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A B S T R A C T

Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of

the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically over-

lapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric

ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteos-

tasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the

FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we

demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection,

downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA

exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing

CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary

neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic

organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of

UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of

action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders.

1. Introduction

Frontotemporal Dementia (FTD) is a common cause of early-onset

dementia, second only to Alzheimer's Disease, with a typical age of

onset under 65 years of age. FTD is commonly used as an umbrella term

referring to a genetically, pathologically and clinically heterogeneous

group of neurodegenerative disorders associated with Frontotemporal

lobar degeneration (FTLD), a progressive atrophy of the frontal and

temporal cortices. These include behavioural variant FTD (bvFTD),

primary progressive aphasia, semantic dementia and FTD with

Amyotrophic Lateral Sclerosis (ALS). Of these, bvFTD is the most pre-

valent, accounting for ~60% of all cases. FTD represents a significant

societal and medical challenge with no current effective treatment or

cure. Nearly half of all cases of FTD have a familial precedent, in-

dicating a genetic cause or predisposition. FTD loci collectively re-

presenting ~40% of all FTD cases reveal a clinical, genetic and pa-

thological overlap with ALS (Ling et al., 2013). Mutations in TAR DNA-

binding protein (TARDBP) (Borroni et al., 2009; Kovacs et al., 2009;

Sreedharan et al., 2008; Van Deerlin et al., 2008), Fused in Sarcoma

(FUS) (Kwiatkowski Jr. et al., 2009; Vance et al., 2009), C9ORF72

(DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012; Renton et al.,

2011), Ubiquilin-2(Deng et al., 2011), p62/sequestosome-1(Fecto et al.,

2011;Rubino et al., 2012;Teyssou et al., 2013), Valosin containing Pep-

tide (VCP) (Johnson et al., 2010; Watts et al., 2004) Charged Multi-

vesicular Body protein 2B (CHMP2B) (Parkinson et al., 2006; Skibinski

et al., 2005) and more recently TANK Binding Kinase 1 (TBK1)

(Freischmidt et al., 2015;Pottier et al., 2015) can be causative for ALS

or FTD, or give rise to a disease that has clinical characteristics of both

conditions in the same individual (Ling et al., 2013). This genetic and

pathological continuum suggests common or partially shared disease

mechanisms for this class of FTD-ALS.

In a number of previous studies, we have established Drosophila and

primary mammalian neuron models of FTD associated with the bvFTD-

disease causing CHMP2BIntron5 mutation (Ahmad et al., 2009; West

et al., 2015; West et al., 2018). CHMP2B encodes a core subunit of the

endosomal sorting complex required for transport-III (ESCRT-III), a
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fundamental component of the ESCRT machinery involved in the bio-

genesis of multivesicular bodies (MVB) in the endosomal-lysosomal

trafficking pathway. The CHMP2BIntron5 mutation results in a C-terminal

truncation of the protein removing the microtubule-interacting and

transport (MIT)- interacting motif (MIM) domain and the ability to

associate with Vps4, the ATPase known to dissociate the ESCRT-III

complex (Stuchell-Brereton et al., 2007). The CHMP2BIntron5 mutation

results in significant perturbations to endosomal-lysosomal (Urwin

et al., 2010; van der Zee et al., 2008) and autophagosomal trafficking in

post-mortem tissue and mice expressing this truncated protein

(Filimonenko et al., 2007; Ghazi-Noori et al., 2012; Lee et al., 2007).

Other mutations in CHMP2B have been identified in FTD and ALS pa-

tients (Cannon et al., 2006; Cox et al., 2010; Ferrari et al., 2010;

Ghanim et al., 2010; Momeni et al., 2006; Parkinson et al., 2006; Rizzu

et al., 2006; van Blitterswijk et al., 2012; van der Zee et al., 2008) and

similar endosomal disruptions have been observed in associated patient

tissue and rat primary neurons expressing these CHMP2B mutations

(Cox et al., 2010; Han et al., 2012; Lee et al., 2007). Expression of

CHMP2BIntron5 results in an unregulated synaptic growth phenotype at

the Drosophila third instar larval neuromuscular junction (NMJ) asso-

ciated with endosomal perturbation and activated JNK signalling (West

et al., 2015; West et al., 2018). Endosomal disruption and activated JNK

signalling also results in a dendritic retraction phenotype in primary

mammalian neurons transfected with CHMP2BIntron5 (West et al.,

2018).

Clinical tests have identified the FDA approved compound TUDCA

(tauro-ursodeoxycholic acid), a precursor of the bile acid UDCA (ur-

sodeoxycholic acid) as a potential treatment for ALS (Elia et al., 2016;

Parry et al., 2016; Parry et al., 2010). UDCA is an established treatment

for primary biliary cirrhosis and is well tolerated in humans with rea-

sonable penetration of the blood brain barrier (Parry et al.,

2010;Jazrawi et al., 1994). UDCA has been shown to exhibit both anti-

apoptotic and anti-autophagic activity in various cell types (Amaral

et al., 2009), however a defined molecular mode of action has yet to be

established. Having previously identified both autophagic and apop-

totic pathways to be perturbed in CHMP2BIntron5 models of FTD

(Ahmad et al., 2009; Lee et al., 2007; Lu et al., 2013; West et al., 2015;

West et al., 2018) we asked whether UDCA could alleviate pathological

CHMP2BIntron5 driven phenotypes in both Drosophila and mammalian

models of FTD. We demonstrate that the administration of UDCA is

sufficient to alleviate neuronal aberrations in both Drosophila and

mammalian primary neuron models of bvFTD associated with the

CHMP2BIntron5 mutation. UDCA rescued elevated apoptotic cascades

downstream of autophagic and endosomal perturbations. In addition,

UDCA administration allowed us to identify a role for Glutamate-Cy-

steine Ligase Catalytic Subunit (GCLC) in alleviating dysregulated

neuronal phenotypes in CHMP2BIntron5 models. This work identifies

GCLC as a novel regulator of CHMP2BIntron5 driven pathology and

provides insight into the neuroprotective activity of UDCA, acting

downstream of endosomal-autophagic perturbations.

2. Results

2.1. UDCA and UCA exhibit a dose dependent rescue of neuronal

perturbations in CHMP2BIntron5 expressing Drosophila

Having previously demonstrated pan-neuronal expression of

CHMP2BIntron5 resulted in a synaptic overgrowth phenotype at the

Drosophila third instar larval NMJ, we employed this model to perform

a small scale, high throughput, in vivo screen for compounds that alter

CHMP2BIntron5 toxicity (Ahmad et al., 2009; Lee et al., 2007; Lu et al.,

2013; West et al., 2015; West et al., 2018). As observed previously, pan-

neuronal expression of CHMP2BIntron5 resulted in a significant increase

in both synaptic bouton number and total synaptic arbour length in

vehicle treated animals (Fig. 1A–E). Larvae expressing CHMP2BIntron5

also showed a significant increase in the number of branches emanating

from the primary NMJ branch (Fig. 1A, F–G). Both UDCA and an analog

compound Ursocholanic Acid (UCA) (Mortiboys et al., 2013), supple-

mented into the Drosophila food, exhibited a dose dependent rescue of

all synaptic overgrowth phenotypes, compared to vehicle treated

groups (Fig. 1A–G). A complete rescue of all aspects of synaptic over-

growth was achieved at a dose of 300 μM and 600 μM for UDCA and

UCA, respectively (Fig. 1). Neither UDCA or UCA had any effect upon

NMJ structure in wild type animals, with no significant variance in

bouton number, branch number or NMJ length observed across doses

(Fig. 1).

