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Abstract 

Within this paper, a three-dimensional finite element (FE) model of a uniformly loaded, single 

rubber block, is described and run using loading conditions replicative of a standard slip 

resistant footwear test. The FE model considers rubber hyperelastic and viscoelastic 

material properties, obtained using dynamic mechanical analysis. The performance of the 

FE model was evaluated through analytical compression analysis and experimental contact 

area testing. The effect of tread grooves was investigated with relation to slip-resistance 

during walking. Analysis and discussion are provided of the tread model’s sliding contact 
areas, contact pressure, stress, and front edge mechanics.  

Keywords: Rubber, Tread, Finite Element, Footwear 

1. Introduction 

Slip related accidents are a major cause of injury in workplaces worldwide. Within the UK 

alone, the Health and Safety Executive (HSE) reported that slips, trips and falls, onto the 

same level, are the highest cause of non-fatal injuries, accounting for 29% of all reported 
non-fatal work injuries in 2018/19 [1]. 

Figure 1. Anvil Traction Shoe (left) and tread orientation definitions (right). The arrows 
indicate the slide direction. 
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To reduce the likelihood of a slip occurring, slip resistant footwear can be worn [2]. An 

example is shown in Figure 1. Such footwear typically has a rubber outsole with numerous 

tread elements, and consequent grooves or sipes. Thus, via discrete areas of high pressure 

caused by tread elements, and the presence of fluid channels, surface fluids and 

contaminants can be effectively dispersed. This prevents the formulation of a fluid film, 

ensuring dry shoe-surface contact [3]. If a fluid film is present between the shoe outsole and 

the ground, friction is reduced by orders of magnitude due to hydrodynamic effects. 

The frictional performance of slip resistant footwear has been extensively studied 

experimentally [4–9]. Two studies by Li and Chin (2004) and Li and Chen (2005), 

investigated how certain tread design parameters affect friction on contaminated surfaces 

using bespoke tread patterns [4,5]. It was observed that tread orientated perpendicular or 

oblique to the slide direction produced a higher dynamic friction coefficient (𝜇௞) than tread 

orientated parallel to the slide direction (Figure 1) [5]. Furthermore, by comparing the 

performance of treads with 3 and 9 mm grooves, it was determined that wider tread grooves 

produced higher 𝜇௞ [4]. Both these findings have been supported by Blanchette and Powers 

[9] who comment that the perpendicular tread provides good resistance to motion but poor 

liquid dispersion while an oblique pattern is capable of both and is therefore preferred. 

Although these experimental investigations provide invaluable insights into how shoe tread 

parameters influence 𝜇௞, custom built outsoles were manufactured to do so. This sacrifices 

the validity of the observed results when comparing to real, complex outsole designs, as 

shown in Figure 1.  

The Finite Element Method (FEM) allows evaluation of real tread designs, while providing 

detailed stress and strain information that cannot be easily obtained experimentally. 

Consequently, it has been frequently utilised to examine rubber sliding scenarios [8,10–12]. 

A notable FEM study is that by Hofstetter et al. (2006) on motor vehicle tyre treads, that was 

able to replicate the characteristic front edge curling characteristic of sliding rubber that is 

linked to the rubber’s overall 𝜇௞ [12]. An FE model of a real shoe tread pattern, capable of 

detailing the leading edge pressure concentrations, would provide an understanding of how 

the real shoe 𝜇௞ is produced and enable investigations into the effects of design parameters 

such as shape and elastic modulus. 

This paper details the development and initial validation of an FE model and its use to 

increase understanding of the frictional implications of slip resistant footwear tread patterns 

and material characteristics. It does this by first modelling a single tread element before 

analysing a tread pattern from a real slip resistant shoe. 

 



3 
 

2. Methodology 

The reason for developing the FE approach for shoe tread analysis was to provide insight 

into the deformation of the tread under typical dynamic loading. A model with simplified 

geometry was used to demonstrate that the approach used is appropriate for this type of 

analysis. Subsequently, the behaviour of a realistic tread pattern was studied following the 
approach developed. 

