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Abstract: Hybrid range and bearing based approach towards active localization of beacons will
be widely celebrated in the near future, due to the protocols used for data transmission through
targeted beam of radiation in 5G networks. This technique, which is one of the building blocks of
5G infrastructure does not only allow extremely high data rates but will also allow the estimation
of direction of arrival/departure of the signal. Thus, in this paper a hybrid angle/range based
approach towards positioning is under focus. A linear least squares approach will be applied
to the unbiased version of hybrid direction of arrival-time of flight (DoA-ToF) measurement
model. Thus, the unbiasing constant is first calculated followed by the theoretical mean squares
expression calculation, to be utilized for selecting only those reference beacons that guarantee
an improvement in the accuracy of the least squares approach. A critical distance expression
is also derived that determines the relationship between the noise variance of angle and range
estimates in terms of the distance between nodes. Furthermore, a weighted least squares solution
is presented which exploits the noise covariance matrix of the hybrid measurement model.
Finally, the weighted solution is bounded by the linear Cramér-Rao bound (LCRB) for the
hybrid signal model.
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1. INTRODUCTION

The global positioning system (GPS) is considered as a
panacea for positioning and tracking of objects. However,
it suffers from severe limitations in terms of accuracy,
specifically if used indoors. Though promising innovations
and services are available that enables, even cellphone
based GPS to attain centimeter level accuracy, these
services are not available on demand and are expensive to
avail, for example real time kinematics. Thus, in wireless
sensor networks (WSN), active beacon based approach
is the preferred choice for positioning. Localization in
WSN is achieved either by utilizing the range between
sensor nodes [Guvenc and Chong (2009)] or the angle
of arrival [Schmidt (1986)] of the impinging signal. The
underlying technology used for ranging depends upon the
degree of accuracy required for the application. For example,
in robot navigation systems, the location of a robot is
primarily estimated through 2D/3D ranging lasers like
Hokuyo/Velodyne [Kneip et al. (2009), Himmelsbach et al.
(2008)]. As a result, extremely accurate localization can
be achieved. On the other hand, location of sensors in
WSN are obtained using radio frequencies either via the
time of flight (ToF) [Rabbachin et al. (2006)] or received
strength (RS) [Ouyang et al. (2010)]. Due to their accuracy,
ranging techniques based on ToF are preferred over RS
based distance estimation. Interested readers are referred

to Pozyx positioning [PozyxLabs (2015)], an ultrawideband
and Marvelmind indoor GPS system [MarvelmindRobotics
(2017)], an ultrasonic based position systems that utilize
radio frequency.

Irrespective of the technology used, the underlying al-
gorithm used for localization plays an important role
in the robustness, computational load and accuracy of
localization. This work builds upon the contributions in
[Khan et al. (2014b)], where an unbiased version of DoA-
ToF measurement model, a linear least squares (LLS) and
its weighted least squares (WLS) estimators were proposed.
The full derivation of the unbiasing constant used in the
model will be presented here. It will also be shown that
in some scenarios using all available information from all
the beacons, unconventionally, deteriorate the accuracy of
localization. Thus an optimal reference node (RN-Node
with known location) selection algorithm will be designed
and evaluated via Monte Carlo simulation. Furthermore,
the relationship between noise variance of angle and range
estimates is presented that is dependent on the distance
between RN and target node (TN-Node with unknown
location). This result will be verified via a numerical
example and simulation. Finally, the weighted solution
obtained in [Khan et al. (2014b)] will be bounded by Linear
Cramér-Rao bound (LCRB).
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location). This result will be verified via a numerical
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Cramér-Rao bound (LCRB).

Literature Review: Hybrid localization models are widely
studied by the WSN community. Some of the widely used
algorithm utilizing the hybrid measurement model are
discussed here. In [Khan (2017)], a hybrid measurement
model is approached in a distributed fashion by utilizing
an unsupervised learning technique known as locally linear
embedding. The resulting algorithm achieve the same
accuracy as LLS but gives the freedom of distributed
implementation to designers. A two step algorithm is
presented in [Wang et al. (2013)], in which the authors
convert the differential angle measurements into distance
measurement in the second step with the help of range
measurements obtained in the first step, to obtain a
high accuracy estimate of the TN. A cooperative version
of hybrid DoA-ToF signal models is proposed in [Khan
et al. (2014a)], which outperforms its non-cooperative
counterparts at the cost of computational load. [Horiba
et al. (2013)] presents an iterative technique that utilizes
both angle and range simultaneously to detect the non line
of sight (NLOS) component of the signal. In [Lategahn et al.
(2013)], the extended Kalman filter (EKF) is used with
time difference of arrival (TDoA) and DoA for tracking of
human subjects. A Hybrid DoA and RS based measurement
model is approached in [Salman et al. (2014)] where a LSS
and a weighted solution is obtained.

