Supplementary Information), respectively. The dewatered sludge cake 118 

contained 57.2 wt% remaining water and yielded a 24.7 wt% loss on ignition. The sludge was 119 

freeze-dried and crushed into particles with diameters less than 0.3 mm before use. 120 

Additionally, high purity ZnO/Zn(OH)2 was used to evaluate the role of Zn on the reaction 121 

mechanisms, kinetics and incorporation processes in geopolymer cements. ZnO/Zn(OH)2 was 122 

synthesised from zinc nitrate hexahydrate (98% purity, Fisher) and sodium hydroxide (≥99% 123 

purity, Fisher) via a hydrothermal synthesis method, as described previously [29]. At 124 

atmospheric pressure and room temperature, almost all of the formed ε-Zn(OH)2 was 125 



6 

transformed into ZnO. Thus, ZnO powder (≥95%) is a predominant component in the final 126 

products, with trace amounts of Zn(OH)2 [29]. The XRD pattern of the synthesised ZnO is 127 

illustrated in Figure S1.  128 

 129 

2.2 Sample Preparation 130 

Sodium silicate or potassium silicate were designed with a SiO2/M2O molar ratio of 0.5, 1.0, 131 

and 1.5, and a H2O/M2O molar ratio of 13. In Zn-free geopolymer (control) system, Al2O3/M2O 132 

ratio was 1. In the Zn-substituted geopolymer system, Al2O3/M2O ratio was 0.8 and ZnO/M2O 133 

ratio was 0.2. For geopolymer samples with Zn-sludge addition, geopolymer paste/sludge 134 

ratios were designed at 1:1, 1:2 and 1:4 by weight, and extra water (50% of dry sludge) was 135 

added to achieve favourable flowability. The mixture design of geopolymer samples with and 136 

without ZnO/Zn-rich sludge is illustrated in Table 1. For sample preparation, MK precursor 137 

powder was mixed into the activating solution by a high-speed stirrer for 5 min. ZnO or sludge 138 

powder was gradually added into the mixture and stirred for another 5 min. The fresh pastes 139 

were transferred into sealed containers and steel moulds (2 × 2 × 2 cm3). Sealed samples and 140 

demoulded samples (after 3-day casting) were cured at 20 °C for 7 days and 28 days, 141 

respectively. All the experiments on the cement pastes and sludge S/S blocks were performed 142 

in triplicate and quadruple, respectively. 143 

  144 
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Table 1. Mixture design (molar ratios) of geopolymer samples with or without Zn. 145 

 SiO2/M2O SiO2 Na2O K2O H2O MK ZnO Sludge*  

S/N 0.5 0.5 0.5 1 0 13 1 0 0 

S/N 1.0 1.0 1 1 0 13 1 0 0 

S/N 1.5 1.5 1.5 1 0 13 1 0 0 

S/K 0.5 0.5 0.5 0 1 13 1 0 0 

S/K 1.0 1.0 1 0 1 13 1 0 0 

S/K 1.5 1.5 1.5 0 1 13 1 0 0 

S/N 0.5-Z 0.5 0.5 1 0 13 0.8 0.2 0 

S/N 1.0-Z 1.0 1 1 0 13 0.8 0.2 0 

S/N 1.5-Z 1.5 1.5 1 0 13 0.8 0.2 0 

S/K 0.5-Z 0.5 0.5 0 1 13 0.8 0.2 0 

S/K 1.0-Z 1.0 1 0 1 13 0.8 0.2 0 

S/K 1.5-Z 1.5 1.5 0 1 13 0.8 0.2 0 

N-S1 1.0 1 1 0 13 1 0 1:1 

N-S2 1.0 1 1 0 13 1 0 1:2 

N-S4 1.0 1 1 0 13 1 0 1:4 

K-S1 1.0 1 0 1 13 1 0 1:1 

K-S2 1.0 1 0 1 13 1 0 1:2 

K-S4 1.0 1 0 1 13 1 0 1:4 

M2O: Na2O or K2O; MK: metakaolin  146 

*binder-to-sludge mass ratio 147 

 148 

2.3 Characterisation and Analyses 149 

The initial and final setting times of the geopolymer samples with or without ZnO/sludge were 150 

examined by a Vicat apparatus [30]. The uniaxial compressive strength of the sludge-based 151 

blocks was tested using a universal testing machine at a loading rate of 0.3 MPa s-1 [31]. The 152 

kinetics of the reaction of Zn-incorporated geopolymer samples were assessed using an 153 

isothermal calorimeter (TAM Air instrument) at 20 ± 0.02 °C. The leachability of Zn/sludge-154 

incorporated samples was tested according to the Toxicity Characteristic Leaching Procedure 155 