Having observed a dose dependent rescue of synaptic overgrowth at

the Drosophila larval NMJ, we asked whether administration of UDCA

or UCA was sufficient to alleviate impaired locomotor velocity observed

previously in CHMP2BIntron5 expressing larvae (West et al., 2018).

Administration of 600 μM of either UDCA or UCA was sufficient to

partially rescue impaired crawling velocity in larvae pan-neuronally

expressing CHMP2BIntron5 (Fig. 1H, I). Neither compound had a sig-

nificant effect upon wild type larvae crawling behaviour. Further ana-

lysis revealed pan-neuronal expression of CHMP2BIntron5 resulted in a

perturbation to normal crawling behaviour with larvae showing a sig-

nificant increase in the number of distinct directional changes made

during crawling (Fig. 1H&J). Both UDCA and UCA were sufficient to

alleviate this phenotype, without perturbing normal crawling beha-

viour in wild type animals (Fig. 1H&J).

2.2. UDCA and UCA rescue dendritic collapse and cell death in mammalian

CHMP2BIntron5 expressing neurons

Having observed a dose dependent rescue of neuronal aberrations in

Drosophila expressing the CHMP2BIntron5 mutant transgene, we asked

whether similar effects could be recapitulated in mammalian models.

Previously we have shown that CHMP2BIntron5 expression in primary rat

neurons induces marked dendritic collapse and eventual apoptosis (Lee

et al., 2007; West et al., 2018). In order to monitor the effect of UDCA

on these neurons, we first assayed UDCA toxicity in primary neurons

using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide) assays. Primary neurons tolerated concentrations up to 10 μM

(48 h) with no significant differences in MTT absorbance between

groups (Fig. 2A). Next, we transfected rat neurons with FLAG-tagged

CHMP2BWildtype or CHMP2BIntron5 and treated neurons with 10 μM

UDCA or 0.1% ethanol (vehicle control). CHMP2BIntron5 expression

decreased the complexity of the dendritic arbour, causing a significant

decrease in the total size of the neuron (Fig. 2B,C). No significant dif-

ferences were observed between CHMP2BWildtypeexpressing cells

treated with vehicle or UDCA. To understand whether

CHMP2BIntron5expression affects dendritic branching, we assayed the

maximum number of dendrites of each neuron (Fig. 2D, maximum in-

tersections) and the cumulative number of branches per unit distance

from the cell body, using Sholl analysis (Sholl, 1953). CHMP2BIntron5

transfected neurons showed a significant reduction in the maximum

and cumulative number of intersections at any given distance from the

cell body. Addition of 10 μM UDCA to the media post transfection was

sufficient to alleviate these CHMP2BIntron5 associated phenotypes

(Fig. 2D+E). To understand whether CHMP2BIntron5 expression induces

changes in dendritic complexity that may alter the functional con-

nectivity of neurons, we analysed the density of dendritic spines.

CHMP2BIntron5 expression significantly reduced the number of spines

per 100 μm of dendritic arbour (Fig. 2F). Treatment of neurons with

10 μM UDCA reversed the loss of dendritic spines (Fig. 2F+G). Using

the chemically related compound UCA, we found a significant decrease

in MTT turnover at 10 μM in primary neurons, however lower con-

centrations were well tolerated (Fig. S1A). CHMP2BIntron5 induced

dendrite loss was also rescued using UCA (Fig. S1B, 1 μM, 48 h), as

quantified by monitoring total arbour size, maximum intersections and

cumulative intersections over distance (Fig. S1C–E).

While both UDCA and UCA exhibit neuroprotection in Drosophila
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and mammalian models of CHMP2BIntron5 related FTD, UDCA has FDA

approval and is currently in clinical trial for both ALS and Parkinson's

Disease. As such it represents a promising target for drug-repurposing

for FTD and hereon we therefore focus upon UDCA.

2.3. UDCA ameliorates neuronal cell death

Having observed the protective effects of UDCA at the behavioural,

dendritic and synaptic level, we asked whether UDCA could ameliorate

cell death induced by CHMP2BIntron5 expression. Previous studies have

demonstrated expression of CHMP2BIntron5 in primary neurons severely

affects neuronal survival (Lee et al., 2007). Using propidium iodide

(caption on next page)
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exclusion assays, we found that CHMP2BIntron5 expression induced a

similar level of cell death, with 75% of nuclei in CHMP2BIntron5 ex-

pressing neurons staining positive for propidium iodide. Addition of

UDCA significantly decreased the number of dead cells, bringing sur-

vival back to wild type levels (Fig. 3A, Supplementary Fig. 2).

Perturbed regulation of apoptosis has been proposed as a me-

chanism driving neuronal cell loss in FTD and ALS. Previously we

identified elevated apoptotic cascades in both Drosophila and mamma-

lian neurons expressing CHMP2BIntron5 (West et al., 2018). UDCA has

been proposed to act as a potent anti-apoptotic agent, acting to regulate

p53 levels (Amaral et al., 2010). Having shown UDCA can alleviate

CHMP2BIntron5 dependent cell death in primary neurons (Fig. 3A) we

asked whether UDCA could ameliorate expression of apoptotic markers,

including p53 accumulation and cleavage of the Drosophila caspase 3

homologue, Death Caspase-1 (Dcp-1) (Fig. 3B–E). Pan-neuronal ex-

pression of CHMP2BIntron5 led to a significant increase in both p53 and

cleaved Dcp-1 in the Drosophila larval CNS, both of which were rescued

by UDCA administration (Fig. 3B–E).

2.4. UDCA does not alleviate CHMP2BIntron5 induced accumulation of

ubiquitin positive inclusions or autophagosomes

Having shown UDCA ameliorates synaptic overgrowth, dendritic

collapse, neuronal cell death and apoptotic-cascades, we asked whether

it modified two pathological hallmarks of CHMP2BIntron5 toxicity, the

aberrant accumulation of autophagic organelles and ubiquitin positive

inclusions within the nervous system (Holm et al., 2007; Lee et al.,

2007). Accumulation of ubiquitinated inclusions was observed within

neurons in the Drosophila larval nervous system (Fig. 4A) and in

mammalian primary neurons expressing CHMP2BIntron5 (Fig. 4B).

UDCA showed no ability to alleviate the accumulation of ubiquitinated

inclusions in either model (Fig. 4A, B).