The rest of the paper is organized as follows: Unbiased
measurement model, LLS and WLS estimators are reviewed
in section 2. In section 3, the unbiasing constant is derived
followed by the derivation of critical distance expression.
In section 4 the optimal RN selection is produced. The
Cramér-Rao lower bound is presented in section 5 which is
followed by section 6 which concludes the paper.

2. SYSTEM MODEL

For future reference we define the following notations:
Tr(.) and (.)T represent the trace and transpose operators,
respectively. Ex(.) represents the expectation operation
with respect to random variable x, x! denotes the factorial
of x. A vector of N ones and N zeros is notated by 1N and
0N , respectively.

Assumptions: A two dimensional network is considered.
The network is composed of N RNs with known locations
and M TNs whose location is to be estimated. A fully
connected network is under focus. Readers interested in
partially connected networks with hybrid measurements are
referred to [Khan (2017)]. The ith RN has predetermined

coordinates i.e., Xi and Yi. The vectors X=[X1, ..., XN ]
T

and Y=[Y1, ..., YN ]
T
denote the vectors of x and y coordi-

nates of all RNs. While the TN’s coordinates are given by
the vector u=[x, y]T . Finally, it is assumed that all RNs are
capable of hybrid range and direction of arrival estimation.

When both ToF and DoA information is available at ith

RN, then the location of TN is calculated using

x̂ = Xi + d̂i cos θ̂iδi ŷ = Yi + d̂i sin θ̂iδi (1)

where d̂i, θ̂i are the noisy distance and angle estimates
and δi is the unbiasing constant associate with ith RN. In
matrix form and for N RNs, (1) can be written as Au=b̂,
where

A = [1N ,0N ;0N ,1N ] ∈ R2N×2 u = [x, y]T ∈ R2×1

(2)

b̂ =

[
X+ d̂ cos θ̂δ

Y + d̂ sin θ̂δ

]
∈ R2N×1 (3)

and d̂=
[
d̂1, d̂2, ..., d̂N

]T
, θ̂ =

[
θ̂1, θ̂2, ..., θ̂N

]T
and δ =

[δ1, δ2, ..., δN ]
T
.

Linear Least Squares and Weighted Least Squares Solution

The measurement model presented in (1-3) can be solved
for u using LLS approach as [Yu (2007)]

û = A†b̂ (4)

where A† is the Moore-Penrose pseudo-inverse of A.
Alternatively, if N is known, u can be estimated in a
linear least squares sense as

û =
AT b̂

N
. (5)

A more accurate weighted solution can be obtained, if
the covariance matrix, C (u), for the measurements in (1-
3) is calculated. The covariance matrix is shown in (6),
where C x, C y and C xy are N ×N diagonal matrices with
diagonal entries given by (26-28), the derivation of which
will not be reproduced here; interested reader are referred
to [Khan et al. (2014b)] and the references within.

C (u) =

[
C x C xy

C xy C y

]
∈ R2N×2N . (6)

The weighted least squares estimator can then be obtained
by minimizing

uW =
(
b̂−Au

)T

C−1 (u)
(
b̂−Au

)
(7)

where the global minimum is obtained iteratively or through
the closed form expression in (8)

uW =
(
ATC−1 (u)A

)−1
ATC−1 (u) b̂. (8)

The covariance matrix depends upon the true values
of range and angle estimates, which are not available.
Thus, there estimated values are used to get an estimated

covariance matrix, Ĉ (u).

3. THEORETICAL ANALYSIS OF DOA-TOF
MEASUREMENT MODEL

This section presents the derivation of unbiasing constant δ
and introduces the notion of critical distances in DoA-ToF
measurement models.