(TCLP) [32]. The leaching concentrations of toxic elements were detected by means of 156 

inductively coupled plasma atomic emission spectrometry (ICP-AES, Spectro Arcos).  157 

 158 

Chemical components of the geopolymer samples were analysed by thermogravimetric 159 
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analysis coupled with mass spectrometry (TGA-MS, Perkin Elmer TGA 4000 coupled to MS) 160 

at a heating rate of 10 °C min-1 from 30 °C to 1000 °C with nitrogen as the purging gas. All 161 

samples were held at 30 °C for 20 min before the heating process. Water vapour, carbon 162 

monoxide, nitrogen, oxygen, and carbon dioxide were analysed during the programmed heating 163 

process. The surface morphology of the geopolymer samples was observed using by scanning 164 

electron microscopy (SEM) with energy-dispersive X-ray (EDX) (QUANTA FEG 250). 165 

Elemental mapping was performed on the crushed samples. Back scattered electron (BSE) 166 

imaging was conducted on the polished geopolymer samples. The mineralogy of the powdered 167 

samples was scanned using X-ray diffraction (XRD) (Bruker D8) in the range 2θ of 5-70° and 168 

at a step size of 0.020°. A Cu anode was used as source and the Cu K-α wavelength was 1.5406 169 

Å. A 10 wt% MgO was incorporated as an internal standard to quantify the content of ZnO 170 

engaging in reaction. 171 

 172 

The local structure of geopolymer reaction products was evaluated using solid-state magic 173 

angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 29Si and 27Al 174 

spectra were acquired using a 500 MHz (B0 = 11.7 T) solid-state NMR spectrometer 175 

(GEOL500), yielding a Larmor frequency of 99.362 MHz for 29Si NMR and 130.318 for 27Al. 176 

The chemical shifts of 29Si and 27Al were referenced to external standards of tetramethylsilane 177 

(TMS) and a 1.0 M aqueous solution of AlCl3·6H2O, respectively. The 29Si experiments were 178 

conducted using a 7 mm standard bore, one pulse MAS probe head, a rotational rate of νR = 179 

4.5 kHz, and a recycle delay of 30 s, acquiring from 108 to 2,000 scans. 27Al NMR experiments 180 

were conducted using a 4 mm MAS probe, a rotational rate of νR = 10 kHz, a recycle delay of 181 

2 s with 1000 scans. Gaussian peak profiles were used for the fitting of 29Si MAS NMR spectra. 182 

A single Gaussian peak was used for representing different Qn(mAl) species, and these peaks 183 

were used to create a simulation of the 29Si NMR spectra by using a least-squares fitting 184 
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method. Peak intensities are consistent with the structural constraints described by the 185 

statistical thermodynamic model for (N,K)-A-S-H products [33]. The molar ratio of Si/Al in 186 

(N,K)-A-S-H gel can be calculated based on Engelhardt’s formula [34] (Eq. 1): 187 

Si𝐴𝐴𝐴𝐴 = ∑ 𝐼𝐼𝐴𝐴𝐴𝐴4(𝑚𝑚𝐴𝐴𝐴𝐴)4𝑚𝑚=1∑ 0.25×𝑚𝑚×𝐼𝐼𝐴𝐴𝐴𝐴4(𝑚𝑚𝐴𝐴𝐴𝐴)4𝑚𝑚=1                                                                                                    (1) 188 

Where IAQ
4(mAl) is the normalised relative integral areas of 29Si MAS NMR fitting peaks of 189 

each Q4(mAl) site in the geopolymer gel. 190 

 191 

3. Results and Discussion 192 

3.1 The Role of Zn in the Alkali-Activation Reaction 193 

Figure 1 illustrates the heat evolution curves for the geopolymer pastes with and without ZnO. 194 

As shown in Figure 1c, Na-activated geopolymer (S/N 1.0) samples presented a short dormant 195 

period and the time to reach the reaction peak (TTRP) was 6.4 h. By comparison, the TTRP of 196 