Previous studies have suggested that the therapeutic action of UDCA

in the treatment of hepatic fibrosis may be through inhibition of au-

tophagy (Ye et al., 2020). We therefore looked to ascertain whether the

neuroprotective mode of action of UDCA in CHMP2BIntron5 models

worked via the modulation of autophagy and could alleviate aberrant

autophagosome accumulation, a hallmark of CHMP2BIntron5 FTD. In

order to quantify CHMP2BIntron5-dependent perturbations to autophagy

and the effects of UDCA treatment, we quantified the abundance of the

cytosolic and autophagosomal forms of LC3 in the Drosophila nervous

system. LC3 (LC3-I) is conjugated to phosphatidylethanolamine (PE) in

order to recruit LC3 to autophagosomal membranes. Fusion of autop-

hagosomes with lysosomes results in degradation of the PE-conjugated

form (LC3-II). Due to the altered hydrophobicity of the conjugated

form, LC3-II is identifiable as a distinct band from LC3-I via im-

munoblotting. In larvae pan-neuronally expressing CHMP2BIntron5 we

observed a significant increase in the amount of LC3-II present in the

nervous system, compared to wildtype (Fig. 4C–F) which was not al-

leviated by UDCA treatment. Having demonstrated accumulation of

autophagic material in CHMP2BIntron5expressing flies we used the pH

sensitive tandem tagged GFP-mCherry-LC3 dual colour system as a

reliable system with which to investigate autophagic flux (Nezis et al.,

2010). This construct works on the principle that fluorescence from the

pH-sensitive GFP tag to LC3/Atg8 will be quenched upon autophago-

some fusion with lysosomes, while the pH insensitive mCherry tag will

not. Thus an increase in the number of GFP-mCherry double labelled

puncta suggests an impairment to autophagic flux (Klionsky et al.,

2016; Nezis et al., 2010; Pankiv et al., 2007). Drosophila larvae pan-

neuronally expressing CHMP2BIntron5 showed an aberrant accumulation

of large GFP-mCherry double labelled puncta within the ventral nerve

cord (VNC)(Fig. 4G, H). In contrast, GFP-positive puncta were rarely

observed in wild type animals. Administration of UDCA had no sig-

nificant effect upon the number of GFP-mCherry labelled puncta ob-

served in CHMP2BIntron5 expressing larvae, compared to vehicle treated

controls (4G-H). Similarly in rat primary hippocampal neurons, co-

transfection of CHMP2BIntron5 with GFP-mCherry-LC3 produced large

GFP-mCherry positive puncta, which were not affected by administra-

tion of 10 μM UDCA (Fig. 4I, J). CHMP2BWildtypeexpressing controls

showed diffuse GFP and mCherry fluorescence, with few visible ag-

gregates or puncta observed.

2.5. UDCA acts downstream of endosomal dysfunction

The C-terminal truncation of CHMP2BIntron5 prevents both the as-

sembly and disassembly of ESCRT complexes. As such, expression of

CHMP2BIntron5 has been shown to cause the accumulation of poly-

ubiquitinated proteins that co-localise with the late endosomal marker,

RAB7 (Lee and Gao, 2009). These RAB7 positive endosomes are en-

larged in CHMP2BIntron5 patient fibroblasts and fail to fuse with the

lysosome (Urwin et al., 2010). Similarly, CHMP2BIntron5 expression in

Drosophila induces swelling of RAB5 and RAB7 positive endosomes (Lee

and Gao, 2009). To determine if UDCA could prevent CHMP2BIntron5

dependent endosomal aberrations we labelled endosomes in both wild

type and CHMP2BIntron5 expressing Drosophila and mammalian neurons

treated with vehicle and UDCA. VNCs of wildtype or

CHMP2BIntron5expressing larvae were stained with antibodies for RAB4

(early/recycling endosomes (Schmidt and Haucke, 2007)), RAB5 (early

endosomes) and Spinster (Spin, a late endosomal/lysosomal marker

(Sweeney and Davis, 2002)). Mammalian neurons were labelled with

RAB4a (early/recycling endosomes), RAB5 (early endosomes) and

RAB7 (late endosomes). In larval VNC's, CHMP2BIntron5expression in-

duced aggregates of RAB4 (Fig. 5A). Similarly, in mammalian neurons,

CHMP2BIntron5expression induced large vacuole type structures, as

previously reported (Urwin et al., 2010), that co-localise with RAB4a.

The clustering of RAB4 in Drosophila and mammalian

CHMP2BIntron5expressing neurons was unchanged by the addition of

UDCA (Fig. 5A,B, Supplementary Fig. 3A). In both Drosophila and

mammalian neurons, CHMP2BIntron5expression induced large ag-

gregates of RAB5 positive endosomes, which were unaffected by UDCA

(Fig. 5C,D, Supplementary Fig. 3B). Similarly, in Drosophila,

CHMP2BIntron5expression induced Spin positive aggregates throughout

the VNC that were not obviously rescued by UDCA (Fig. 5E). In mam-

malian neurons, CHMP2BIntron5 formed large intracellular vacuoles that

Fig. 1. UDCA and UCA Exhibit a Dose Dependent Rescue of Synaptic Overgrowth at the Drosophila NMJ.

A. Representative micrographs showing synaptic overgrowth at the Drosophila third instar wandering larval NMJ (Muscle 6/7, hemisegment A3) in larvae pan-

neuronally expressing (nSyb-Gal4) UAS-CHMP2BIntron5 administered vehicle, UDCA or UCA. Scale bar = 10 μm.

BeC. Quantification of normalised bouton number in wild type (dashed black line) and CHMP2BIntron5 expressing (nSyb-Gal4) (solid red line) 3rd instar larvae in

response to increasing doses of UDCA (B) and UCA (C). ANOVA with post-hoc Tukey comparison to vehicle treated (0 μM) control ⁎⁎⁎p < .001.

D, E. Quantification of normalised NMJ length in wild type (dashed black line) and CHMP2BIntron5 expressing (nSyb-Gal4) (solid red line) 3rd instar larvae in response

to increasing doses of UDCA (D) and UCA (E). ANOVA with post-hoc Tukey comparison to vehicle treated (0 μM) control ⁎⁎p < .01, ⁎⁎⁎p < .001.

F, G. Quantification of normalised branch number in wild type (dashed black line) and CHMP2BIntron5 expressing (nSyb-Gal4) (solid red line) 3rd instar larvae in

response to increasing doses of UDCA (F) and UCA (G). ANOVA with post-hoc Tukey comparison to vehicle treated (0 μM) control ⁎⁎p < .01, ⁎⁎⁎p < .001.

H–J. Addition of UDCA or UCA to Drosophila food alleviates aberrant crawling behaviour in 3rd instar wandering larvae pan-neuronally (nSyb-Gal4) expressing

CHMP2BIntron5. H. Representative traces of crawling path. I. Median crawling speed. J. Mean number of directional changes. ANOVA with post-hoc Dunnett's

comparison to wild type controls ⁎⁎⁎p < .001 and Tukey comparison between groups #p < .05, ##p < .01, ###p < .001. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

R.J.H. West, et al. Neurobiology of Disease 144 (2020) 105047

4



partially colocalized with aggregates of RAB7. Enlarged RAB7 positive

endosomes were not changed by the addition of UDCA (Fig. 5E,F,

Supplementary Fig. 3C).