3.1 Calculation of unbiasing constant

It is observed that without considering the unbiasing
constant, the LLS solution obtained in section 2 can only
produce biased estimates of u. It is imperative to remove
this bias from the model before calculating the LCRB of the
estimator. For any LLS estimator u, the bias is calculated
as [Kay (1993)]

∆ = E(.) [û]− u (9)

where ∆ is the bias in estimation, (.) is the source of noise
in the observed measurements. For DoA-ToF, this will be
the noise in range and angle estimates. Consider the noisy

distance and angle estimate in (1). Let d̂i = di + ni and

θ̂i = θi + mi, where ni and mi are zero mean Gaussian
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Literature Review: Hybrid localization models are widely
studied by the WSN community. Some of the widely used
algorithm utilizing the hybrid measurement model are
discussed here. In [Khan (2017)], a hybrid measurement
model is approached in a distributed fashion by utilizing
an unsupervised learning technique known as locally linear
embedding. The resulting algorithm achieve the same
accuracy as LLS but gives the freedom of distributed
implementation to designers. A two step algorithm is
presented in [Wang et al. (2013)], in which the authors
convert the differential angle measurements into distance
measurement in the second step with the help of range
measurements obtained in the first step, to obtain a
high accuracy estimate of the TN. A cooperative version
of hybrid DoA-ToF signal models is proposed in [Khan
et al. (2014a)], which outperforms its non-cooperative
counterparts at the cost of computational load. [Horiba
et al. (2013)] presents an iterative technique that utilizes
both angle and range simultaneously to detect the non line
of sight (NLOS) component of the signal. In [Lategahn et al.
(2013)], the extended Kalman filter (EKF) is used with
time difference of arrival (TDoA) and DoA for tracking of
human subjects. A Hybrid DoA and RS based measurement
model is approached in [Salman et al. (2014)] where a LSS
and a weighted solution is obtained.

The rest of the paper is organized as follows: Unbiased
measurement model, LLS and WLS estimators are reviewed
in section 2. In section 3, the unbiasing constant is derived
followed by the derivation of critical distance expression.
In section 4 the optimal RN selection is produced. The
Cramér-Rao lower bound is presented in section 5 which is
followed by section 6 which concludes the paper.

2. SYSTEM MODEL

For future reference we define the following notations:
Tr(.) and (.)T represent the trace and transpose operators,
respectively. Ex(.) represents the expectation operation
with respect to random variable x, x! denotes the factorial
of x. A vector of N ones and N zeros is notated by 1N and
0N , respectively.

Assumptions: A two dimensional network is considered.
The network is composed of N RNs with known locations
and M TNs whose location is to be estimated. A fully
connected network is under focus. Readers interested in
partially connected networks with hybrid measurements are
referred to [Khan (2017)]. The ith RN has predetermined

coordinates i.e., Xi and Yi. The vectors X=[X1, ..., XN ]
T

and Y=[Y1, ..., YN ]
T
denote the vectors of x and y coordi-

nates of all RNs. While the TN’s coordinates are given by
the vector u=[x, y]T . Finally, it is assumed that all RNs are
capable of hybrid range and direction of arrival estimation.

When both ToF and DoA information is available at ith

RN, then the location of TN is calculated using

x̂ = Xi + d̂i cos θ̂iδi ŷ = Yi + d̂i sin θ̂iδi (1)

where d̂i, θ̂i are the noisy distance and angle estimates
and δi is the unbiasing constant associate with ith RN. In
matrix form and for N RNs, (1) can be written as Au=b̂,
where

A = [1N ,0N ;0N ,1N ] ∈ R2N×2 u = [x, y]T ∈ R2×1

(2)

b̂ =

[
X+ d̂ cos θ̂δ

Y + d̂ sin θ̂δ

]
∈ R2N×1 (3)

and d̂=
[
d̂1, d̂2, ..., d̂N

]T
, θ̂ =

[
θ̂1, θ̂2, ..., θ̂N

]T
and δ =

[δ1, δ2, ..., δN ]
T
.