K-activated geopolymer (S/K 1.0) samples was longer. This indicated that the reaction in Na-197 

based geopolymer was relatively vigorous in the early stage. However, the cumulative heat 198 

from S/K 1.0 surpassed S/N 1.0 samples after 37.8 h (Figure 1a). After substitution of ZnO, 199 

the TTRPs were significantly prolonged and the cumulative heat was reduced. Interestingly, 200 

TTRP in S/N 1.0-Z (39.3 h) was longer than that in S/K 1.0-Z samples (28.6 h), and cumulative 201 

heat in S/N 1.0-Z samples was relatively low during the reaction over 120 h, which reflected 202 

that Zn interacted with geopolymer chemically and had a more significant delay effect on the 203 

Na-activated geopolymer. 204 

 205 

From Figure 1b & d, in low-alkali geopolymer samples, i.e., SiO2/M2O molar ratio of 1.5, the 206 

TTRPs were longer and cumulative heats were lower than the values for high-alkali 207 

geopolymer samples (SiO2/M2O ratio of 1.0). This is ascribed to low concentrations of sodium 208 

and potassium ions limiting nucleation and growth of the (N,K)-A-S-H gel [22]. It should be 209 
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noted that TTRPs in S/M 1.5-Z samples were much longer than that in S/M 1.0-Z samples. 210 

This revealed that while Zn exerted an inhibitory effect on both high- and low-alkali 211 

geopolymers, the effect was most pronounced in low-alkali geopolymers. The associated 212 

variations in setting time are discussed in Section 3.3. 213 

 214 

 215 

 216 

Figure 1. Isothermal calorimetry data of geopolymer pastes with and without ZnO: (a) 217 

cumulative heat of geopolymer pastes with SiO2/M2O ratio of 1.0; (b) cumulative heat of 218 

geopolymer pastes with SiO2/M2O ratio of 1.5; (c) heat flow corresponding to (a); (d) heat flow 219 

corresponding to (b). (TTRP: time to reach the reaction peak). 220 

 221 

Based on simulation results obtained using Visual MINTEQ software (Table S2), Zn(OH)3
- 222 

was the dominant dissolved species (13.3% to 80.5%) of Zn in S/N 1.0-Z samples at high 223 

alkaline levels (pH 13-14), although the solubility of ZnO was minimal (less than 0.355%). 224 

Similarly, the Zn(OH)3
- was also the dominant dissolved species in the S/K 1.0-Z samples. 225 

Previous studies [22,35] reported that the existence of a metastable Ca-Zn phase 226 
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(Ca(Zn(OH)3)2·2H2O) in the Zn-incorporated cement system poisoned the nucleation and 227 

growth of C-S-H gel. Considering geopolymer systems contain high concentrations of OH-, 228 

Na+ and Zn(OH)3
- (Table S2), there is a possibility that a Na/K-Zn phase (e.g., 229 

(Na/K)(Zn(OH3)2)·nH2O) was generated in Zn-incorporated geopolymer systems. Therefore, 230 

the ZnO retarding mechanism in geopolymer could be attributed to the preferential formation 231 

of such a Na/K-Zn phase that may inhibit the nucleation and growth of (N,K)-A-S-H gel. 232 

 233 

3.2 Efficacy of Zn on Reaction Products of Geopolymer 234 

TGA curves of 28-d cured geopolymer samples are shown in Figure 2. A remarkable mass loss 235 

peak existed from 30 °C to 300 °C in the S/N 1.0 samples, which was associated with H2O 236 

release, as detected by MS analysis (Figure 2b). The water release resulted from the evaporation 237 

of free water, physically adsorbed water, and chemically bound water from the geopolymer 238 

gels [36,37]. The K-activated samples (S/K 1.0) showed similar mass loss peaks in the same 239 

range. However, the total mass loss (18.0%) was smaller than the value in the S/N 1.0 samples 240 

(22.4%) (Figure 2a). This phenomenon was in line with previous experimental findings [38,39], 241 

where greater geopolymerisation with a Na-based activator led to a larger mass loss for Na-242 

based geopolymer. Herein, other potential reasons come to light. Because the ionic radius of K 243 