3. UDCA identifies GCLC as a novel regulator of CHMP2BIntron5

toxicity

Having observed little effect of UDCA upon dysfunctional en-

dosomal-lysosomal and autophagic pathways in CHMP2BIntron5 ex-

pressing Drosophila and mammalian neurons, we looked to determine

downstream pathways in which UDCA may act to alleviate the neuronal

phenotypes observed in our models. RNA-sequencing (RNA-seq) of

VNCs dissected from larvae pan-neuronally expressing wildtype or

CHMP2BIntron5, raised on UDCA or vehicle supplemented food was

carried out. The main target identified using RNA sequencing was the

catalytic subunit of glutamate cysteine ligase (GCLC) which sig-

nificantly increased in CHMP2BIntron5 expressing larvae fed UDCA in

comparison to vehicle controls (Fig. 6A). Additional RNA sequencing

data is available in supplementary Table 1. Having observed an increase

in GCLC gene expression in CHMP2BIntron5 expressing larvae raised on

Fig. 2. UDCA Prevents CHMP2BIntron5 Induced Dendritic Loss.

A. UDCA does not cause mitochondrial toxicity (up to 10 μM, 48 h) as assessed by MTT turnover. Each treatment expressed as percentage of ethanol treated controls

and shown as means± SEM (n = 3 biological replicates).

B. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 ± UDCA (10 μM, 48 h). Scale bar = 50 μm.

C–E. Quantification of total arbour size (C) total number of intersections (D) and cumulative number of intersections per unit distance (E) in CHMP2BWildtype or

CHMP2BIntron5 ± UDCA (10 μM, 48 h). Data represents mean ± SEM analysed using one-way ANOVA and Tukey's multiple comparisons post hoc test (##p < .01,
###p < .001). 30 neurons analysed, per condition, across 3 biological replicates.

F. Representative micrographs of dendrites and dendritic spines expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 ± UDCA (10 μM, 48 h). Black ar-

rowheads indicate dendritic spines. Scale bar = 5 μm.

G. Quantification of dendritic spines per 100 μm. Data represents mean ± SEM analysed using one-way ANOVA and Tukey's multiple comparisons post hoc test

(##p < .01, ###p < .001). Scale bar = 50 μm. 30 neurons analysed, per condition, across 3 biological replicates.

R.J.H. West, et al. Neurobiology of Disease 144 (2020) 105047
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UDCA supplemented food, a dominant modifier screen, using our es-

tablished Drosophila eye expression model (Ahmad et al., 2009), was

used to ask whether there was a functional genetic interaction between

GCLC and CHMP2BIntron5 expression. CHMP2BIntron5 dependent de-

generation of the fly eye was suppressed by co-expression of three in-

dependent UAS-GCLC (Orr et al., 2005) transgenes (Fig. 6B,C). Having

established a genetic interaction between CHMP2BIntron5 expression

and GCLC, we asked whether GCLC exhibited a functional role in the

unregulated neuronal growth phenotypes observed in larvae pan-neu-

ronally expressing CHMP2BIntron5. Co-expression of GCLC was sufficient

to alleviate all aspects of synaptic overgrowth at the Drosophila larval

NMJ, including increased NMJ length and bouton number (Fig. 6D,E).

Pan-neuronal expression of GCLC was also sufficient to rescue median

crawling speed to near wild type control levels (Fig. 6F). Elevated levels

of the oxidative stress responsive Glutathione S-Transferase reporter

GstD1-GFP was also observed in CHMP2BIntron5 expressing larvae, and

this increased expression was rescued by UDCA administration (Sup-

plementary Fig. 4). Having characterised GCLC as a positive regulator

of CHMP2BIntron5 toxicity in Drosophila, we asked whether over-

expression of GCLC in primary mammalian neurons could rescue den-

dritic collapse phenotypes associated with the mutation. We found that

co-expression of both the catalytic and modifying subunits of GCL

(GCLC and GCLM) with CHMP2BIntron5 was sufficient to rescue dendrite

loss (Fig. 6G), as analysed by measuring total arbour size (Fig. 6H) and

total number of intersections per unit distance (Fig. 6I).

4. Discussion

Defective endosomal-lysosomal trafficking is implicated in nu-

merous neurodegenerative diseases, including FTD and ALS (Lee et al.,

2013; Nixon, 2005). Of particular importance are late endosomes,

where MVBs regulate transmembrane protein sorting and exosome re-

lease. MVB formation is controlled by the ESCRT complexes, in which

CHMP2B plays a critical role (Babst, 2011; Hurley and Emr, 2006; Lee

and Gao, 2008). This process, where ubiquitinated vesicle cargoes are

internalised and degraded via the lysosome represents an evolutionarily

Fig. 3. UDCA Alleviates Markers of Cell Death in CHMP2BIntron5 Models.

A. Effect of CHMP2BWildtype or CHMP2BIntron5 ± UDCA (10 μM, 48 h) on the survival of mature cortical neurons. Data represents mean ± SEM analysed using two-

way ANOVA followed by a Dunnett's (⁎p < .050) and Tukey's multiple comparisons post hoc test (#p < .05). 125 neurons analysed over three independent

experiments.

BeC. Relative p53 abundance in the Drosophila CNS of third instar larvae (Wildtype vs CHMP2BIntron5) raised on food supplemented with either vehicle or UDCA

(600 μM). B. Quantification of 3 independent experiments blotting p53 from Drosophila lysates. Normalised against actin loading control and relative to vehicle

treated wild types. ANOVA with post-hoc Dunnett's comparison to wild type controls ⁎⁎⁎p < .001. C. Representative immunoblot of p53.

D, E. Relative Cleaved Death Caspase 1 (Dcp-1) abundance in the Drosophila CNS of third instar larvae (Wild type vs CHMP2BIntron5) raised on food supplemented

with either vehicle or UDCA (600 μM). D. Quantification of 3 independent experiments blotting cleaved Dcp-1 from Drosophila lysates. Normalised against actin

loading control and relative to vehicle treated wild types. ANOVA with post-hoc Dunnett's comparison to wild type controls ⁎p < .05. E. Representative immunoblot

of cleaved Dcp-1.
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highly conserved biological process in eukaryotic cells (Leung et al.,

2008). As such, mutations that affect core components of the ESCRT

machinery are either lethal (CHMP4/6) (Schmidt and Teis, 2012), or

involve severe accumulation of proteins which eventually leads to de-

fective endosomal trafficking, autophagy and cell death (CHMP2B). The

importance of ESCRT integrity can be observed when considering ag-

gregated protein hallmarks across the FTD-ALS spectrum. Up to 97% of

sporadic ALS patients display neuronal inclusions of polyubiquitinated

TDP-43, a major driver of ALS pathology (Prasad et al., 2019). Func-

tional ESCRT subunits and MVB formation is required for the clearance

of TDP-43 (Filimonenko et al., 2007). While CHMP2B mutations are

rare, dysfunctional endosomal-lysosomal signalling is common across

the FTD-ALS spectrum, pointing to an essential role for ESCRT-III

function in the maintenance of neuronal health. Therefore, identifying

therapeutics that prevent or delay neurodegeneration associated with

CHMP2BIntron5 mutations have potential across the FTD-ALS spectrum.

UDCA has been identified as a potential therapeutic compound for

drug-repurposing for the treatment of ALS, Parkinson's disease and

Alzheimer's Disease. However, despite the initiation of clinical trials,

the mode of action of UDCA remains unclear. Here we reveal UDCA

conveys neuroprotection in Drosophila and mammalian models of

CHMP2BIntron5 FTD, identifying novel aspects of CHMP2BIntron5 pa-

thology and identifying neuroprotective pathways mediated by UDCA.

