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Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment:
Surface Waves
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Abstract

Building on a previous study that analyses surface waves in magnetic slabs embedded in a non-
magnetic external environment, in this study the model is generalised and external magnetic fields
are added. The slab is assumed to be thin, with weak magnetic asymmetry. The frequencies of the
standing harmonic modes are derived to leading-order in the small quantities representing the thin
slab width and the weak asymmetry. It is found that the frequencies are more prone to changes to the
width of the slab than changes in the magnetic asymmetry. The frequency ratio of the first harmonic
to the fundamental mode is derived, along with the amplitude difference between the two sides of
the slab, as these may be observable quantities that can be compared with observational results and
applied to carry out solar magneto-seismology.

1. INTRODUCTION

Many of the magnetic structures in the solar atmosphere have been observed to support oscillations on a variety of
scales from coronal loops (Aschwanden et al. 1999; Wang 2004; Banerjee et al. 2007; De Moortel 2009) and prominences
(Arregui et al. 2012) to spicules (Zaqarashvili & Erdélyi 2009; Tsiropoula et al. 2012), sunspot light bridges (Yuan
et al. 2014; Yang et al. 2016, 2017) and magnetic bright points (Liu et al. 2018). An analytical wave study using
the magnetohydrodynamic approximation can lead to the application of solar magneto-seismology (SMS; see reviews
by Nakariakov & Verwichte 2005; Erdélyi 2006a,b; Andries et al. 2009; Ruderman & Erdélyi 2009), which makes it
possible to deduce values for background parameters that are not directly measurable.

A popular mathematical framework used to describe these oscillations was introduced by Roberts (1981a), where
wave propagation at a single interface (more precisely, a discontinuity in the system parameters such as temperature
or magnetic field strength), was studied. This was shortly followed by another investigation on wave propagation
in a magnetic slab embedded in a non-magnetic symmetric external environment (Roberts 1981b), and then further
generalised by considering a magnetic external environment (Edwin & Roberts 1982). This mathematical model is
extremely powerful as it is still being used nearly two full solar cycles after its introduction. More recent studies have
further generalised this framework, where cylindrical instead of Cartesian geometry is used and the flux tube is studied
as opposed to the magnetic slab (e.g. Abdelatif 1988). In addition to this, work has been further expanded with the
examination of MHD waves within an asymmetric slab system, with both a non-magnetic (Allcock & Erdélyi 2017)
and a magnetic (Zsamberger et al. 2018) external environment. A further generalisation of this model was provided by
Shukhobodskaia & Erdélyi (2018), who analysed multiple slab systems placed side by side to create the n-slab model.
Some important applications of these recent analytical modeling studies were presented by Allcock et al. (2019), which
included the amplitude ratio method as an SMS technique.

All these previous analytical approaches investigated propagating MHD waves. However, observations have discov-
ered a large range of standing waves in MHD waveguides (De Moortel 2009). A review by Taroyan & Erdélyi (2009)
presents recent findings relating to MHD waves in the context of coronal heating. In particular, there is some discus-
sion regarding standing waves and the possibility of using SMS to deduce diagnostic information, with the particular
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example of coronal loops included. Other studies of standing waves in coronal loops include Nakariakov & Ofman
(2001), Wang et al. (2007) and Wang (2011). These investigations also provide examples where an estimation of the
magnetic field strength is obtained using standing MHD oscillations. This illustrates how an analysis of standing MHD
waves can lead to the application of SMS, and demonstrates the power of this technique by showing how it may be
possible to derive diagnostic information about the waveguide. Investigations of standing oscillations in other solar
features have been conducted, such as a solar prominence, which is in fact an example of a solar structure that is
well suited to the magnetic slab model (Oliver 2009; Arregui et al. 2012), and consequently further understanding
standing modes in a magnetic slab could assist in understanding the behaviour of phenomena such as the solar promi-
nence. Therefore, Oxley et al. (2020) embarked on investigating standing modes in a magnetic slab embedded in a
non-magnetic asymmetric environment.