(152 pm) is larger than that of Na (116 pm), the N-A-S-H gel with relatively small molar 244 

volume may adsorb more water compared to K-A-S-H gel. Assuming per-unit of N-A-S-H- 245 

and K-A-S-H-gel containing the same molar weight of bound water, due to the relatively large 246 

molar mass of K, the mass fraction of H2O in K-based systems is relatively low, resulting in 247 

the lower mass loss. 248 
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249 

 250 

Figure 2. TGA of 28-d cured geopolymer pastes with and without ZnO: (a) TG curves of 251 

samples with SiO2/M2O molar ratio of 1.0; (b) TG curves of samples with SiO2/M2O molar 252 

ratio of 1.5; (c) DTG and water release curves corresponding to (a); (d) DTG and water release 253 

curves corresponding to (b). Water release curves in c) and d) were obtained from mass 254 

spectrometry data. 255 

 256 

From Figure 2a & c, the partial substitution of ZnO had a negligible effect on mass loss or 257 

water release of Na/K-based geopolymer samples. Here it should be noted that the 258 

decomposition temperature of Zn(OH)2 (125 °C) lies in the range of 30 °C to 300 °C [40,41]. 259 

Thus, based on TGA results, it is difficult to determine the contents of geopolymer gels and 260 

zinc hydroxide in S/N 1.0-Z and S/K 1.0-Z samples. As shown in Figure 2b, low-alkali 261 

geopolymer samples with an S/M ratio of 1.5 showed a relatively low mass loss, suggesting a 262 

small amount of reaction products in low-alkali samples. In the low alkali geopolymer system, 263 

incorporating ZnO also had a negligible effect on the variability of mass loss according to the 264 

TGA data. 265 

 266 
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XRD analysis was used to investigate the reaction products of geopolymer samples both with 267 

and without ZnO substitution. From Figure S1, there is a predominant, broad peak due to 268 

diffuse scattering centred at approximately 22° in the raw metakaolin curve, consistent with 269 

the amorphous nature of MK. Sharp peaks at 25.3° and 32.6° are attributed to a small amount 270 

of anatase (TiO2).  After a 7-d reaction at 20 °C (Figure 3a), two broad peaks centred at 11° 271 

and 29° appeared in the MK-based geopolymer samples, indicating the formation of 272 

crystallographically disordered products [28]. Na-activated samples and K-activated samples 273 

showed similar XRD patterns. MgO (analytical reagent) was added to the samples prior to 274 

XRD analysis as an internal standard to quantify the degree of ZnO involved in the reaction. 275 

However, after 7-d curing, the major ZnO peaks at 31.8°, 34.4°, and 36.3° had completely 276 

disappeared in the S/N 1.0-Z and S/K 1.0-Z samples, while other crystalline peaks of TiO2 and 277 

MgO still existed. This demonstrated that all the ZnO (observable by XRD) had reacted and 278 

formed amorphous components. In alkaline solution, zinc and silicate ions can form amorphous 279 

zincate-silicate complexes [42], e.g., [(HO)3ZnO(SiO2)O(SiO2)OH]6- and 280 

[(HO)3ZnOSiO2OH]4-. In this study, the inclusion of ZnO in the reaction mixture did not 281 

change the line-shape of the XRD patterns of the geopolymer binders, suggesting that ZnO did 282 

not alter the general structure of major reaction products. 283 

 284 

The XRD patterns of low-alkali geopolymer samples (S/M of 1.5) were very similar to those 285 

of S/M 1.0 geopolymer samples (Figure 3a). Similar to observations for the high-alkali 286 

geopolymers, the substitution of ZnO in the low-alkali system did not change the lineshape of 287 

the XRD patterns. After 28-d curing, the ZnO peak disappeared, and no new peak appeared in 288 

both the S/M 1.0-Z and S/M 1.5-Z geopolymer systems (Figure 3b). Therefore, the XRD results 289 

indicated that ZnO reacted during alkali-activation to formed amorphous products; however, 290 

ZnO did not change the general structure of the major reaction products. 291 
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 292 