ABAQUS 2018 FE software (Dassault Systèmes, Vélizy-Villacoublay, France) was selected 

to conduct the planned FE analysis due to its capabilities with modelling hyperelastic and 

viscoelastic rubber materials as well as its competency in simulating dynamic sliding 
conditions [13,14]. 

2.1 Model Creation 

2.1.1 Geometry 

FE model geometries were taken directly from an Anvil Traction outsole. As Figure 2 shows, 

a key feature of the outsole is the presence of 6 mm × 6 mm square tread elements, 

comprising four identical 2.5 mm × 2.5 mm smaller squares with a 1 mm groove running 

between them. To reduce computational cost and convergence difficulties, the model was 

initially evaluated as a single 6 mm × 6 mm square block. Subsequently, the model was 

made more representative by the adding grooves and then replicating four times to form a 

tread pattern identical to the 8 mm × 8 mm repeating unit on the Anvil Traction outsole but 

scaled to 200%.  

 

 

Figure 2. Tread geometry from Anvil traction shoe (dimensions in mm).  

Since the structure is symmetric, simulation was run on half the geometry and then mirrored.  
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The contact surface was modelled as an infinitely stiff, rigid and smooth surface. Therefore, 

no surface mesh was necessary and computational cost was reduced, decreasing any 

accuracy losses in the three-dimensional contact analyses. 

2.1.2 Material Properties  

All material properties used in the FE model were based on a rubber (TY-Green) provided by 

Anvil Traction. The approach taken was to represent the material using a linear hyperelastic 

and viscoelastic model. This was considered reasonable because TY-Green has a relatively 

low filler content (with no carbon black) and the expected strain levels on the tread were not 
expected to be particularly high. 

The neo-Hooke model was used to represent the rubber’s hyperelasticity. Thus, a neo-
Hookean strain energy function was used as shown in Equation 1. 

𝑊 =  𝐶ଵ଴(𝐼ଵ − 3) + 1𝐷ଵ (𝐽௘௟ − 1)ଶ 

Equation 1 

All the parameters in Equation 1 can be empirically determined. 𝐶ଵ଴ controls the shear 

behaviour of the material, 𝐷ଵ represents bulk compressibility and can be determined from 

the shear (𝐺) and bulk (𝐾) moduli, which can in turn be determined from the Young’s 

modulus (𝐸) and Poisson’s ratio (𝜐) as shown in Equations 2 and 3. 

𝐶ଵ଴ =  𝐺2 =  ൬ 𝐸2(1 + 𝜐)൰2  

Equation 2 

𝐷ଵ =  2𝐾 =  2൬ 𝐸3(1 − 2𝜐)൰ 

Equation 3 

Viscoelasticity was incorporated into the FE model using the generalised Maxwell model 

which describes the rubber as a linear viscoelastic material, expressed as a set of Maxwell 

elements, each of which is formed of an elastic spring connected in series to a viscous 

dashpot. To represent behaviour numerically in the time domain, the relaxation modulus 𝐸(𝑡) was then defined using the Prony series shown in Equation 4.  
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𝐸(𝑡) =  𝐸ஶ ቎1 + ∑ 𝑔௜𝑒ି௧ఛ೔ே௜ୀଵ1 − ∑ 𝑔௜ே௜ୀଵ ቏ 

Equation 4 

where 𝐸ஶ is the long term Young’s modulus, 𝑡 is the elapsed time and the parameters 𝑔௜ and 𝜏௜ are the 𝑖th modulus and relaxation time constants respectively.  