The current paper now aims to build on Oxley et al. (2020) by introducing magnetism to the external plasma
environment. By assuming both the thin slab and weak asymmetry approximations, the standing waves will be
examined by deriving the dispersion equations for the frequencies and amplitudes in terms of small parameters that
represent thin slab width and weak magnetic asymmetry. Introducing these small parameters allows analytical progress
to be made while still keeping some complex aspects of an asymmetric environment. The external region of plasma will
be assumed to be isothermal, meaning there is no asymmetry in the temperature and the effects of asymmetry in the
external magnetic fields can be isolated and examined. Some of the derived quantities that relate to the frequencies
and amplitudes of oscillation have analogous results in the study of a magnetic slab embedded in a non-magnetic
asymmetric environment (Oxley et al. 2020), and similarities will be discussed throughout.

The main purpose of this study is to further advance the magnetic slab model, allowing solar magneto-seismology
to be used for a wider range of suitable solar structures. More precisely, by carrying out the analytical investigation,
quantities that depend on magnetic asymmetry (such as the amplitude difference between the two sides of the slab)
are derived, and it may be possible to infer values of the internal or external magnetic field strength, which are not
directly observable.

Standing modes in a solar prominence were investigated in Joarder & Roberts (1992), using a magnetic slab model.
In this study the analytical work was very short, and in fact contained an error, as indicated in Oxley et al. (2020).
The present study, along with Oxley et al. (2020), provides a more detailed and accurate analysis of standing modes
in a magnetic slab structure.

First, we present the equilibrium of the model along with the appropriate line-tying boundary conditions and pressure
balance requirements (which are necessary in order to have a static waveguide with no background bulk motions).
Then, the general dispersion relation that governs the surface and body waves of the slab is derived in Section 3.1.
This is done in order to identify what frequencies of waves the slab will support, and then these findings can be used
to derive potentially observable quantities. In Section 3.2, the thin slab and weak asymmetry assumptions are applied
in order to have an analytical insight into the problem. A magneto-seismology examination of the frequencies of the
standing harmonic modes will be presented in Section 4, by deriving analytic expressions for these eigenfrequencies in
terms of parameters representing slab width and magnetic asymmetry. Analysis of the amplitudes of the eigenmodes
is given in Section 5. We conclude with a short discussion of the results.

2. THE EQUILIBRIUM MAGNETIC SLAB

Consider a 3-dimensional, inviscid, static, ideal plasma split into three regions in the x-direction, with the equilibrium
configuration shown in Figure 1. We assume that the slab is unbounded in the y-direction. There is an equilibrium
magnetic field given by B(z)é., where

By if rx < —Zo, (].)
B(x) By if —zg <z < g, (2)
By if x > o, (3)

and B;, for i = 0,1, 2, are constant. Here, p;, T; and p; denote the equilibrium kinetic plasma pressure, temperature
and density, respectively, where 7 = 0 is for the inside of the slab, i = 1 is for the domain to the left and i = 2 is for
the domain to the right of the slab. The effect of gravity is ignored throughout for simplicity, which may limit the
range of application of the results. Also, this work aims to analyse the effects of magnetic asymmetry on the standing
surface waves, and the magnetoacoustic-gravity wave supported by the waveguide will not be examined.
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Figure 1. Visualisation of the equilibrium state inside ( |z| < zo) and outside of the magnetic slab (x < —zo and z > xo),
where the magnetic field is indicated by the red lines. The two interfaces marked by the dashed lines at © = —xo, £ = x¢ outline
the slab, while the dashed lines at z = 0 and z = L mark that the slab is bounded.

2.1. Boundary Conditions

The following boundary conditions must be applied at the interfaces, © = +x(, and at the end points of the slab,
z=0,L.
Total pressure balance across the interfaces at x = 4z is required in order for the equilibrium to be stable:

B? B2 B2
M+ —=po+ 57— =p2+ 7, (4)
240 2410 240
where pg is the permeability of free space. We denote the sound speeds by ¢; = W%‘, and the Alfvén speeds by
i
VA; = : ,for i =0,1,2, where «y is the adiabatic gas index, which is taken to be constant across the entire system,