 293 

Figure 3. XRD data of geopolymer pastes with or without ZnO: (a) 7-d cured geopolymer 294 

pastes; (b) 28-d cured geopolymer pastes.  295 

 296 

As illustrated in Figure S2a, the 29Si MAS NMR spectra of MK showed a broad resonance 297 

arising from a distribution of isotropic chemical shifts, δiso, from -80 to -125 ppm, with the 298 

highest intensity at δiso = -108 ppm. This suggests a wide distribution of silicon environments 299 

and a significant degree of disorder, consistent with the broad amorphous peak in XRD patterns 300 

and previous work in the literature [44]. Spectral fitting indicated that the resonances were 301 

attributed to Q4(0Al), Q4(1Al), Q4(2Al), Q4(3Al) and Q4(4Al). Among them, Q4(0Al) and 302 

Q4(1Al) represented approximately 46% and 24%, respectively. It is noted that the large 303 

proportion of Q4(0Al) was probably due to over-calcination of kaolinite, which may influence 304 

the geopolymerisation. The detailed parameters of fitting peaks in raw MK are shown in Table 305 

S3, and the full spectra of MK and geopolymers are illustrated in Figure S3. After 28-d curing, 306 

data for S/N 1.0 and S/K 1.0 samples exhibited a resonance from δiso = -75 to -115 ppm (Figure 307 

4a & b), with the highest intensity at δiso = -89.5 ppm and -90.5 ppm, respectively (Table S3). 308 

This suggests that the geopolymer gels were dominated by resonances of fully polymerised Q4 309 
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species with high Al substitution, i.e., Q4(4Al) and Q4(3Al). The fitting and quantification 310 

results from Figure 4 and Table 2 illustrate that the N-A-S-H gel in the S/N 1.0 samples was 311 

composed of approximately 32% Q4(4Al), 43% Q4(3Al), 19% Q4(2Al), 4% Q4(2Al) and 2% 312 

Q4(2Al), with a Si/Al molar ratio of 1.34. The detailed parameters of fitting peaks in 313 

geopolymers are shown in Table S3. K-A-S-H gel in S/K 1.0 samples had similar distributions 314 

of Q4(mAl) sites and the Si/Al molar ratio was 1.40. The Si/Al molar ratio was lower than the 315 

value in the initial mixture, suggesting the preferential formation of Al-rich geopolymer gel. 316 

After substitution of ZnO, the Q4(4Al) content was much larger than Q4(3Al) content in S/N 317 

1.0-Z sample, and consequently it had a relatively low Si/Al molar ratio (1.21) (Table 2). This 318 

is possibly due to the divalent charge Zn2+ cation substituting the monovalent charge Na+ cation, 319 

leading to an increase of charge-balancing capacity [28] (schematically illustrated in Figure 5). 320 

 321 

By comparison, the substitution of ZnO only slightly decreased Q4(3Al) content and increased 322 

Q4(4Al) content in K-activated system (Figure 4d). The magnitude of the reduction of Si/Al 323 

molar ratio in K-activated system was relatively small compared to that of Na-activated system. 324 

This discrepancy can be attributed to differences of ionic radii between Na+ and K+. The ionic 325 

radius of Zn2+ (88 pm) is closer to the radius of Na+ (116 pm), compared to the value of K+ 326 

(152 pm) [43]. Thus, Zn2+ can more easily substitute for Na+ cation than K+ cations. This 327 

difference in Zn incorporation is likely to result in differences in Zn leachability in Zn-328 

incorporated samples (discussed in Section 3.3). 329 
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 330 

Figure 4. 29Si MAS NMR spectra (B0 = 11.7 T, νR = 4.5 kHz) and associated fitting peaks for 331 

28-d cured geopolymer pastes: (a) Na-activated geopolymer; (b) K-activated geopolymer; (c) 332 

Na-activated geopolymer with ZnO; (d) K-activated geopolymer with ZnO. 333 

 334 

Table 2. Relative integral areas for Q4(mAl) sites within (N,K)-A-S-H gel. 335 

   Relative integral area (%)* 

 Q4(4Al) Q4(3Al) Q4(2Al) Q4(1Al) Q4(0Al) Si/Al 
S/N 1.0 32 43 19 4 2 1.34 
S/K 1.0 26 42 25 5 2 1.40 
S/N 1.0-Z 54 30 11 2 3 1.21 
S/K 1.0-Z 37 40 18 3 3 1.30 

* The relative integrated intensity is obtained by simulating the 29Si MAS NMR spectra and is 336 

normalised to the sum of all sites in geopolymers. Error in the relative integral area is 337 

approximately 1%. 338 

 339 
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 340 

Figure 5. Schematic illustration of Na/Zn-A-S-H gels in S/N 1.0 and S/N 1.0-Z samples. 341 