Dynamical Mechanical Analysis (DMA) was used to obtain the properties of the TY-Green 

rubber studied in this work. The storage modulus (𝐸′), loss modulus (𝐸′′) and loss factor 

(𝑡𝑎𝑛𝛿) were obtained at several frequencies between 1 and 30 Hz over a temperature range 

of -40 to 50 °C. Master curves were then generated using the frequency-temperature 

superposition principle and a reference temperature of 20 °C. Prony series coefficients fitted 

to the data at the reference temperature are provided in Table 1 while the results of the 

curve-fit are shown in Figure 3. Note that the Prony model matches the test data well in 

terms of modulus but underestimates the loss factor at low frequencies. This inability to 

match both curves is typical of this type of fitted model because it incorporates an inbuilt 

expectation that the gradient of the modulus curve is linked to the absolute value of the loss 

factor [15]. This shows that there may be other sources of energy loss within this particular 
material. However, this does not detract from the suitability of the general approach. 

Table 1. Prony series coefficients for TY-Green rubber with 𝑬ஶ = 7.33 MPa 𝑖 𝑔௜ 𝜏௜ 𝑖 𝑔௜ 𝜏௜ 𝑖 𝑔௜ 𝜏௜ 
1 2.0847e-03 2.7384e+03 6 4.6438e-03 4.2170e-02 11 2.5698e-01 6.4938e-07 

2 1.1450e-03 2.9854e+02 7 9.4109e-03 4.5973e-03 12 2.4128e-01 7.0795e-08 

3 2.0380e-03 3.2546e+01 8 2.2960e-02 5.0119e-04 13 1.0928e-01 7.7179e-09 

4 2.3540e-03 3.5481e+00 9 5.5435e-02 5.4639e-05 14 3.6583e-02 8.4140e-10 

5 3.2522e-03 3.8681e-01 10 1.3669e-01 5.9566e-06 15 9.6349e-02 9.1728e-11 

 

For viscoelastic materials it is known that the Poisson’s ratio changes from approximately 

0.5 to 0.33 as it transitions from the rubbery to the glassy state [16]. Around the reference 

temperature it can be seen from Figure 3 that motions taking longer than about 1 millisecond 

are within the rubbery zone and hence, because the bulk modulus of rubbery polymers is 

around 2 GPa, a Poisson’s ratio of approximately 0.4994.  
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Figure 3. Frequency domain complex modulus and time domain relaxation modulus of 
TY-Green rubber. 

2.2   Boundary Conditions     

The simulation was split into two distinct steps, imitating the conditions a shoe experiences 

during slip testing as specified by BS EN ISO 13287:2012. The first step involved a normal 

load applied to the top face of the tread model, lasting 0.1 s. The second step was the 

application of a horizontal, constant velocity applied to the top tread surface and lasting for 

0.3 s. Figure 4 illustrates these two simulation steps as applied to the model of a single tread 
unit. 

 
Figure 4. The two loading steps in the simulation and the applied normal load and 
slide velocity. 

Taking the normal load applied from the aforementioned standard (500 N), it was calculated, 

that under typical conditions, this is equivalent to a normal load of 24 N applied as evenly 
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distributed pressure over the 8 mm × 8 mm repeating unit shown previously in Figure 2. 

Note that for the half-width, mirrored models, this therefore represented a 12 N normal load. 

The friction coefficient (𝜇௞) between surface and tread was set to be 0.55. This value was 

obtained experimentally from sliding a 20 × 30 mm TY-Green rubber block across a Eurotile 

surface at a normal load of 200 N and slide velocity of 10 mm/s. These experiments were 

conducted on a Universal Mechanical Tester (UMT) (UMT TriboLab, Bruker, Massachusetts, 

USA). The nominal contact pressure was equal in friction experiment and FE simulation. It is 

acknowledged that the friction between rubber and dry surfaces is likely to change due to 

changes in local contact pressures, meaning the realistic tread pattern is likely to produce a 

different friction to that of the single block. However, for simplicity, 𝜇௞ was kept at 0.55 for the 

baseline analysis. The effects of reducing 𝜇௞ was explored numerically.  

For all simulations, surface fluids and contaminants were not included. This means that the 

resulting model assumed that surface contaminants were being adequately dispersed during 

sliding, providing dry contact between the surface and the rubber tread. Making this 

assumption also drastically reduced the complexity of simulation.   