B v/ Pilbo
under the assumption that the plasma composition is the same throughout.
We assume line-tying, which gives boundary conditions that we must apply at z = 0, L for the formation of standing

waves. These conditions are

Um(Z:O):vm(Z:L):Oa bZ(ZZO):bZ(Z:L):O, pT(ZZO):pT(Z:L):Ov (5)

where v, and b, are the z-component of the velocity perturbation and the z-component of the magnetic field per-
turbation, respectively. Additionally, the total pressure perturbation pr is the sum of the kinetic plasma pressure
perturbation and the magnetic pressure perturbation. Using the physical assumption of line-tying, meaning the
plasma does not move at z = 0, L, the condition on v, follows trivially. The ’frozen-in’ property of the field lines
implies that the magnetic flux through an arbitrary flux bundle must remain constant. There is no motion at z = 0, L
by the assumption of line-tying, meaning the cross sectional area of a flux bundle does not change, and consequently
the z-component of the magnetic field strength remains constant, and the condition on b, is deduced. The condition on
pr is acquired simply because a non-zero pressure perturbation would cause a force, and consequently cause motion.

3. DERIVATION OF THE DISPERSION RELATION

In this section, the dispersion relation governing the waves in the magnetic slab embedded in an asymmetric magnetic
environment will be derived, in both the general case and under the limits of both the thin slab and weak asymmetry
approximations.

3.1. The General Dispersion Relation
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Following the derivation given in Roberts (1981b), Oxley et al. (2020), and assuming that the velocity perturbation
in the y- direction, vy, is zero, and that all quantities are independent of y, we arrive at two equations for the velocity
perturbations in the z- and z-directions, v, and v,:

0%v, )

8t2 = C%% (V.’U) —+ '11124V2'UI, (6)
8%v, 0
atQ = Cga (V.'U) . (7)

Equations (6) and (7) govern the disturbances inside the slab, and to proceed further we must apply the boundary
conditions.
3.1.1. Boundary Conditions

To satisfy the line-tying boundary condition given by Equation (5), we assume
vy = Og(2)e” “sin (k2), v, = 0.(x)e ™ f(2), pr=pr(z)e “sin(kz), (8)

where f is an arbitrary function to be determined. The line-tying boundary condition, v,(z = 0) = v,(2 = L) = 0,
gives a restriction on k:

k= % n ezt (9)
where we exclude & = 0 to have non-trivial solutions. Using Equations (6) - (8), it is straightforward to show that
f(2) = Qcos(kz), for an arbitrary constant Q. The constant () can be absorbed into ¢, (z), meaning that we can then
take f(z) = cos(kz).

3.1.2. The Governing Equations
Substituting the expressions for v, and v, given by Equation (8) into Equations (6) and (7) yield

o, (k22 — w?) (K203, — w?) ALY
- 25 0 here 2 _ g Ai 2‘:17147/. 10
de ml ,UZ ? w T mZ (]CQC%,L - ("')2)(612 + ’1)1241) ’ CTZ C% + U"24i ( )

This governing equation applies to the magnetic plasma environment left of the slab when ¢ = 1, to the right when
i = 2 and to the magnetic slab in the middle when i = 0. We assume that m3 > 0 to examine surface waves only, and
also assume that m?,m2% > 0 to ensure the solutions are evanescent outside of the slab.

3.1.3. The Dispersion Relation

Using Equation (10) we can write down the solution for 0, for all z, and using this, it is possible to calculate the
total pressure, pr. Applying the continuity of pr and v, across both x = g gives the dispersion relation for MHD
waves in a slab embedded in an asymmetric magnetic environment (with the details given in Zsamberger et al. (2018)):

2(7.2,2 2\ (1.2,,2 2 Po__ Po 2,2 2)?
2mg(k*vg; — w?)(k*v3 — w?) + 2—my—maq (k V4o — W )
P P2
+ myg (k%io - wg) ('Ooml(kzvf‘z —w?) + @mg(k‘%il - w2)) (tanh (moo) + coth (moo)) = 0.
P1 P2
(11)

If the asymmetry is removed, after some algebra, one recovers Equation (11) in Edwin & Roberts (1982), the dispersion
relation for MHD waves in the magnetic slab embedded in a magnetically symmetric environment.
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3.2. Reduction of the Dispersion Relation

This section is focused on simplifying the dispersion relation under various assumptions that have practical relevance,
e.g. to apply solar magnetoseismology. Firstly, the external regions are assumed to be isothermal in order to emphasize
the effects of the magnetic asymmetry. The assumption manifests in the following relations:

T1 = TQ, C1 = Ca. (12)
On top of this, the thin slab and weak asymmetry approximations will be used. Let us introduce the notation
xo
L b
where ¢ > 0 is taken, meaning v4o > v41. The quantity ¢ represents the ratio of the slab’s half-width to its height,

and ( represents the asymmetry in the external Alfvén speeds. This asymmetry can be obtained through asymmetry
in density, magnetic field strength, or both.