The observation that UDCA protects neurons without rectifying en-

dosomal-lysosomal and autophagic dysfunction also highlights its po-

tential as a therapeutic downstream of compromised proteostasis, a

common feature of many neurodegenerative conditions.

4.1. UDCA rescues behavioural, synaptic and dendritic aberrations induced

by CHMP2BIntron5

UDCA is a natural hydrophilic bile acid produced in the gut. It is

also an FDA-approved drug primarily used in the treatment of primary

biliary cholangitis. However, it has also been shown to be protective in

cell and animal models of AD and PD (Bell et al., 2018; Graham et al.,

2018; Lo et al., 2013; Ramalho et al., 2006). Here we demonstrate that

UDCA acts as a neuroprotectant against neuronal perturbations and cell

death in both Drosophila and mammalian models of FTD caused by

CHMP2BIntron5. mutations.Administration of UDCA to Drosophila pan-

neuronally expressing CHMP2BIntron5, exhibits a dose dependent rescue

of NMJ overgrowth and locomotor dysfunction. Furthermore, UDCA

prevents dendritic retraction and spine loss in mammalian primary

neurons expressing CHMP2BIntron5.

Neuronal apoptosis has been identified in CHMP2BIntron5 related

FTD (West et al., 2018). UDCA exhibits anti-apoptotic properties in-

cluding p53 modulation, independent of cell type (Amaral et al., 2009).

We report here that UDCA prevents elevated p53 and cleaved Dcp-1

expression in CHMP2BIntron5expressing larvae and partially rescues

neuronal death induced by CHMP2BIntron5expression in mammalian

neurons. Neuronal inclusions are a hallmark of neurodegenerative

diseases, associated with perturbed proteostasis and dysfunctional en-

dosomal-lysosomal and autophagic pathways. Dendrite retraction and

autophagosome accumulation has been reported in mature neurons

(10-15DIV) expressing CHMP2BIntron5 (Lee et al., 2007; Belly et al.,

2010; West et al., 2018) while younger neurons (7DIV) show a marginal

increase in dendritic branches when expressing CHMP2BIntron5 (Clayton

et al., 2018). Treating our 15DIV neurons expressing CHMP2BIntron5

with UDCA or UCA rescues dendritic retraction. We show that in our

CHMP2BIntron5 models of FTD, autophagosome accumulation precedes

ubiquitin positive inclusions in neurons (Ghazi-Noori et al., 2012; Lee

et al., 2007). To evaluate if UDCA ameliorated neuronal cell death and

apoptotic-cascades by promoting endosomal-lysosomal trafficking and/

or autophagic flux, we examined the effect of UDCA by monitoring

endosomal and autophagic markers in both Drosophila and mammalian

primary neurons expressing CHMP2BIntron5.

4.2. UDCA acts downstream of a dysfunctional endosomal-lysosomal and

autophagic system in CHMP2BIntron5 models

UDCA has been shown to both promote (Lim and Han, 2015; Pang

et al., 2017; Panzitt et al., 2020; Wang et al., 2017) and inhibit au-

tophagic flux (Ye et al., 2020). The CHMP2BIntron5 mutation results in

significant perturbations to endosomal-lysosomal (Urwin et al., 2010)

and autophagosomal trafficking (Filimonenko et al., 2007; Ghazi-Noori

et al., 2012; Lee et al., 2007). However, administration of UDCA

showed no significant effect upon autophagic flux in Drosophila or

mammalian primary neuronal models of CHMP2BIntron5 related FTD.

Furthermore, UDCA failed to alleviate aberrant accumulation of endo-

somes and ubiquitinated protein inclusions, a hallmark of perturbed

proteostasis in neurodegenerative diseases. Despite this, UDCA was

sufficient to alleviate synaptic overgrowth, dendritic retraction, cell

death and behaviour deficits in these models. These findings support

the hypothesis that UDCA acts downstream of endosomal-lysosomal

and autophagic dysfunction, making it an attractive target for drug-

repurposing as a general neuroprotectant. One consideration in regards

to the discrepancy between this study and previous studies looking at

the effect of UDCA upon autophagic flux is that the majority of ex-

periments looking at the role of UDCA on autophagy have been per-

formed in hepatic or cancer cell lines (Panzitt et al., 2020). It is im-

portant to consider that the metabolic energy demand and source of

energy in neurons is distinct from other cell types, with neurons in the

CNS less dependent upon autophagy as a source of amino acids and

Fig. 4. UDCA Does Not Rescue Accumulation of Ubiquitin-positive Aggregates and Autophagosomes In Drosophila and Mammalian Neurons Expressing

CHMP2BIntron5.

A. Ubiquitinated proteins in the CNS of wild type and CHMP2BIntron5 expressing (nSyb-Gal4) Drosophila third instar larvae raised on vehicle (ethanol) or UDCA

(600 μM) supplemented food. Drosophila motor neurons are labelled using an eve-eGFP endogenous reporter (blue). Scale bars = 5 μm.

B. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 (FLAG, magenta) ± UDCA (10 μM, 48 h) stained for

ubiquitinated (green) proteins. Nuclei counterstained with DAPI (blue). Scale bar = 5 μm.

CeF. Quantification of LC3-I and LC3-II in the Drosophila larval CNS. Immunoblots (C) from 4 independent biological replicates were quantified for cytosolic LC3-I

(D) and LC3-phosphatidylethanolamine conjugate (LC3-II) (E), which is recruited to autophagosomal membranes. F. LC3-I/LC3-II ratio. n = 4. All Normalised

against actin loading. ANOVA with post-hoc Dunnett's comparison to wild type controls ⁎⁎⁎p < .001, ⁎⁎⁎⁎p < .0001.

G, H. Autophagic flux in the CNS of wild type and CHMP2BIntron5 expressing (nSyb-Gal4) Drosophila third instar larvae raised on vehicle (ethanol) or UDCA (600 μM)

supplemented food. The dual tagged GFP-mCherry-LC3/Atg8a labels autophagosomes (GFP and mCherry), amphisomes (mCherry only) and autolysosomes (mCherry

only). Scale bars = 10 μm. Quantification (H) of the percentage of LC3 aggregates positive for both mCherry and GFP in the Drosophila larval nervous system.

ANOVA with post-hoc Tukey's comparison between groups ⁎⁎⁎p < .001, ⁎⁎⁎⁎p < .0001. Quantification from 5 independent animals per condition (N = 5).

I. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 (FLAG, magenta), co-transfected with a plasmid en-

coding GFP-mCherry-LC3. Cells were treated with vehicle (0.1% ethanol) or UDCA (10 μM, 48 h) and stained for GFP (green) and mCherry (red). Autophagosome

accumulation was monitored by observing the presence of green and red puncta. Nuclei counterstained with DAPI (blue). Scale bar = 5 μm.