2.3 Initial validation using the simplified block model 

The FE model of the simplified 6 mm × 6 mm block was constructed from three-dimension 

first order elements with a hybrid pressure formulation and reduced integration. Note that 

although second order elements are typically preferred for continuous stress analysis, they 

are less suitable for contact problems as they can encounter convergence problems during 

contact due to an imbalance between compressive and tensile forces within the element. An 

initial mesh convergence study indicated that elements of nominal size 0.1 mm provided a 
reasonable trade-off between accuracy and calculation time. 

Two tasks were undertaken to illustrate the suitability of the modelling approach. In the first, 

the deflection of the block under compression loading was compared with results from 

analytical expressions. In the second, the sensitivity of the results to friction coefficient and 

material compressibility were investigated. Lastly, the friction force and contact area over 

time are compared to that obtained experimentally. It is acknowledged that these tests do 

not comprehensively validate the model. Instead, they demonstrate that the model behaves 

in a reasonable and justifiable manner. 

2.3.1 Compression behaviour 

Comparison with analytical results was conducted considering the degree of y-displacement 

during the initial compression phase. Interface friction conditions of zero and infinity (i.e. 

bonded) were achieved by utilising Gent’s shape factor approach for determining the 
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deflection of constrained rubber blocks [17]. In this approach, the total vertical compression 

of a rubber block can be determined by defining the compression spring rate (𝑘௖) as the 

amount of compressive force (𝐹௖) required to cause a unit deflection (𝑑௖) as stated in 

Equation 5. 

𝑘௖ =  𝐹௖𝑑௖ 

Equation 5 

Defining 𝑘௖  in terms of the loaded area during compression (length 𝑙 multiplied by width 𝑤), 

the undeformed block thickness (𝑡) and the compression modulus (𝐸௖) gives Equation 6. 

𝑘௖ =  𝑙𝑤𝐸௖𝑡  

Equation 6 𝐸௖ can be defined as done in Equation 7, 𝐸௖ =  𝐸଴(1 + 𝑆ଶ) 

Equation 7 

where  𝐸଴ is the Young’s modulus,  is a coefficient that accounts for material 

compressibility and cross-sectional shape and 𝑆 is a geometrical shape factor calculated 

from the dimensions of the block – in this case it is defined as [15], 

𝑆 =  𝑙𝑤2𝑡(𝑙 + 𝑤) 

Equation 8 

Rearranging Equation 5 for 𝑑௖ and substituting in Equations 6-8, gives Equation 9. 

𝑑௖ =  𝐹௖𝑡𝑙𝑤𝐸଴(1 +  ൬ 𝑙𝑤2𝑡(𝑙 + 𝑤)൰ଶ 

Equation 9 

For the block analysis: 𝐹௖ = 24 N, 𝐸଴ = 7.33×106 Pa,  = 2.23  [17], 𝑙 = 0.006 m and 𝑤 = 

0.006 m. Setting 𝑡 = 0.003 m and using Equation 9 gives the 𝑑௖ value for the bonded case. 

Alternatively, setting 𝑡 = 0.006 m and then only taking half the deflection from Equation 9 

gives the sliding condition due to symmetry as shown in Figure 5. 
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Figure 5. Diagram showing some of the parameters for Equations 5 – 9. 

Results for 𝑑௖ values obtained through analytical and FE approaches are summarised in 

Figure 6. It can be seen that as friction increases, the compression reduces. One might 

expect that the FE results would lie between the analytical bonded and sliding conditions – 

however, in Figure 6 it can be seen that the FE shows slightly smaller deformation. As 

similar differences have been noted elsewhere [18], the FE model compression is judged 

adequate. 