€= and vy = v (1+), (13)

3.2.1. Weak Asymmetry Approzimation

The asymmetry included in the model is crucial to enable the application of new solar magneto-seismology techniques.
In particular, by introducing weak asymmetry, it will now be possible to make analytical progress in deriving the
eigenfrequencies that the magnetic slab equilibrium supports, while also keeping the added complexity of having
different external quantities on either side of the slab. This approach also allows for a comparison to the solutions
presented in the symmetric model (Edwin & Roberts 1982).

The weak asymmetry assumption can be mathematically captured by ¢ <« 1, which we then use to simplify the
dispersion relation, Equation (11), for analytical progress. The dispersion relation to leading-order in ( is then

2.2 2 pPomM1 PoM2 tanh -
(k Vao — @ ) <P1(k2’02Al —w?) * p2(k2v%, — w2)> +2mo <coth> (mozo) ~ 0, (14)

where ( is not explicitly written, however, it is within the quantities ps, ms and v 4o implicitly.

Equation (14) is analogous to Equation (20) in Zsamberger et al. (2018) (with the condition that ¢; = ¢o is taken
here), where now it is assumed in addition that the external densities, pressures and magnetic fields are of the same
order. Let us now elaborate on this by the implementation of the small quantity . If we, again, compare Equation
(14) to the corresponding dispersion relation for a magnetic slab embedded in a symmetric environment, we note that
the ’tanh’ and ’coth’ terms would correspond to sausage and kink modes, respectively (Edwin & Roberts 1982). To
be consistent with notion, the terminology used in both Allcock & Erdélyi (2017) and Zsamberger et al. (2018) will
now be employed here. More precisely, in Equation (14) the *tanh’ term corresponds to quasi-sausage and the ’coth’
term to quasi-kink modes.

3.2.2. Thin Slab Approzimation

The thin slab approximation is expressed by € < 1, and we can use this condition to simplify the dispersion relation
Equation (14) further. The dispersion relation for quasi-sausage modes becomes

2,..2
202 2) pomi PO om2ao [ 1— 200 ) ~ 15
( Va0 — W p1 (K205, — w?) + p2(K202, — w?) + 2moxo 3 ) (15)

and for the quasi-kink oscillations it is

2
K202, — 2) Porh il Z~o0. 16
( 0 ) oiBeg, — ) g, o) ) (16

3.2.3. Ordering of € and ¢

In the following, O(¢) ~ O(e) will be taken in order to use Equations (15) and (16) to derive the frequencies and
keep second-order terms of size e¢ and 2. We have ignored terms of size (2 in order to obtain the decoupled dispersion
relations for the quasi-sausage and -kink modes. These assumptions are made in order to include the leading-order
terms that are related to asymmetry.
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4. EIGENFREQUENCIES OF STANDING HARMONIC MODES

The focus in this section is to derive the eigenfrequencies of the asymmetric magnetised slab system analytically. The
eigenfrequency is a popular measurable quantity, to determine in the observations, and we study it in order to identify
how sensitive the eigenfrequencies are to changes in the external environment. We will first derive the frequencies of the
standing modes that may exist as functions of the small quantities € and (, using a similar approach to that of Oxley
et al. (2020). The precise details of the method are not included here, and more information can be found in Oxley
et al. (2020). Care must be taken when using the solutions, as it was assumed that m3, m?,m3 > 0, so the solutions
are only valid when the characteristic speeds are ordered such that these relations are satisfied. In the case of the
quasi-sausage waves, this will be followed by determining the frequency ratio of the first harmonic to the fundamental
mode. The frequency ratio will not be calculated for the quasi-kink frequencies, with the reasons discussed in Section
4.2. We will use the quantisation of k given in Equation (9), and express the frequencies of the standing harmonic
modes as wy,.

