

This is a repository copy of *Development of a chemical probe against NUDT15*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/164362/

Version: Supplemental Material

Article:

Zhang, S.M., Desroses, M., Hagenkort, A. et al. (34 more authors) (2020) Development of a chemical probe against NUDT15. Nature Chemical Biology, 16 (10). pp. 1120-1128. ISSN 1552-4450

https://doi.org/10.1038/s41589-020-0592-z

This is a post-peer-review, pre-copyedit version of an article published in Nature Chemical Biology. The final authenticated version is available online at: https://doi.org/10.1038/s41589-020-0592-z

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Extended Data Fig. 1 TH1760 potently inhibited the 6-thio-dGTPae activity of NUDT15

TH1760 had over 200-fold potency improvement as compared to TH884, shown using PPiLight inorganic pyrophosphate assay (Lonza, #LT07-610). Individual data of n=2 independent experiments performed in duplicates shown with estimated IC_{50} values.

Extended Data Fig. 2 TH1760 demonstrated impressive selectivity

a. TH1760 and TH7285 selectivity at 12 μ M against a curated library of 44 kinases, tested using DSF with staurosporine as the positive control compound. Mean change in protein T_m (Δ T_m) of one experiment performed in triplicates shown. **b**. TH1760 selectivity at 10 μ M against the SafetyScreen44TM panel from Eurofins Cerep Panlabs. Mean % inhibition of an experiment performed in duplicates shown.

Extended Data Fig. 3 Depletion of NUDT15 in HL-60 and NB4 cells potentiated thiopurine efficacy

a. b. NUDT15 depletion sensitized NB4 cells to 6-MP (a), and HL-60 cells to 6-TG (b). Cell viabilities assessed using resazurin viability assay after 96 (a) or 72 (b) h of treatment and calculated by normalizing to no DOX, DMSO-treated controls. Mean \pm SEM of n=3 (a) or mean of n=2 (b)experiments performed in triplicates shown. Left panels: resazurin viability curve; right panels: Western blot demonstrating DOX-induced NUDT15 knockdown. c. d. Depletion of NUDT15 in HL-60 (c) or NB4 (d) did not affect DNA replication, evidenced by EdU incorporation. Cells expressing DOXinducible NUDT15-specific (N15) or non-targeting (NT) shRNA were treated with DOX for 48 h, before EdU labelling. Left panels: Mean EdU+ve population% of n=2 experiments shown. Right panels: representative FACS histogram showing EdU signal intensity. e. E67A variant of NUDT15, compared to the wildtype (WT) construct, is catalytically inactive against 6-thio-dGTP (tested at 50µM), shown using enzyme-coupled MG assay. Mean activity of a representative experiment shown with individual repeat values. f. RT-qPCR analysis of NUDT15 mRNA levels in NB4 cells coexpressing DOX-inducible shRNA, and shRNA-resistant, HA-tagged NUDT15 constructs (wildtype, WT; unstable, US; or catalytically dead, CD), with GAPHD as the house keeping gene. NUDT15 mRNA levels were normalized to cells expressing WT NUDT15 construct. Mean of n=2 experiments performed in triplicate shown. g. Doxycycline treatment induced the co-expression of shRNA (shNT and shN15) and shN15-resistant, HA-tagged NUDT15 overexpression constructs (WT, CD, or US) in NB4 cells. h. NB4 cells co-expressing DOX-inducible shNT shRNA and shRNA-resistant, HA-tagged NUDT15 overexpression constructs (WT, CD, or US) were assayed for viabilities under 6-TG treatment. Overexpression of WT NUDT15 conferred marginal resistance to 6-TG Mean ± SEM of n=3 independent experiments performed in duplicates shown.

Extended Data Fig. 4 TH1760 treatment sensitized cancer cell lines to thiopurine

a. TH1760 sensitized a panel hematological cell lines to 6-TG. Cells were treated with increasing concentrations of 6-TG alone or in combination with 10 µM TH1760 for 96 h, before viabilities were determined using resazurin viability assay. Viability % was calculated by normalizing to DMSOtreated controls and mean \pm SEM of n = 3 experiments shown. **b.** 6-TG cytotoxic EC₅₀ values in the cell lines shown in a, determined by curve-fitting cell viabilities via non-linear regression model (Graphpad prism, [Inhibitor] vs. response – variable slope model). c. TH1760 sensitized NB4 cells to 6-TG in a NUDT15-dependent manner. NB4 cells stably expressing shNT or shN15 shRNA were treated with a dose-response concentration matrix of 6-TG and TH1760 for 96 h, before viabilities determined by resazurin assay. Viability % was calculated by normalizing to DMSO-treated controls and mean viabilities of n = 2 experiments shown in heat map. d. TH7285 was not cytotoxic in HL-60 cells up to 100 μ M. Viabilities of HL-60 cells treated with TH7285 for 96h were assessed by resazurin viability assay. Viability % was calculated by normalizing to DMSO-treated controls, and mean ± SEM of n=4 experiments performed in duplicates shown. e. TH7285 did not potentiate 6-TG in HL-60 cells. HL-60 cells were treated with 10 μM compounds alone or combined with 320 nM 6-TG (EC₁₀) for 96 h, before resazurin viability assay. Viability % was calculated by normalizing to DMSO-treated controls and mean \pm SEM of n = 4 independent experiments shown. f. TH1760 (10 μ M) substantially reduced the 6-TG EC₅₀ in 697 cells by approximately 10-fold, upon co-treatment for 96h. Viabilities determined by resazurin assay and normalized to DMSO-treated control. Viabilities of n=2 experiments performed in duplicates shown.

Extended Data Fig. 5 TH1760 potentiated thiopurine-induced cytotoxicity through elevating the intracellular pool of thiopurine metabolites

a. b. TH1760 significantly enhanced the RNA incorporation of metabolites of 6-MP (a) or 6-TG (b). HL-60 cells were treated with increasing concentrations of thiopurines alone or in combination with 10 μ M TH1760. Sixteen hours post-treatment, cellular RNA was isolated and incorporation of ¹⁴C-labbeled 6-MP metabolites were determined *via* radioactive counts (a) and incorporation of 6-TG metabolites *via* mass spectrometry analysis (b). Mean of n=1 and mean± SEM of n=3 experiment(s) are shown for a and b, respectively. In b, DMSO Vs. TH1760 group: at 0.5 μ M 6-TG, *p = 0.02, t ratio=3.72, df=4; at 1 μ M 6-TG, *p = 0.0047, t ratio=5.699, df=4 (two-tailed multiple t-test, Holm-Sidak correction, Graphpad Prism). **c.d.** TH1760 potentiated 6-TG-induced cellular responses in NB4 (c) and HL-60 cells (d). NB4 cells treated with 6-TG alone or in combination with 10 μ M TH1760 were assayed for DNA damage response and apoptotic marker *via* Western blot at 48 h post-treatment. HL-60 cells treated with 6-MP alone or in combination with 10 μ M TH1760 were subject to propidium iodide staining followed by cell cycle analysis *via* flow cytometry at 72 h post-treatment. Mean % ± SEM of n=3 independent experiments shown.