Figure 6. Compression of the rubber block obtained using different approaches 

2.3.2 Slide behaviour 

Results showing the sensitivity to compressibility and friction coefficient during the sliding 

phase are summarised in Figure 7. As mentioned earlier, it is important to note that only half 

the block was modelled and symmetry enforced on one surface. Hence for Figure 7, the 
normal force is 12 N and the original contact area is 18 mm2. 
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Figure 7. Friction force-displacement and stabilised contact area for the block during 
sliding 

It is clear from Figure 7 that compressibility (specified using Poisson’s ratio, 𝜐) is not an 

important factor in this type of analysis. This is a reasonable conclusion because the rubber 

is not highly constrained. Friction coefficient on the other hand, has a major effect on the 

results. It controls the extent to which the rubber spreads laterally at the contact, which in 

turn affects the pressure distribution and the contact area. To illustrate this, a plot showing 

the typical deformation and strain distribution across the block during sliding in presented in 

in Figure 8. 

Figure 8. Deformation and strain distribution across the block model sliding for 
different friction coefficients. 
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2.3.3  Comparison between FE and Experimental 

To compare simulation with a real rubber sliding scenario, an experimental test was devised. 

Using the set-up outlined in Figure 9, physical contact area analysis was conducted using the 

frustrated total internal reflection method [19] and the same UMT as that which is previously 

mentioned. A 6 × 6 mm rubber sample of TY-Green, was pressed in contact with a 10 mm 

thick Perspex sheet lined perimetrically with ultrabright LEDs. A normal load of 12 N was 

applied to the rubber sample before sliding at a velocity of 1 mm/s. These same loads and 

velocities were used during simulation for comparison. A coefficient of friction value of 0.95 

was used in the simulation as this was like that observed experimentally.  

Figure 9. Schematic of contact area experiments. The images on the right show an 
example of how the areas of contact are separated from the background. 

Using Python 3, the bright areas of each frame (recorded at 30 Hz), which indicate the areas 

of contact between the rubber and the surface, were identified and their pixel count 

recorded. As such, contact area percentage was measured for the slide and compared to 

that observed during simulation. This plot is shown in Figure 10 along with the force-time 

graphs. The force-time trace was measured using the loadcell affixed to the UMT and 
recorded at 125 Hz.   

Similarities between simulation and experiment include the general contact area and friction 

force trace shapes and the transient drop in contact area that occurs at 0.9 s. The primary 

discrepancy can be observed from 1.5 s onward on the contact area trace. Experimentally, 

contact area was seen to steadily increase during sliding, whereas the simulation remained 

constant. This increase in contact area is thought to be a result of the internal softening of 

the rubber over time in combination with slight misalignments in the experimental set-up. 
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The misalignment of the rubber block meant that over time the internal relaxation of the 

rubber increased the contact area at a greater rate than if it sat perfectly flat due to the 

higher local pressures experienced.  

Figure 10. Force and Contact area against time graphs for the FE model and 
experiment.  

2.4 Development of the tread segment model 

The tread segment model, shown in Figure 11, was a refinement of the block model with 

more representative geometry and improved meshing. The important differences in terms of 

geometry are the reduction in area near the contact surface (accommodating the tread 

grooves) and 0.1 mm radii on the edges at the contact surface. The analysis of the block 

revealed that while most of the block experiences relatively gradual deformation gradients, 

there are hot spots in the contact area, particularly around the leading edge when the friction 
is high. As a result, the mesh density was increased significantly around the hot-spots. 

  Figure 11. The single tread segment model. The mesh is concentrated at the leading 
edge. 

A mesh convergence study was conducted considering von-Mises Stress and y- 

displacement. The von-Mises Stress converged at around 9000 nodes and y-displacement 
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converged at around 7500. Consequently, the mesh shown in Figure 11 with 9500 nodes 

was regarded as adequate. 

In a real slip resistant shoe, the top face of the tread element would be attached to a much 

stiffer midsole. Therefore, in the FE simulation a beam multi-point constraint was applied to 

the top face so that the nodes on this face experience equal displacement during sliding. 

Rotation of this face was set to zero but vertical displacement was allowed. Finally, a 30 

mm/s slide velocity was also applied to this face, with direction parallel to the contact 

surface.  