4.1. Quasi-sausage Modes

The most simple solution to Equation (15) is w = kvag, but we will ignore this case. This solution would mean
m3 = 0, and using this in Equation (10) along with the requirement that the solution is evanescent, would give a
trivial solution.

Introduce the notation

I = _plcg(c%o —v3) 2y — AV + 05
povio(ct — o) 2(c§ +v)
Then, by examining Equation (15), the simplified dispersion relation for quasi-sausage waves, we find the following
solution:

(17)

2.2 2
9 _ N Cpy

"N T3 {1+smrH

1 e2p272 ﬁzczTO 1 _ 1 _ 1 _ 1 To
2(cf - C%o) 2(‘32T1 - C%o) 2(”311 - C%“o) (Cg - C%O) 3(03 + ”Zw)

+ ggmrfl ”1241 (1 + (Ci - CQTO)(U,QM - C2T0)> 27),2417 }7

4 ”,241 - C%o (cpq — C%O)(C% + U%ﬂ 20% + ”,%117
(18)

valid when va1 < crg < c1, to ensure that m? > 0 for i = 0,1,2. Note the form in which we present the solutions
suggests the ordering ¢; < c7g < va; could be valid. However, the quantity IT has been simplified using the ordering
v41 < cpp < c1, and by deriving the more general form of this quantity, it is observed that the ordering ¢; < c¢rg < va1
would result in a solution for the frequency where the condition m? > 0 for i = 0,1, 2 is not satisfied. We therefore do
not include this latter solution in our study as we only consider surface waves.

The derivation of eigenfrequencies is analogous to that in the symmetric slab model presented in Edwin & Roberts
(1982). In that work, multiple solutions are presented, as the frequency is different depending on the orderings of the
characteristic speeds. The solution given by Equation (18) is analogous to Equation (16d) in Edwin & Roberts (1982).
While it is possible to derive analogues of Equations (16b, ¢) under speed orderings similar to the ones presented there,
those solutions describe a surface wave, which, in a thin slab, changes its character to that of a body wave. Excluding
these types of modes, we now proceed only with the analysis of solutions that have the character of surface waves in
both wide and thin slabs, and therefore satisfy m? > 0 for i = 0, 1, 2.

A comparison to the magnetic slab embedded in a non-magnetic asymmetric environment, studied by Oxley et al.
(2020), can also be made here. If we were to set By = By = 0 and consequently va; = v42 = 0, then the quantity II
would reduce to the quantity —II, where II is given by Oxley et al. (2020). It can then be shown that the terms of
order 1, £ and €2 in Equation (18) are each equal to the corresponding terms of the same order in Equation (26) in
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Oxley et al. (2020). Although the term of order ¢ here shares a similar form to the term of order 6 in Oxley et al.
(2020), one does not reduce to the other as ¢ and 0 represent different types of asymmetry.
Let us now express the frequency ratio, a popular quantity in SMS studies:

w1 2 8 2 &+ i)

3 2 2 2 2 2 2
w2 o) 4 E’ITH L2 II 6crg  bcpg  bcpg 0 12¢py 5) 4+ CTo
c? —c2 2, —c2 v, — c2 2 —c 2(
1~ %0  °T1~ ‘o a1~ %o %~ 1o

+ ECﬂ vh 1+ (cf - C%o)(“?au - C2T0) _ 20347
y 7 (G — C%O)(C% +v%1) 2ct + 03,y

(19)

The frequency ratio given by Equation (19), here, can be compared with the frequency ratio given by Equation (27)
in Oxley et al. (2020) in exactly the same way as the frequencies have been compared in the above discussion.
Next, there is another solution to Equation (15), but let us first define IT by

1 ARG =P =)
Bk — DR + )

Then, the solution to Equation (15) up to and including the first term involving ¢ characterising the external asymmetry
is

(20)

2.2 .2
o _ nimeCy

n = 7.2

2. 277,,2
n mIlvy,
2

{1 +2n?r? + £%¢

1 2y
- . (21)
vii— 20+ 7”?41] }

This solution is analogous to that obtained by Edwin & Roberts (1982) in their Equation (16a) for the symmetric slab
model, and one can reduce to that solution by taking ( = 0 here. For this frequency, a comparison to Oxley et al.
(2020) cannot be made. This frequency can only exist due to the condition that the external plasma is isothermal,
which is not the case in the study of Oxley et al. (2020).