J. Quantification of micrographs in (I) showing the number of GFP and mCherry double positive aggregates per cell. n=10 cells per condition. ANOVA with post-hoc

Tukey's comparison between groups ⁎⁎⁎p < .001, ⁎⁎p < .01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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energy (Boland and Nixon, 2006; Yue et al., 2009). Furthermore, there

exists complex interplay between autophagy and the cell cycle in mi-

totic cells that may be absent in neurons (Mathiassen et al., 2017). As a

result, the regulation of autophagic flux in neurons and non-neuronal

cells is likely to depend upon distinct molecular mechanisms and

cannot be directly compared (Yue et al., 2009). Having shown no effect

upon autophagy in two independent models of CHMP2B-related FTD

we propose the ability of UDCA to rescue neuronal aberrations in these

models is independent and downstream of autophagy. Furthermore we

show UDCA has no effect upon endosomal perturbations and aberrant

accumulation of ubiquitin-positive inclusions, supporting the hypoth-

esis that UDCA acts downstream of perturbed endosomal-lysosomal and

autophagic dynamics associated with CHMP2BIntron5 disease causing

mutations. While our data supports this hypothesis, it is important to

(caption on next page)
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Fig. 5. UDCA Does Not Rescue Endosomal Perturbations in neurons expressing CHMP2BIntron5.

A. Representative micrographs of RAB4 positive endosomes (early/recycling) in the CNS of Wild type and CHMP2BIntron5 expressing (nSyb-Gal4) larvae raised on

vehicle (ethanol) or UDCA (600 μM) supplemented food. Scale bars: main panel = 10 μm, inset = 2 μm.

B. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 (FLAG, magenta) ± UDCA (10 μM, 48 h) stained for

RAB4a (early/recycling endosome, green) protein. Nuclei counterstained with DAPI (blue). Scale bar = 5 μm.

C. Representative micrographs of RAB5 positive endosomes (early) in the CNS of Wild type and CHMP2BIntron5 expressing (nSyb-Gal4) larvae raised on vehicle

(ethanol) or UDCA (600 μM) supplemented food. Scale bars: main panel = 10 μm, inset = 2 μm.

D. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 (FLAG, magenta) ± UDCA (10 μM, 48 h) stained for

RAB5 (early endosome, green) protein. Nuclei counterstained with DAPI (blue). Scale bar = 5 μm.

E. Representative micrographs of the late endosome/lysosomal marker Spinster in the CNS of Wild type and CHMP2BIntron5 expressing (nSyb-Gal4) larvae raised on

vehicle (ethanol) or UDCA (600 μM) supplemented food. Scale bars: main panel = 10 μm, inset = 2 μm.

F. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 (FLAG, magenta) ± UDCA (10 μM, 48 h) stained for

RAB7 (late endosome, green) proteins. Nuclei counterstained with DAPI (blue). Scale bar = 5 μm. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. 6. UDCA Identifies GCLC As a Novel Regulator of CHMP2BIntron5 Toxicity.

A. The mRNA abundance of gclc from pan-neuronally expressing CHMP2BIntron5 third instar larval brains shows a significant upregulation when raised on UDCA

(600 μM) supplemented food compared to vehicle (ethanol). Mean ± SEM, n = 5 per genotype, fold change values in log2 scale. ⁎⁎⁎ q < 0.001.

B. Representative images of the Drosophila eye phenotype caused by CHMP2BIntron5 expression with eye-specific GMR-Gal4 driver (GMR-Gal4, UAS-CHMP2BIntron5)

and amelioration by co-expression of UAS-GCLC.

C. Quantification of the eye phenotype from (B) genotypes. n = 100.

D, E. Co-expression of GCLC (UAS-GCLC6) ameliorates unregulated synaptic growth characterised by increased bouton number (D) and NMJ length (E) at the third

instar larval NMJ (Muscle 6/7, hemisegment A3) in CHMP2BIntron5 (nSyb-Gal4) expressing larvae. ANOVA with post-hoc Tukey comparison between groups
⁎p < .05, ⁎⁎p < .01.

F. Pan-neuronal (nSyb-Gal4) expression of GCLC rescues aberrant crawling behaviour in 3rd instar wandering larvae pan-neuronally expressing CHMP2BIntron5.

ANOVA with post-hoc Dunnett's comparison to wild type controls ⁎⁎⁎p < .001 and Tukey comparison between groups ###p < .001.

G. Representative micrographs of mature neurons expressing FLAG-tagged CHMP2BWildtype or CHMP2BIntron5 ± plasmids expressing the catalytic (GCLC) and

modifying (GCLM) subunits of glutamate cysteine ligase (GCL).

H, I Quantification of total arbour size (H) and cumulative number of intersections per unit distance (I) in CHMP2BWildtype or CHMP2BIntron5 ± GCLC/M. Data

represents mean ± SEM analysed using one-way ANOVA and Tukey's multiple comparisons post hoc test (##p < .01, ###p < .001). Scale bar = 50 μm. 20

neurons analysed, per condition, across 3 biological replicates.
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note that UDCA may also act via an undefined parallel pathway to exert

neuroprotection.

4.3. UDCA identifies GCLC as a novel regulator of CHMP2BIntron5 toxicity

Reactive oxygen species (ROS) are bi-products of cellular metabo-

lism and play pivotal roles in physiology and pathology. In the CNS,

ROS are neutralized by a myriad of reductive mechanisms that operate

in neurons and glia, including the glutathione (GSH) system. Under

physiological conditions, ROS have been demonstrated to support the

growth and plasticity of neurons (Oswald et al., 2018), however in

many neurodegenerative disorders the reductive capacity of neurons is

overwhelmed leading to prolonged oxidative stress, which contributes

to disease progression. GSH homeostasis is altered in many neurode-

generative diseases (Aoyama and Nakaki, 2013; Gu et al., 2015) and

decreased GSH levels are notable in the hippocampus of Alzheimer's

disease patients (Mandal et al., 2015) and in mouse models of AD

(Resende et al., 2008).

Prolonged oxidative stress damages lipids and lipid oxidation is a

hallmark of many neurodegenerative diseases, including FTD. Increased

markers of oxidized lipids have been detected in the cortex of patients

with FTD compared to age matched controls. This lipoxidative damage

is a marker of impaired mitochondrial function (Martínez et al., 2008).

Recently, lipidomics of blood serum from FTD patients identified mi-

tochondrial dysfunction, inflammation and oxidative stress as key as-

pects of FTD pathophysiology (Phan et al., 2020). More specifically,

accumulation of ROS and subsequent neuronal damage has been

identified in CHMP2BIntron5 patient derived neurons (Zhang et al.,

2017). These neurons contain aberrant mitochondria, with reduced

respiratory capacity and an increase in oxidative stress compared to

controls. These data implicate mitochondrial impairment and oxidative

damage in the pathophysiology of FTD. Boosting neuronal antioxidant

defences, particularly intracellular glutathione levels, presents an at-

tractive therapeutic target for FTD. Glutamate cysteine ligase (GCL) is

the rate limiting enzyme in the GSH biosynthetic pathway. It has been

known for some time that increasing the catalytic (GCLC) and mod-

ifying (GCLM) levels globally (Orr et al., 2005) or specifically in neu-

rons (Moskalev et al., 2019) extends longevity in Drosophila by between

25 and 50%. Overexpressing GCLM increases cellular glutathione con-

tent 2-fold, protecting cells from oxidative stress (Moskalev et al.,

2019). GCLC deficiency causes motor neuron loss, spinal cord atrophy

and defective gait. Conditional reduction of GCLC in the forebrain

causes neuronal atrophy, deficits in nesting behaviour and mitochon-

drial dysfunction (Feng et al., 2017), indicating a critical function for

glutathione levels and the activity of the rate limiting enzyme GCL in

the maintenance of neuronal health.