3. Numerical simulation results 

The tread segment models were used in simulation studies. For these analyses, the 

Poisson’s ratio was reduced to 0.49. While this results in an unrealistically low bulk modulus 

for the material, it enabled the use of standard rather than hybrid elements which avoided 

problems with analysis convergence when considering viscoelastic material behaviour. It 

was shown in a previous section that compressibility does not affect the results significantly 

in these analyses. 

3.1 Viscoelasticity and loading rate 

The effects of viscoelasticity on the behaviour were evaluated by investigating the effects of 

three different velocities for horizontal motion. These were compared with two quasi-static 

analyses carried out using purely elastic properties. Results are presented in Figure 12 and 

again based on the half-model with the total compressive load of 12 N and nominal contact 

area of 18 mm2. 

Figure 12. Friction force (left) and contact area (right) graphs during sliding of models 
at different speeds with and without viscoelastic material properties.  
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It can be seen that the dynamic 30 mm/s loading curves are matched almost identically by 

curves for static analysis with an elevated single value of modulus (E2=14.66 MPa) which 

is approximately the value of the relaxation modulus (Figure 3) over the time duration in 

question.  The results therefore suggest that there is very little difference between 

incorporating viscoelastic behaviour and simply using an elastic modulus that is suitably 

increased to match the value of the relaxation modulus over the duration of interest. Note 

that slower loading appears to delay the onset of slip as shearing takes place in the material. 

However, once slipping starts, the area reduction for the softer material (or lower loading 

rate) is the greatest. Note that results for the compression stage are not shown as they were 

all applied over the same time (0.1 s) so only the static loading case was different. 

3.2 Effect of Tread 

The FE model geometry was modified by adding a second tread element and applying 

double the normal load applied to a single tread element. These results were then mirrored 

to imitate the real tread pattern (Figure 13).  

 

Figure 13. Single block design (A) and the realistic tread design (B) shown in 
comparison to the real tread pattern (C). 

The effect of tread was then evaluated through comparison of a single block with the new, 

representative, treaded design. Figure 14 shows the realistic geometry overlaid on the single 
block as both are sliding, and Figure 15 compares contact pressures of the two designs. 

Figure 14. The lateral view of the sliding single block and realistic tread designs. 
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The ratio of sliding contact area and the nominal contact area was calculated for the single 

tread element and the realistic geometry. The single tread element maintained a higher 

contact area ratio during sliding in comparison to the realistic geometry, with ratios of 0.84 

and 0.71 respectively. The contact pressure concentration at the rubber block’s leading 

edge, the removal of contact at the rear of the block and the slight squeezing observed on 

the lateral sides are all characteristic features of sliding rubber and have also been observed 

experimentally.   

 

Figure 15. FE contact pressure distributions of a single tread block (top) and the 
realistic tread design (bottom) during sliding. Two orientations of both models are 
shown. Respective slide directions are shown on the single block model with 
crosshatch showing areas of zero contact. 

The von-Mises stress distributions across the entire FE models are shown in Figure 16. As 

can be seen, max stress occurs at the front edges for both designs. However, the realistic 

tread has a second area of stress concentration on the leading edge of the trailing elements. 

The max von-Mises stress values were recorded as 8.49 MPa for the realistic tread 
geometry and 7.44 MPa for the single tread element geometry. 
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Figure 16. FE von-Mises stress distributions of a single tread block (top) and realistic 
tread design (bottom) during sliding. Two orientations of both models are shown. 
Respective slide directions are shown on the single block model. 

4. Discussion  

Initial analyses using the simple block showed that the models provided reasonable 

representation of the compression behaviour and that material compressibility is not a major 

concern. However, the deformed shape during sliding is affected considerably by the friction 

coefficient. It was also shown that the FE model replicates aspects of experimental rubber 

sliding in terms of friction force generation and contact area reduction during the initiation of 

sliding. The most noticeable difference between simulation and experiment was observed in 

the contact area plots. Experimentally, during steady sliding, contact area steadily increased. 