Linear Least Squares and Weighted Least Squares Solution

The measurement model presented in (1-3) can be solved
for u using LLS approach as [Yu (2007)]

û = A†b̂ (4)

where A† is the Moore-Penrose pseudo-inverse of A.
Alternatively, if N is known, u can be estimated in a
linear least squares sense as

û =
AT b̂

N
. (5)

A more accurate weighted solution can be obtained, if
the covariance matrix, C (u), for the measurements in (1-
3) is calculated. The covariance matrix is shown in (6),
where C x, C y and C xy are N ×N diagonal matrices with
diagonal entries given by (26-28), the derivation of which
will not be reproduced here; interested reader are referred
to [Khan et al. (2014b)] and the references within.

C (u) =

[
C x C xy

C xy C y

]
∈ R2N×2N . (6)

The weighted least squares estimator can then be obtained
by minimizing

uW =
(
b̂−Au

)T

C−1 (u)
(
b̂−Au

)
(7)

where the global minimum is obtained iteratively or through
the closed form expression in (8)

uW =
(
ATC−1 (u)A

)−1
ATC−1 (u) b̂. (8)

The covariance matrix depends upon the true values
of range and angle estimates, which are not available.
Thus, there estimated values are used to get an estimated

covariance matrix, Ĉ (u).

3. THEORETICAL ANALYSIS OF DOA-TOF
MEASUREMENT MODEL

This section presents the derivation of unbiasing constant δ
and introduces the notion of critical distances in DoA-ToF
measurement models.

3.1 Calculation of unbiasing constant

It is observed that without considering the unbiasing
constant, the LLS solution obtained in section 2 can only
produce biased estimates of u. It is imperative to remove
this bias from the model before calculating the LCRB of the
estimator. For any LLS estimator u, the bias is calculated
as [Kay (1993)]

∆ = E(.) [û]− u (9)

where ∆ is the bias in estimation, (.) is the source of noise
in the observed measurements. For DoA-ToF, this will be
the noise in range and angle estimates. Consider the noisy

distance and angle estimate in (1). Let d̂i = di + ni and

θ̂i = θi + mi, where ni and mi are zero mean Gaussian
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random variables of variance σ2
i and α2

i i.e., ni ∼ N
(
0, σ2

i

)
and mi ∼ N

(
0, α2

i

)
, respectively. Putting (4) in (9)

∆ = E(n,m)

[
A†b̂

]
−A†b

= A†
(
E(n,m)

[
b̂
]
− b

) (10)

where n and m are the distance noise vector and the angle
noise vector and b is the noise free version of b̂. Then the
ith term of ∆ i.e., ∆i is calculated as

∆i = E(ni,mi) [(di + ni) cos (θi +mi)]− [di cos θi]

= diEmi
[cos (θi +mi)] + Eni,mi

[ni cos (θi +mi)]

− di cos θi.
(11)

As Eni
[ni] = 0, (11) reduces to

∆i = di [cos θiEmi
(cosmi)− sin θiEmi

(sinmi)]

− di cos θi.
(12)

Expanding cosmi and sinmi through Taylor series, the
following equation is obtained

∆i = di cos θiEmi

(
1− m2

i

2!
+

m4
i

4!
− m6

i

6!
...

)
− sin θi

Emi

(
mi −

m3
i

3!
+

m5
i

5!
− m7

i

7!
...

)
− di cos θi.

(13)

All odd moments of zero mean Gaussian random variable
are zero. Thus, after taking expectation w.r.t mi (13)
reduces to

∆i = di cos θi

(
1− α2

i

2
+

3α4
i

24
− 15α6

i

720
+ ...

)
− di cos θi

= di cos θi

∞∑
n=0

(
−α2

i

2

)n

n!
− di cos θi.

(14)

The summation in (14) is the Taylor series expansion of

δ′i = e−0.5α2
i . Thus (14) can be written as

∆i = di cos θiδ
′
i − di cos θi. (15)

Clearly, (15) can not be further reduced due to δ′i. In order

to force ∆i to zero, one must introduce δi = e0.5α
2
i in the

measurements, that cancels the effect of δ′i. Thus, (15) is
reduced to

∆i = di cos θiδ
′
iδi − di cos θi

∆i = 0.
(16)

Equ. (16) proves that in order to produce unbiased
estimates, the utilization of δi is imperative.