UDCA has been implicated in many different signalling pathways

and has been shown to prevent oxidative stress (Brito et al., 2008) and

negatively regulates p53 assembly (Amaral et al., 2010). UDCA has also

been shown to ameliorate mitochondrial dysfunction in Parkinson's

(Mortiboys et al., 2015) and Alzheimer's patient fibroblasts (Bell et al.,

2018). Although the exact mechanism of action remains unknown,

UDCA in our hands positively regulated the expression of GCL in

CHMP2BIntron5 models. Furthermore, increasing GCL in both Drosophila

and mammalian neurons, protects neurons from cell death. While these

data demonstrate the protective effect of UDCA in a model of FTD, we

are unable to identify specifically where UDCA acts in neurons. Iden-

tifying the receptor which binds UDCA and its downstream signalling,

would have clear therapeutic potential for neurodegenerative disease,

including FTD.

5. Conclusion

The data presented here demonstrates the neuroprotective proper-

ties of UDCA in both Drosophila and mammalian CHMP2BIntron5 models

of FTD. UDCA prevents dendritic aberrations and apoptosis

downstream of the main endosomal-lysosomal and autophagic hall-

marks of the mutation. UDCA induced neuroprotection in

CHMP2BIntron5 FTD highlights GCL and glutathione homeostasis as a

novel regulator of FTD pathology. Although the receptor mediating the

effects of UDCA remains unknown, its ability to protect neurons

downstream of defective proteostasis identifies it as an attractive

therapeutic with relevance across the FTD-ALS spectrum.

6. Materials and methods

6.1. Drosophila

6.1.1. Stocks and husbandry

Drosophila were raised on 4–24® instant Drosophila medium

(Carolina Biological Supply Company, USA) supplemented (50% v/v)

with a yeast sucrose solution (5% w/v inactivated yeast, 10% w/v su-

crose in ddH2O) at 25 °C on a 12 h light:dark cycle. Prior to mixing with

4–24® instant media, but post autoclaving and cooling, vehicle

(Ethanol), UCA (Sigma, C7628) or UDCA (Sigma, U5127) were added to

the yeast sucrose solution at the desired concentration. The final con-

centration of Ethanol was 0.06%. UAS-CHMP2BIntron5
flies were de-

scribed previously (Ahmad et al., 2009; West et al., 2015; West et al.,

2018). GFP-mCherry-LC3/Atg8a flies were a kind gift from Dr. Ioannis

Nezis (Warwick, UK) (Nezis et al., 2010). Even-skipped-eGFP flies (y1

w*; PBac{eve-EGFP·S}VK00033, RRID:BDSC_30871) were obtained

from the Bloomington Drosophila Stock Center. UAS-GCLC flies (GCLC

6, 3 and 5) were a gift from Professor William C. Orr (Orr et al., 2005).

nSyb-Gal4 and GMR-Gal4 driver lines were described previously

(Ahmad et al., 2009; West et al., 2015; West et al., 2018).

6.1.2. Immunohistochemistry and NMJ analysis

Third instar wandering larvae were dissected, fixed, antibody

stained, imaged and analysed as described previously (West et al.,

2015). All NMJ analysis was performed double-blind. Primary anti-

bodies used were Cy3-Conjugated anti-HRP (Goat, 1:200, Jackson Im-

munoResearch Labs Cat# 123–165-021, RRID:AB_2338959), anti-sy-

naptotagmin (Rabbit, 1:2000, Syt-91, RRID:AB_2713991, (West et al.,

2015)) anti-polyubiquitinated proteins (Mouse, 1:2000, FK2, Enzo Life

Sciences Cat# BML-PW8810–0500, RRID:AB_2051891), anti-RAB4

(Rabbit 1:100, Abcam Cat# ab78970, RRID:AB_2042753), anti-RAB5

(Rabbit, 1:500, Abcam Cat# ab31261, RRID:AB_882240) and anti-

Spinster (Guinea Pig, 1:1000, RRID:AB_2833057, (Sweeney and Davis,

2002)). Drosophila motor-neurons were labelled using GFP-tagged even-

skipped (eve). Confocal microscopy was performed using a Zeiss LSM

880 on an Axio Observer.Z1 invert confocal microscope (Zeiss). Z-

stacked projections of NMJs and VNCs were obtained using a Plan

Neofluar 40×/0.75 NA oil objective. NMJ lengths were measured from

stacked NMJ images using the NeuronJ plugin for ImageJ (National

Institutes of Health) as described previously (West et al., 2015; West

et al., 2018).

6.1.3. Larval locomotor assay

Larval locomotor assays were performed as described previously

(West et al., 2018). Two to three larvae were transferred onto the centre

of a 90 mm diameter petri-dish containing a thin layer of 1% agar and

left to acclimatize. The petri dish was placed upon a black surface and

imaged from above using a digital webcam (Creative labs, UK). Ex-

periments were performed at 25 °C. Upon initiation of crawling larvae

were recorded for 120 s (0.2 frames s−1) using VirtualDub software.

Images were analysed using ImageJ. Briefly videos were batch thre-

sholded and a custom macro used to track, via the MTrack2 plugin, and

plot the larval positions. These data were then used to determine the

mean larval velocity. Videos were manually scored for the number of

times each larvae made a distinct directional change.

Genetic interaction eye screens

Genetic interaction screens were performed as described previously
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(Ahmad et al., 2009; West et al., 2015). Briefly the eye specific driver

GMR-Gal4 was used to express UAS-CHMP2BIntron5 and UAS-GCLC

transgenes. Black melanotic spots on the surface of the fly eye were

quantified as low (fewer than 15 black spots), medium (15 spots of

melanisation but< 50% of the eye affected) or high (> 50% of the eye

subjected to melanisation).

6.1.4. RNA extraction

Third instar larval brains were collected and immediately snap

frozen on dry ice. For each condition (vehicle vs UDCA) and genotype

(wildtype vs CHMP2BIntron5), five replicates were generated (n = 7

brains/replicate). Total RNA was extracted using NucleoSpin RNA ex-

traction kit (Macherey-Nagel, UK), according to the manufacturer's

instructions. Purified RNA was quantified using spectrophotometry

(NanoDrop; Thermo Scientific, DE, USA) and microfluidic analyzer,

Agilent 2100 Bioanalyzer (Agilent Technologies, UK).

6.1.5. RNA libraries and sequencing

mRNA libraries were generated from 1 μg of total RNA using the

NEBNext RNA Ultra Directional Library kit for Ilumina in conjunction

with the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, UK)

according to the manufacturer instructions. Libraries were sequenced

on an Ilumina® HiSeq3000 (University of Leeds, UK).

6.1.6. RNA-seq analysis

Abundance of gclc transcripts were compared between wildtype and

pan-neuronal CHMP2BIntron5expressing animals. Reads were checked

and trimmed using FastQC version 11.0.5 (Wingett and Andrews, 2018)

and Cutadapt version 1.8.3 (Bray et al., 2016). Sequence reads were

aligned to the Drosophila melanogaster FlyBase release 6.20 tran-

scriptome using Salmon 0.6.0 (Patro et al., 2017). Sleuth 0.29.0 was

used (Pimentel et al., 2017) for differential expression analysis of the

RNA-seq data. A full linear model containing strain and treatment was

fitted to the data. In order to look at the effect of the treatment or the

strain, the full model was compared to a reduced model. The effect size

of the variable was calculated using a Wald test to give a ß-value, in

log2 units.