 342 

The 27Al MAS NMR spectrum of MK (Figure S2) shows three broad resonances at δiso = 60 343 

ppm, 27 ppm, and -2 ppm, respectively, due to Al in tetrahedral, pentahedral, and octahedral 344 

coordination [44]. After 28-d curing, the data for geopolymer samples exhibited a high intensity 345 

resonance due to tetrahedral Al at δobs = 56 ppm (Figure 6). This signified that most Al in 346 

metakaolin took part in the reaction, consistent with observations from the 29Si MAS NMR and 347 

XRD data. The resonance at δobs = 56 ppm is ascribed to tetrahedral Al in a fully polymerised 348 

tetrahedral site (q4) resulting from the substitution of Al3+ for Si4+ in the (N,K)-A-S-H 349 

framework [45], with the resultant negative charge balanced by alkali cations [46].  The 350 

incorporation of ZnO shifted the tetrahedral Al resonance to slightly higher δobs values, e.g., 351 

0.37 ppm increment in the Na-activated samples, and 0.18 ppm increment in the K-activated 352 

samples. Such slight shifts may result from the partial substitution of Zn2+ for Na+ and K+ in 353 

charge balancing sites in the (N,K)-A-S-H gel. Zn2+ substitution had a negligible influence on 354 

the lineshape of the 27Al MAS NMR spectra, indicating that it did not significantly change the 355 

nanostructure of the geopolymer gels, which is consistent with XRD results. It is noted that 356 
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23Na MAS NMR and 39K MAS NMR may provide useful information about the (Na,Zn)-A-S-357 

H gel, Na-Z phase, (K,Zn)-A-S-H gel, and K-Z phase, which would be required for further 358 

quantifying the structural change of products in future studies.  359 

 360 

 361 

Figure 6. 27Al MAS NMR spectra (B0 = 11.7 T, νR = 10.0 kHz) for 28-d cured geopolymer 362 

pastes. 363 

 364 

SEM image (Figure 7a) reveals some voids and microcracks on the fracture surface of S/N 1.0 365 

samples, possibly due to the entrainment of air bubbles during the rapid geopolymerisation 366 

when Na is the alkali source. By comparison and as shown in Figure 7b, S/K 1.0 samples 367 

exhibited dense and flat surfaces with few voids, which is attributed to less rapid reaction 368 

kinetics as revealed by isothermal calorimetry results. After ZnO substitution, many 369 

agglomerates were observed on the matrix in S/N 1.0-Z samples (Figure 7c). Elemental 370 

mapping (Figure 7e) verified that the porous blocks were composed of O, Al and Si, which 371 

possibly resulted from the unreacted MK. Moreover, Zn was homogeneously distributed on 372 
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matrix. Theoretically, some zincate-silicate complexes can form in an alkaline solution [42]; 373 

however, the specific nature of the agglomerates in S/N 1.0 samples requires further 374 

investigation. By comparison, there were no observable agglomerates in S/K 1.0-Z samples, 375 

although the ZnO incorporation caused more voids (Figure 7d). The elemental mapping in 376 

Figure 7f also indicated that Zn was homogeneously distributed in the geopolymer matrix in 377 

the S/K 1.0-Z samples. The BSE images showed that the microstructure of S/N 1.0-Z samples 378 

was much denser than that of S/K 1.0-Z samples (Figure S4). The different microstructures 379 

observed in samples may influence the physicochemical properties of the geopolymer cements. 380 

Therefore, the effects of Zn on setting time and ion retention of the geopolymer cements were 381 

investigated. 382 
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 383 

Figure 7. SEM image with elemental mapping of 28-d cured geopolymer pastes: (a) SEM 384 

image of S/N 1.0; (b) SEM image of S/K 1.0; (c) SEM image of S/N 1.0-Z; (d) SEM image 385 

of S/K 1.0-Z; (e) element mapping of S/N 1.0-Z; (f) element mapping of S/K 1.0-Z. 386 

 387 
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3.3 Effects of Zn and Zn-rich Sludge on Physicochemical Properties of Geopolymer 388 

Figure 8a shows the setting time for the geopolymer pastes with and without ZnO. High-alkali 389 

S/N 0.5 samples yielded the shortest initial setting time of 3.1 h and final setting time of 4.1 h. 390 