The frequency ratio is then

1 2y
- . (22)
U,241 - 24+ 'YU%]

Nlustrations of the frequency ratio of the first harmonic to the fundamental mode of the asymmetric magnetic slab
equilibrium system are given in Figures 4 and 5. For both solutions, we see a quadratic-like dependency on ¢ as
expected, whereas a linear relationship with ( is observed, which is weak. This is because the first (-term in the
solution given by Equation (19) appears as a second-order quantity in the small parameters ( and e, and the first
¢-term in the solution given by Equation (22) appears as a third-order quantity in the small parameters ¢ and e. When
comparing how changes in the magnetic asymmetry and the slab width affect the eigenfrequency ratio, it is evident
that changes to the magnetic asymmetry will have a less significant effect. The values for the background parameters
of the system have been chosen to satisfy the ordering necessary for m3 > 0 and m? > 0 and to demonstrate the
dependency of both solutions on ¢ and ( clearly.

In addition to the analytical solutions, some numerical solutions have been included in the plots of Equations (19)
and (22). These numerical solutions are included to indicate what values of € and ¢ may be considered small enough
to use the analytical solutions. For example, a reasonable ’cut-off’ for the parameter ¢ may be when the analytical
solution has deviated from the numerical solution by 20%. This first occurs around € = 0.2, and as ¢ is increased past
this value, the analytical solutions deviate significantly from the numerical solutions. For Figure 4, the parameter ¢
ranges from 0 to 0.3. However, the first small portion of the parameter range must be discarded (e.g. € < 0.02) as for
this plot ¢ = 0.1 and the ordering (> < & must be obeyed for the solutions to be valid. A similar consideration must
also be made for Figure 5.

Tlustrations of the fundamental and first harmonic standing quasi-sausage waves are given in Figures 2 and 3.
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Figure 2. Illustration of a fundamental standing quasi- Figure 3. Same as Figure 2 but for the first harmonic.
sausage mode oscillation in the magnetic slab embedded
in a magnetically asymmetric environment.
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e I T - i
1.9
1.95
1.8
1.94
—
3
3
~N
3193
1.92 —— Approximation 1 (w/k = cro)
—— Approximation 1 (w/k = cro) Full solution 1 (w/k = cro)
—— Approximation 2 (w/k =¢1) —— Approximation 2 (w/k =c1)
Full solution 1 (w/k = cro) 1.91 Full solution 2 (w/k = c1)
Full solution 2 (w/k = c1)
0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
€ ¢
Figure 4. The ratio of the frequencies of the first harmonic Figure 5. Same as in Figure 4, but the ratio is plotted as a
to the fundamental mode of the quasi-sausage waves (Solu- function of ¢ ranging from 0 to 0.3, with € = 0.1 fixed.

tion 1 given is by Equation (19) and Solution 2 by Equation
22), as a function of € ranging from 0 to 0.3, with ¢ = 0.1
fixed. The other relevant quantities are given in the inlet
of the figure. Note that due to the isothermal assumption
C1 = C2.

Quasi-kink Modes
Let us define the kink speed, vy by

2 2
2 _ P1V41 T P2V 2 ( C)
vV = ———————= R0 142, 23
k n D2 Al 9 ( )

where the approximation is written using Equation (13) and keeping only first-order terms in . Then, by examining
Equation (16), we see there is a solution given by w? = k*vZ(1 + a1), where a; ~ O(¢?). The quantity v} contains an
asymmetry term as shown in Equation (23), and it would be possible to make a similar expansion about both k?v%,;
or k?v%,, as they both differ from k?v? by a factor of (/2 to first-order. However, using the kink speed is much more
natural, as when the slab width is reduced to zero, we must recover the solution given in Roberts (1981a) for waves
at a single interface, and this solution is w? = k%,%. The assumption that m?, m3 > 0, along with our desire to make
analytical progress, cause a change in the orderings of ¢ and . More specifically, take ¢ < ( < €2 < e < 1. A
solution can be derived of the form