Conversely, the simulation reported a constant contact area during sliding. This is thought to 

be the result of strain softening in combination with slight a misalignment of the rubber block 
with the Perspex surface.   

The FE model shows a loss of rubber-surface contact at its rear, as the tread element 

undergoes bending caused by the frictional force, also known as friction-induced torque [20]. 

This same lifting at the rear of sliding rubber tread elements has been recorded in other FEM 

studies [12,21] and experiments alike [20–23] as has the pressure concentration and 

deformation observed at the FE model’s leading edge. Therefore, though discrepancies are 

present in the recorded contact areas during steady sliding, it is considered that the FE 

model sufficiently replicates the initial slip conditions of rubber along with the characteristic 
leading edge, lateral squeezing and lifting of the rear. 

When comparing the deformation characteristics of the simplified model with the realistic 

tread pattern (Figure 14), the inclusion of the cross cut-out groove results in greater 
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deformation, both in terms of general compression and of the individual tread elements. This 

is due to the reduction of material, while maintaining the square section, reducing the 

stiffness of the individual elements. Furthermore, the contact area is also reduced by an 

additional 13% in comparison to the single tread block, due to this increased flexing of the 

tread elements. This reduced contact area consequently engenders an increased max 

contact pressure from 10.4 MPa to 14.7 MPa. This increase in max contact pressure occurs 

at the front edges and suggests that the realistic tread pattern will wear at a greater rate than 

on the single block. On dry surfaces, increased wear has been linked to increased friction 

[24,25]. However, worn down front edges are likely to decrease the shoe surface friction on 

wet surfaces through a reduction of groove depth. Additionally, chamfering of the front edge 
will weaken the fluid wiping capabilities of the tread.       

In Figure 15, the leading edge of the realistic tread model is shown to slant inwardly, creating 

an oblique frontal edge. Blanchett and Powers state that oblique tread is beneficial to 

increasing 𝜇௞ as it provides both resistance to motion and fluid dispersion [9]. So, whereas 

the simple block model will provide a greater resistance to motion, due to its stiffer structure 

and lesser frontal deformation, it has no method for fluid dispersion which is crucial for slip 

resistant footwear.  

The effects of frictional heating and the acknowledgment of any occurring non-linear 

viscoelasticity are both factors that would improve the FE model. As would the inclusion of 

lubricant and surface roughness, though these additions will drastically increase the 

complexity and computational run-time of the simulation. Other improvements of the FE 

model in representing a real heel-foot strike are limited by its replication of the forces and 

motion defined by BS EN ISO 13287:2012. This standard breaks the step into two distinct 

stages: loading and sliding. In a regular gait, shoe slides are consequent of a single, angular 

loading scenario. Loading the tread patterns in a way that is more characteristic of real heel-

strikes may identify more important aspects of tread design when considering slip 
resistance.  

5. Conclusions 

A real tread design from a slip resistant shoe has been modelled and simulated under the 

conditions of a slip resistance standard for footwear. The models have been used to show 

that material compressibility is not a significant factor in the deformation of the tread under 

compression and sliding. It can also be shown that the effects of viscoelasticity can be 

approximated by a purely elastic model with a single, appropriately selected value of 

modulus for a range of loading rates. The friction coefficient between the tread and the 

ground have a significant effect on the shape that the contact surface takes. Higher friction 
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and softer materials result in the development of a high stress zone near the leading edge 

and a loss of contact at the trailing edge. Discussion was then provided as to the fluid 

dispersion and wiping implications of different tread patterns. The adding of tread grooves to 

a rubber block has shown a decrease in the ratio of sliding to nominal contact area and a 

change in the stress distribution within the block. The inclusion of grooves also resulted in a 

difference in leading edge characteristics, from flat to oblique, made by the addition of a 

central groove.  

The FEM described in this paper can be applied to other, more complex tread patterns such 

as herringbone and concentric, although additional computational cost is to be expected 

along with a more difficult meshing procedure.  

Further validation of the results should also be attempted by extending the experimental 

work to different material types, applied loads and friction coefficients. 
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