The setting times increased along with the increase of Si/Na molar ratio, because Si and Al 391 

cations dissolving in low-alkali samples gradually reached their critical limits of nucleation 392 

and growth of the geopolymer gel. By comparison, K-activated geopolymer systems showed 393 

the same trend, with the initial and final setting times being relatively long compared to samples 394 

where Na is the alkali source, consistent with isothermal calorimetry results (Figure 1). The 395 

substitution of ZnO (Al/Zn molar ratio of 4) significantly delayed both the initial and final 396 

setting times in Na-activated geopolymer systems, especially for low-alkali samples. Zn also 397 

had an inhibitory effect on the K-activated geopolymer systems; however, its magnitude was 398 

relatively small in comparison with Na-activated geopolymer systems, consistent with 399 

isothermal calorimetry results. The addition of additional ZnO in geopolymer systems also 400 

caused a dramatic delay of initial and final setting times (Figure S5), likely due to the formation 401 

of metastable Na/K-Zn phase as discussed in Section 3.1. This excludes the possibility of the 402 

delayed setting time resulting from lower Al/Si content. Note that the addition of high-dosage 403 

Zn would completely poison the reaction of PC and Ca-rich alkali-activated materials [36,47], 404 

whereas Zn only retarded the reaction process of N/K-based geopolymer systems. This 405 

indicates that N/K-activated geopolymers exhibit favourable compatibility with Zn during the 406 

early stage of reaction, and K-activated geopolymer systems show greater compatibility with 407 

Zn than Na-activated geopolymer systems.  408 

 409 

Figure 8b illustrates the TCLP leaching concentrations of Zn and the corresponding pH values 410 

of leachate from 28-d cured Zn-incorporated geopolymer samples. The S/N 0.5-Z samples 411 

showed the lowest Zn leachability (1.4 mg L-1), indicating strong incorporation of Zn in the 412 
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geopolymer gel. The Zn leachability significantly increased with increased of Si/Na molar ratio 413 

(i.e. decreased alkali content). Interestingly, the Zn leachability of S/K 0.5-Z samples (106.6 414 

mg L-1) was 75 times higher than that of S/N 0.5-Z samples. This is likely due to the differences 415 

in ionic radii of Na+ (116 pm) and K+ (152 pm), with Zn2+ (ionic radius of 88 pm) more easily 416 

substituted for Na+ than K+. This is consistent with the findings from 29Si MAS NMR data 417 

(Figure 4) discussed above. The relatively dense structure of S/N 1.0-Z sample (Figure S4) 418 

may also be favourable for the Zn immobilisation. Additionally, the lower pH value exhibited 419 

by the solution for S/K 0.5-Z samples (~7.5) compared with S/N 0.5-Z samples (~8.5) will also 420 

contribute to the higher leachability of Zn from S/K 0.5-Z samples, due to the greater solubility 421 

of Zn2+ at lower pH [48]. The TCLP results demonstrate that Na-activated geopolymer cements 422 

exhibit excellent immobilisation of Zn, with the use of high-alkali activators enhancing the 423 

effectiveness of S/S. 424 
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425 

 426 

Figure 8. Setting time and leachability of geopolymer pastes cured for 28 days: (a) setting time 427 

of geopolymer pastes with or without ZnO (20 mol.%) replacement; (b) Zn concentration and 428 

pH in leachate from ZnO-incorporated geopolymer pastes. 429 

 430 

The effects of Zn-rich electroplating sludge on the physicochemical properties of geopolymer 431 

were evaluated in terms of setting time, TCLP leachability, and compressive strength. As 432 

shown in Figure 9a, the addition of 50% sludge (N-S1 sample) postponed the final setting time 433 

from 5.6 h to 23.4 h. The setting time was prolonged with increasing dosages of sludge. 434 

Although the final setting time of N-S4 samples reached 39.3 h, the setting and hardening 435 

process still occurred in approximately 80% sludge-incorporated samples. Zn-rich sludge 436 

addition showed a relatively small inhibitory effect on the K-activated geopolymer when 437 
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compared to Na-activated geopolymer samples, consistent with the effect of pure ZnO (Figure 438 

9a).  439 

 440 

From Figure 9b, the TCLP leachate for electroplating sludge contained 516.7 mg L-1 of Zn, 441 