3.2 Calculation of critical distance

While using the LLS approach, the error in the estimated
coordinates of TN depends upon the noise variance of angle
estimates, α2

i , the noise variance of range estimates, σ2
i and

the distance between RN and TN, d. This dependence
on the internode distance is due to the fact that the
noise variance of angle estimates are distance dependent.
Meaning that α2

i will produce a large errors in the TN’s
position estimate, if the distance between RN and TN is
larger, and smaller error at shorter distances. Thus we
introduce the notion of critical distance.

Definition: “The critical distance is the distance between
RN and TN at which the effect of the noise variance of
angle estimate and range estimate, on the accuracy of LLS
estimate is equal”. In this section, the critical distance,
dc, is calculated as a function of σ2

i and α2
i , using the

theoretical mean squares error (MSE) of LLS estimator.
The theoretical MSE for LLS estimator is given by [Kay
(1993); Khan et al. (2014b)]

MSE (u) = Tr
(
A†C (u)A†T

)
. (17)

The covariance matrix in (17) depends on both noise
variances and the distance between RN and TN, as shown
in (26-28). Equ.(18) represents the covariance matrix that
is only dependant upon the distance noise variance, which
can be obtained by forcing α2

i to zero in (26-28)

Cn (u) =

[
σ2
n cos

2 θ σ2
n cos θ sin θ

σ2
n cos θ sin θ σ2

n sin
2 θ

]
. (18)

Similarly, ni free covariance is obtained by forcing σ2
i equal

to zero in (26-28) and then plugging it in (6).

Cm (u) =


d2
c

2

(
δ2 + cos 2θ

δ2

)
− d2c cos

2 θ d2c cos θ sin θ
(
δ2 − 1

)

d2c cos θ sin θ
(
δ2 − 1

) d2
c

2

(
δ2 − cos 2θ

δ2

)
− d2c sin

2θ


 .

(19)

Putting (18) in (17) for MSEn (u) and putting (19) in (17)
for MSEm (u), which at the critical distance will be equal.
Thus, 1

MSEn (u) = MSEm (u)

Tr
(
A†Cn (u)A

†T
)
= Tr

(
A†Cm (u)A†T

)
.

(20)

Equ. (20) can be reduced to

dc =
√
σ2
n/ (δ

2 − 1). (21)

Numerical Example: We take σ2
i = 7 m2 and α2

i = 0.07
rad, then δ2 = 1.0723. Using these values in (21) we get

dc =
√
7/ (1.0723− 1) = 9.8m. (22)

This result is verified via the Monte Carlo simulation
obtained in Fig. 3. The critical distance can be used in
resource constrained networks, where a decision on whether
to use ToF or DoA can be based on the critical distance
analysis. In general, for networks where the average distance
between the nodes is shorter then the critical distance, The
DoA system should be advised by the developer. While for
average distance larger than the critical distance, the ToF
should be preferred.

4. ON THE PERFORMANCE OF LLS AND WLS

This section introduces a RN selection based approach to
improve the accuracy of LLS estimation. A lower bound is
also derived for the WLS to show the best possible accuracy
achievable with the estimator.

4.1 Best RNs Selection

Conventionally in the presence of more RNs, the accuracy
of localization improves. However this is not always the case.
Some RNs that are situated at larger distances from the
1 We consider N = 1, thus A will be an identity matrix of size 2.

TN and/or receives signal after multiple reflection actually
deteriorate the overall performance of the system. Hence
an optimal subset of RNs can achieve better accuracy than
using all RNs. Thus in this section an optimal RN selection
algorithm is designed that guarantees the best performance
in a linear least square sense. This optimal combination
of RNs is based on the theoretical MSE of LLS estimator.
Let RN be the set of N RNs i.e.,

RN = {RN1,RN2, · · · ,RNN }
and let C represent any combination of RNs, then C ⊆ RN,
where the total number of subsets is given by 2N − 1. The
optimum combination Copt is the one that minimizes the
MSE of localization, i.e.,

Copt = argmin
C

MSE(u). (23)

The MSE expression again depends on the actual distances
and angles which are unknown. Hence their estimates are
used in (17). Thus a small number of RNs (in some cases
even one RN) can achieve superior performance than using
all RNs.