6.1.7. Western blotting

For ATG8/LC3 westerns single VNCs from individual third instar

Drosophila larvae were boiled directly in 2× Laemmli buffer and loaded

onto Mini-PROTEAN® TGX™ 4–20% gradient precast gels. For all other

experiments Drosophila lysates were extracted from ~10–20 third instar

larval VNCs using RIPA + protease and phosphatase inhibitors (Roche

cOmplete Ultra, Roche PhosSTOP). Samples were boiled inLaemmli

loading buffer and 20–40 μg loaded onto Mini-PROTEAN® TGX™

4–20% gradient precast gels. For quantification, 3 biological replicates

were performed per condition and quantification performed using the

ImageJ analyse gels function. All samples were normalised relative to

the loading control. Primary antibodies used were anti-ATG8/LC3

(Rabbit, 1:2000, Merck Millipore, Cat# ABC974), anti-p53 (Mouse,

1:200, Santa Cruz Biotechnology Cat# sc-74,574, RRID:AB_1249617),

anti-Beta Actin (Mouse, 1:180,000, Proteintech Group Cat# 60008–1-Ig,

RRID:AB_2289225) and anti-cleaved Dcp-1 (Rabbit, 1:200, Cell

Signalling Technology Cat# 9578, RRID:AB_2721060).

6.1.8. Glutathione S-transferase reporter assays

The GstD1-GFP endogenous reporter (Sykiotis and Bohmann, 2008)

was used to assay Gst activity in control (GstD1-GFP/+;nSyb-Gal4/+)

or CHMP2BIntron5 expressing flies (GstD1-GFP/UAS-

CHMP2BIntron5;nSyb-Gal4/+). Flies were raised on either vehicle or

UDCA, as described previously, and third instar larvae of the correct

genotype briefly washed in HL3 (70 mM NaCl, 5 mM KCl, 1 mM

CaCl2·2H2O, 10 mM NaHCO3, 5 mM trehalose, 115 mM sucrose and

5 mM BES in dH2O))and placed into individual wells of a 96-well plate

containing 200 μl of cold HL3. GFP fluorescence intensity was

monitored using a PHERAstar FSX plate reader using 10 × 10 well

scanning. Relative fluorescence intensity, normalised for background

levels, were reported.

6.2. Cell culture

6.2.1. Culture of primary mammalian neurons

Timed-mated female Wistar rats (Charles River UK)

(RRID:RGD_737929) were maintained in accordance with the UK

Animals (Scientific Procedures) Act (1986). Cortices were dissected

from postnatal day 1 (P1) mixed sex rat pups. Animals were euthanised

using pentobarbital injection followed by cervical dislocation, ac-

cording to Home Office UK guidelines. Neuronal cell suspensions were

obtained as previously described (Suman et al., 2016) and cultured in

Neurobasal medium (21,103,049, Thermo Scientific) supplemented

with B27 (50×, 17,504,044, Thermo Scientific), Glucose (35 mM final

concentration, A2494001, Thermo Scientific), L-glutamine (1 mM,

25,030,032, Thermo Scientific), Foetal Calf Serum (5%, Mycoplex,

PAA), Penicillin (50 u/ml) and Streptomycin (50 μg/ml, 15,140,122,

Thermo Scientific) at 7.5 × 105 cells/ml and maintained at 37 °C in 5%

CO2.

Neurons were transfected at 12 days in vitro (DIV) with

Lipofectamine 2000 (11,668,019, Thermo Scientific) in transfection

medium (Suman et al., 2016) with either FLAG-tagged CHMP2BWildtype

or CHMP2BIntron5 for 5 h. The cDNAs for catalytic (GCLC, MC203908)

and modifying (GCLM, MR225622) subunits of GCL were obtained from

Origene. For autophagic flux experiments, FLAG-tagged CHMP2B con-

structs were co-transfected with GFP-mCherry-LC3 (Pankiv et al.,

2007). Immediately following transfection, cells were washed and in-

cubated with transfection medium +/− 10 μM UDCA. After 2/3 days,

cells were fixed or lysed for biochemical experiments.

6.2.2. Cell survival

After transfection cell viability was assessed using propidium-iodide

exclusion assay, as previously described (Lee et al., 2007). Cells were

incubated with Propidium iodide for 2 min in accordance with manu-

facturer's instructions.

6.2.3. MTT assay

MTT assay for cell viability was carried out as previously described

(Ugbode et al., 2017). After treatment, primary rat neurons were wa-

shed with HBM buffer and incubated with 500 μl of MTT buffer

(0.5 mg/ml Thiazoyl Blue Tetrazolium Bromide (Sigma) in HBM) at

37 °C for 1 h. The formazide precipitate was solubilised with 300 μl

DMSO per well. 200 μl was transferred to a 96 well plate and absor-

bance measured using a plate reader (BMG Fluostar λ = 490 nm).

6.2.4. Immunofluorescence and cell imaging

Cells were washed with phosphate buffered saline (PBS) and fixed

for 30 min at room temperature (22 °C) with 4% paraformaldehyde

(containing 4% sucrose) (Sigma) in PBS as previously described

(Ugbode et al., 2014). Cells were permeabilised in 0.5% NP40 in PBS

for 5 min at room temperature. Primary antibodies were incubated

overnight at 4 °C. Primary antibodies used were anti-FLAG (M2 clone,

mouse, Sigma, 1:1000, Cat# F1804, RRID:AB_262044), anti-RAB4a

(Clone 4E11, mouse, Santa Cruz Biotechnology (SCBT), 1:200, Cat# SC-

517263) anti-RAB5 (Clone C8B1, rabbit, Cell Signalling Technology

(CST), 1:200, Cat# 3547, RRID:AB_2300649), anti-RAB7 (Clone B-3,

mouse, SCBT, 1:200, Cat# SC-376362, RRID:AB_10987863), anti-ubi-

quitin (Clone FK2, Enzo Life Science, 1:500, Cat# BML-PW8810,

RRID:AB_10541840), anti-GCLC (Clone H-5, SCBT, 1:200, Cat# SC-

390811, RRID:AB_2736837) and anti-GFP (Guinea pig, Synaptic Sys-

tems, 1:1000, Cat# 132005, RRID:AB_11042617). mCherry was de-

tected using FluoTag-X4, ATTO 542 (1:500, Synaptic Systems, Cat#

N0404-At542, RRID:AB_2744638). Corresponding Alexafluor sec-

ondary antibodies (1:500, Thermo Scientific) were incubated for 1 h at
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room temperature before mounting with Fluoromount (Sigma).

6.2.5. Microscopy and image analysis

Images were collected on an inverted Zeiss microscope (880) using

20× and 63× Plan Neofluar objectives using Zeiss filter sets for DAPI

and Alexa 488/546/633. Images were taken at an aspect ratio of

2048 × 2048. Images of neurons were traced using the NeuronJ plugin

in ImageJ (1.6.0). Individual traces were thresholded and sholl analysis

was conducted using the Sholl plugin.

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.nbd.2020.105047.
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