77.7 mg L-1 of Ni, 77.5 mg L-1 of Mn and 11.2 mg L-1 of Co. The Zn leachability exceeded the 442 

TCLP limit (250 mg L-1) of landfill disposal criteria [49]. After the S/S process, the respective 443 

leachability of the various toxic elements from N-S1 samples (with 50% sludge) was reduced 444 

by 95.4% to 98.7%. However, Zn leachability dramatically increased to 285.5 mg L-1 when the 445 

mass ratio of sludge/Na-geopolymer was 2. This indicated that high sludge dosages (66.6 wt%) 446 

exceeded the critical point required for a stable (Na,Zn)-A-S-H gel and resulted in extremely 447 

high Zn leachability. Note that the leachability of other potentially toxic elements also 448 

increased with the increase in sludge dosage. Similar performance results imply that these 449 

divalent cations (Mn2+, Co2+, Ni2+) also might substitute monovalent charge Na+ cation in 450 

charge balancing sites in the geopolymer gel. The Zn leachability of the K-S1 sample was 7.1 451 

times higher than the value of N-S1 sample, consistent with the effect of pure ZnO (Figure 7a). 452 

From Figure S6, after 28-d curing, all the sludge-incorporated samples solidified with at least 453 

some degree of compressive strength (> 0.15 MPa). There was a negative correlation between 454 

compressive strength and leachability. These data show that Na-activated geopolymers are 455 

excellent candidates for the S/S of Zn-rich electroplating sludge. For practical S/S application, 456 

the dosage of sludge should be well controlled to avoid exceeding the critical point required 457 

for a stable (Na,Zn)-A-S-H gel. 458 

      459 
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                                                                           460 

  461 

Figure 9. Setting time and leachability of geopolymer with various amounts of industrial 462 

sludge (SiO2/M2O molar ratio of 1.0): (a) setting time of sludge-added geopolymer samples; 463 

(b) element concentrations and pH in leachate from sludge-added geopolymer samples. (N/K-464 

Sx: sodium/potassium silicate-activated geopolymer/sludge mass ratio of 1/x). 465 

 466 

4. Conclusions 467 

This study investigated the role of Zn on the reaction kinetics, phase assemblage and 468 

nanostructure of metakaolin-based geopolymer cements, and evaluated the feasibility of using 469 

metakaolin-based geopolymer cements for the S/S treatment of Zn-rich industrial sludge. 470 

Experimental results showed that ZnO substitution significantly inhibited the alkali-activation 471 

reaction and prolonged setting time, especially for low-alkali geopolymers, probably due to the 472 
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formation of metastable “Na/K-Zn” phase materials. ZnO substitution had a slight inhibitory 473 

effect on the alkali-activation reaction in K-activated geopolymer systems compared to Na-474 

activated geopolymer systems. XRD results showed that upon alkali-activation ZnO reacted 475 

completely after 7 days curing, and formed amorphous products; however, ZnO did not 476 

significantly change the nanostructure of the primary reaction product ((N,K)-A-S-H gel), as 477 

evidenced by 27Al MAS NMR results. 29Si MAS NMR spectra illustrated that after substitution 478 

of ZnO, the content of Q4(4Al) sites increased while Q4(3Al) decreased, resulting in a decrease 479 

of Si/Al ratio in the (N,K)-A-S-H gel. This indicated that Zn2+ partially substituted for Na+/K+ 480 

cations in charge balancing sites within the (Na,K)-A-S-H gel. This partial substitution of Zn2+ 481 

for Na+/K+ occurred to a greater extent in Na-activated geopolymer gel than in K-activated 482 

geopolymer gel, which might be due to discrepancy in the ionic radii of Na+ and K+. As a result, 483 

the TCLP leachability of Zn from Na-activated samples was relatively low. The S/S 484 

experiments verified that K-activated geopolymer reaction kinetics were less inhibited by 485 

addition of Zn-rich sludge, however Na-activated geopolymer samples exhibited greater 486 

immobilisation capacity for Zn. In practical applications, alkali dosage, sludge content, and 487 

other conditions should be optimised to achieve excellent and robust S/S performance. 488 

Together, these findings reveal the reaction inhibiting and incorporation mechanisms of Zn in 489 

geopolymer systems and suggest a sustainable and efficient geopolymer binder for S/S of Zn-490 

rich sludge. 491 
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