4.2 Cramér-Rao Lower Bound

The Cramér-Rao lower bound characterizes the best possi-
ble accuracy that can be achieved by an unbiased estimator.
The LCRB can be obtained from the Fisher information
of the system. Let I be the 2×2 Fisher information matrix
(FIM) for hybrid DoA-ToF measurement model, then the
element at ith row and jth column of FIM is given by (24),
the full derivation of which can be obtained in [Kay (1993)]

Ii,j= b′
kC

−1

(u)b′
l+0.5Tr

(
C

−1

(u)C′
k(u)C

−1

(u)C′
l(u)

)

where k, l = x, y for i, j = 1, 2
(24)

where b′
k = ∂b/∂k and k=x, y for i=1,2. Similarly, b′

l =
∂b/∂l and l=x, y for j=1,2. Taking the derivative of b w.r.t
x, y results in the following equations

b′
x = [1N ;0N ] ∈ R2N×1 b′

y = [0N ;1N ] ∈ R2N×1.

Similarly, C′
x (u) and C′

y (u) are the derivatives of the
covariance matrix C (u), w.r.t x and y, respectively, the
diagonal elements of which are given by (30-35).

With the FIM at hand, the MSE for a two dimensional
system can be bounded as

MSE (u) ≥ Tr (I)

det (I)
. (25)

5. SIMULATION RESULTS

A network of 4 RNs and 30 TNs spread across 300m×200m
area is considered. Some TNs are intentionally placed
outside the convex hull formed by the 4 RNs to represent
a more generalized network. Subsets of RNs and TNs are
considered for each simulation and all simulation are run
independently � number of times. The network deployment
is shown in Fig. 1.

Fig. 2 demonstrates the performance comparison between
LLS and WLS solution in terms of average root mean
square error (Avg. RMSE). It is evident from the figure
that WLS performance is considerably better than the LLS.
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Fig. 2. Theoretical MSE and Performance comparison
between LLS and WLS. RNs = [A,B,D] and
[A,B,C,D], TNs = [1− 30] , � = 3000.
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Fig. 3. Critical distance via Monte Carlo simulation, � =
1000.

The figure also demonstrates the accurate prediction of
LLS accuracy via the theoretical MSE expression.

The numerical example presented in section 3.2 to calculate
the critical distance between a RN and a TN analytically,
is verified via Monte Carlo simulation for 1000 Monte Carlo
runs in Fig. 3. It is observed that for a fixed noise variance of
range and bearing estimate, the critical distance calculated
via (21) coincides with the critical distance obtained via
simulation.

In Fig. 4 the performance is evaluated for different combina-
tions of RNs. It is observed that the combination [A, C, D]



	 M. Khan  et al. / IFAC PapersOnLine 52-24 (2019) 334–339	 337

TN and/or receives signal after multiple reflection actually
deteriorate the overall performance of the system. Hence
an optimal subset of RNs can achieve better accuracy than
using all RNs. Thus in this section an optimal RN selection
algorithm is designed that guarantees the best performance
in a linear least square sense. This optimal combination
of RNs is based on the theoretical MSE of LLS estimator.
Let RN be the set of N RNs i.e.,

RN = {RN1,RN2, · · · ,RNN }
and let C represent any combination of RNs, then C ⊆ RN,
where the total number of subsets is given by 2N − 1. The
optimum combination Copt is the one that minimizes the
MSE of localization, i.e.,

Copt = argmin
C

MSE(u). (23)

The MSE expression again depends on the actual distances
and angles which are unknown. Hence their estimates are
used in (17). Thus a small number of RNs (in some cases
even one RN) can achieve superior performance than using
all RNs.

4.2 Cramér-Rao Lower Bound

The Cramér-Rao lower bound characterizes the best possi-
ble accuracy that can be achieved by an unbiased estimator.
The LCRB can be obtained from the Fisher information
of the system. Let I be the 2×2 Fisher information matrix
(FIM) for hybrid DoA-ToF measurement model, then the
element at ith row and jth column of FIM is given by (24),
the full derivation of which can be obtained in [Kay (1993)]

Ii,j= b′
kC

−1

(u)b′
l+0.5Tr

(
C

−1

(u)C′
k(u)C

−1

(u)C′
l(u)

)

where k, l = x, y for i, j = 1, 2
(24)

where b′
k = ∂b/∂k and k=x, y for i=1,2. Similarly, b′

l =
∂b/∂l and l=x, y for j=1,2. Taking the derivative of b w.r.t
x, y results in the following equations

b′
x = [1N ;0N ] ∈ R2N×1 b′

y = [0N ;1N ] ∈ R2N×1.