4-2

w? ~ k2l (1 + Ae? +B%5 5), where A, B~ O(1). (24)
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Unfortunately, the limitations of the method used here are evident, and the term of size (?/¢? is of comparable size to
the terms ignored in order to decouple the full dispersion relation. Consequently, a valid solution that includes the first
explicit term due to asymmetry cannot be determined. From here, it would be possible to take a further ordering, say
e* « ¢ « &3 <« 1, however, this work aims to analyse the effect of asymmetry, and the smaller we take the asymmetry
to be, the less significant its effect. A solution can be found up to the e2-term as follows:

2 nQTrQUI% 12 nzwng(v,% - ”1240)2(7)1% - C%) (25)
n L2 :

wy &
G2
VkP1

Expression (25) is a similar result to Equation (18a) in Edwin & Roberts (1982), however, there is a small error in the
paper by Edwin and Roberts. More precisely, in Equation (18a) the factor (1 — v%/v%,) should have been squared.
Care must be taken when using this solution as the method used in the derivation involves squaring terms, and so
the solution only satisfies the decoupled dispersion relation Equation (16) when the correct square-root is taken for a
given ordering of characteristic speeds.

Let us now define the average external tube speed, cra by:

2 2 2
2 €1+ Co 2 ¢ery
=44 2 1+ 26
CTA 9 1 ( 21}%1) ) (26)

where the approximation is written using Equations (10) and (13) and keeping only first-order terms in ¢. Then, there
is another solution to Equation (16), namely given by w? = k%c2 (1 + ), where ag ~ O(g?). To make analytical
progress we, again, assume £ < ( < €2 < ¢ < 1, giving

2 T (1 Ry = Vi) = >> | o

Vi T AP

valid only when ¢4 > va. Additionally, cr4 < ¢p must be taken for reasons discussed in the introduction to Section
4. As with the first quasi-kink solution, an expression involving the first explicit asymmetry term cannot be determined
(apart from the asymmetry contained in ¢ ,). This is similar to the expression obtained in Equation (18b) in Edwin
& Roberts (1982), and we can reduce Equation (27) to that equation by taking ¢ = 0.

Both solutions for quasi-kink waves do not display any explicit dependence on the magnetic asymmetry parameter
C. However, defining the speeds vy and cr 4, the asymmetry dependence is contained in these quantities and allow for
an expansion of the solution such that the term of size { disappears. Therefore the effects of magnetic asymmetry are
present in the speed that the expansion is about.

The frequency ratio of the first harmonic eigenmode to the fundamental mode is not calculated for either of the
quasi-kink frequency solutions. This is because the study is concerned with analysing magnetic asymmetry, and as
the eigenfrequency solutions contain no explicit asymmetry terms, the frequency ratio will not contain terms explicitly
involving the magnetic asymmetry parameter ¢ and is therefore not of interest.

None of the eigenfrequencies for the quasi-kink modes can be compared to the solutions given in Oxley et al. (2020).
This is because the solutions found here are derived under the assumption that the external magnetic field is not
insignificant when compared to the internal magnetic field, and if we were to try and reduce the size of the external
field B; to zero, we would have to make a separate analysis. Doing so would recover a similar solution to Equation
(31) in Oxley et al. (2020), however, that analysis under limiting conditions is not included. The main reason for this
is that our study is focused on the effects of the external magnetism on the standing waves.

Nlustrations of the fundamental and first harmonic standing quasi-kink waves are given in Figures 6 and 7.

5. AMPLITUDES OF STANDING HARMONIC MODES

The focus in this section is to derive the amplitude difference between the two sides of the magnetic slab embedded in
a magnetically asymmetric environment. More precisely, we will take the magnitude of the difference of the amplitudes
of the standing oscillations at the two sides of the slab. This quantity will be denoted Dg and Dy for the quasi-sausage
and quasi-kink modes, respectively. Using Equation (10), the solution for the velocity perturbation inside the slab can
be written as 9, = B cosh(mgz) + Csinh(moz), and the arbitrary constants B and C will appear in the solutions for
the amplitude difference between the two sides of the slab. The relation &, (z) = i, (x)/w is used at = = +x¢, where
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Figure 6. Illustration of a fundamental standing quasi- Figure 7. Same as Figure 6 but for the first harmonic.
kink mode oscillation in the slab embedded in a magnet-
ically asymmetric environment.