Similarly, C′
x (u) and C′

y (u) are the derivatives of the
covariance matrix C (u), w.r.t x and y, respectively, the
diagonal elements of which are given by (30-35).

With the FIM at hand, the MSE for a two dimensional
system can be bounded as

MSE (u) ≥ Tr (I)

det (I)
. (25)

5. SIMULATION RESULTS

A network of 4 RNs and 30 TNs spread across 300m×200m
area is considered. Some TNs are intentionally placed
outside the convex hull formed by the 4 RNs to represent
a more generalized network. Subsets of RNs and TNs are
considered for each simulation and all simulation are run
independently � number of times. The network deployment
is shown in Fig. 1.

Fig. 2 demonstrates the performance comparison between
LLS and WLS solution in terms of average root mean
square error (Avg. RMSE). It is evident from the figure
that WLS performance is considerably better than the LLS.
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Fig. 2. Theoretical MSE and Performance comparison
between LLS and WLS. RNs = [A,B,D] and
[A,B,C,D], TNs = [1− 30] , � = 3000.
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The figure also demonstrates the accurate prediction of
LLS accuracy via the theoretical MSE expression.

The numerical example presented in section 3.2 to calculate
the critical distance between a RN and a TN analytically,
is verified via Monte Carlo simulation for 1000 Monte Carlo
runs in Fig. 3. It is observed that for a fixed noise variance of
range and bearing estimate, the critical distance calculated
via (21) coincides with the critical distance obtained via
simulation.

In Fig. 4 the performance is evaluated for different combina-
tions of RNs. It is observed that the combination [A, C, D]
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Covariance matrix for hybrid DoA-ToF measurements, [Khan et al. (2014b)].

C xi =

(
d2i
2

+
σ2
i

2

)
eα

2
i +

(
d2i
2

cos 2θi +
σ2
i

2
cos 2θi

)
e−α2

i − (di cos θi)
2

(26)

C yi =

(
d2i
2

+
σ2
i

2

)
eα

2
i −

(
d2i
2

cos 2θi +
σ2
i

2
cos 2θi

)
e−α2

i − (di sin θi)
2

(27)

C xyi
=

(
d2i + σ2

i

)
cos θi sin θie

−α2
i − d2i cos θi sin θi (28)

C xij = C yij = C xyij = 0 (29)
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Fig. 4. Best RN selection. RNs=[(A,B,C), (B,C,D),
(A,C,D), (A,B,C,D)], TNs=[5, 11, 16, 17, 21, 23, 24,
26], � = 3000.
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Fig. 5. LCRB comparison with WLS and LLS. RNs =
[A−D] , TNs = [1− 30], � = 3000.

gives a better accuracy than using all RNs simultaneously
as shown by the combination [A, B, C, D]. For clarity
purpose the performance of the rest of the combinations
are not shown in the figure.

The LCRB is compared with WLS solution in Fig. 5.
It is demonstrated that the LCRB presented in section
5 tightly bounds the performance of the WLS solution.
For comparison the performance of LLS estimator is also
presented.

6. CONCLUSION

An in-depth analysis of hybrid DoA-ToF measurement
model for localization in WSN is presented in this work.
It is observed that the classic hybrid measurement based
LLS estimator for localization produces biased estimates of
the unknowns. Thus an unbiased version of LLS and WLS

estimators is produced and a unbiasing constant is derived.
Also, based on the noise variance of angle and distance
estimates, the notion of critical distance is introduced
and an expression to calculate critical distance is derived.
Furthermore, an optimal RN selection scheme is designed
for LLS estimator to improve the performance of classic
LLS approach for positioning. Finally, the WLS estimator
is bounded by deriving the LCRB for the hybrid angle and
range based measurement model.
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∂x
C xi = κxie

α2
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1 + cot 2θiκxiκ

−1
yi

+ σ2
i d

−2
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e−α2

i − 2κxi (30)

∂

∂y
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−1
xi
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Derivative of covariance matrix for hybrid DoA-ToF measurements.
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