€2(20) and &,(—x0) are the amplitudes of oscillation at the slab boundaries (Allcock & Erdélyi 2018). Similarly, as
with the eigenfrequencies, the precise details of the derivation are not included. Counterpart similar quantities are
derived in both Oxley et al. (2020) and Allcock & Erdélyi (2018), and more information regarding the derivation can
be found in both of these studies. Care must be taken once again as the solutions are only valid under certain orderings
of characteristic speeds as discussed where the eigenfrequencies are presented in Section 4.

The amplitude difference between the two sides of the magnetic slab in a magnetically asymmetric environment
takes the following from for both the quasi-sausage and quasi-kink oscillations:

u(wo)| -

&(:m)]‘ ‘j} (1o (0)] |om<xo>|)’. (28)

5.1. Quasi-sausage Modes

In the case of the quasi-sausage modes, 9,(z) and ,(—zo) (along with &, (z¢) and &, (—a0)) will have opposite
signs, so Equation (28) reduces to

~ 1, .
Ds =[és a0 +x(~20)] = (Bato0) + 22 (-a0) . (29
The amplitude difference of the quasi-sausage mode corresponding to the eigenfrequency given by Equation (18) is
V=ILpovio(cf + v50) 2 (e} — c3o)/? y
VT picd(cg — v51) Y2 (g — 3) /2 (c] +vh) Y2

2 2 2 2 2 2
VA (c1 = co) (V1 — CFo) Va1
12)<1+ 5 " Sl L—1., (30)

2(”,241 — C1o (cpq — CTO)(C% + U%l)

where the ordering va1 < crg < ¢1 is taken, just as with the solution for the eigenfrequency given in Equation (18).
Next, the amplitude difference of the quasi-sausage mode corresponding to the eigenfrequency given by Equation

(21) is
f~ 1/2 1/2
polL ‘H‘|U?40—C1| o — 3| (e +v50)"/?

2|1/2
€1

2 2
VA1 N VN

Dg ~ (e|C
5 7 GelC] 20 - 3) 28+

(31)

PlC1|Co—‘31| 2 | Var —
where, for both solutions, C' is an arbitrary constant that can be set equal to one. The amplitude difference of
oscillations between the two sides of the magnetic slab, for both quasi-sausage frequencies, shows a rather complex
dependence on the characteristic speeds. Both expressions are linearly dependent on the magnetic asymmetry param-
eter ¢, while both solutions are directly related to € through different exponents. The first amplitude difference, given
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by Equation (30), shows a square-root dependence on ¢, while the second one, given by Equation (31), simply shows
a linear relationship with e. Due to the assumptions that m2,m? > 0, and the consequently ordered characteristic
speeds, the first solution, given by Equation (30), has been simplified.

A comparison to the counterpart quantities given in Oxley et al. (2020) can be noted here, however, the solutions
given by Equations (30) and (31) both contain a factor of the magnetic asymmetry parameter ¢, and as this represents
a different type of asymmetry to that considered in Oxley et al. (2020), the equations here do not reduce to any in
their study.

5.2. Quasi-kink Modes

Even though a solution for the quasi-kink frequencies was not determined with the inclusion of a term representing
magnetic asymmetry explicitly, we can still calculate the amplitude difference between the two sides of the magnetic
slab to leading-order. This is because, we only need to use a solution for eigenfrequency that includes the first correction
term (i.e. the term of order £2). These solutions are given in Equations (25) and (27).

In the case of the quasi-kink modes, 0 (zo) and 9,(—z¢) (along with &, (zo) and &, (—z¢)) will have the same sign,
so Equation (28) reduces to

Dic =[éste0) = & (=a0)| =|2 (6a(a0) ~ o2 (-a0) . )

The quasi-kink amplitude difference corresponding to the eigenfrequency given by Equation (25) is

Lodp2(c2 — v2)
DK ~ CB kF1\*~0 k . (33)
‘ 2nmpd (c2y — v3)(cG + v50) (V4o — v3) (v — ¢F)
The quasi-kink amplitude difference corresponding to the eigenfrequency given by Equation (27) is
Lo c3.  02(c2 — 2
Dy ~ (|B| A1¢74P1(C6 — €T a) (34)

2nmpg (et a — o) (cf + vho) (¢G4 — Vi) (e — cFa)’
where the ordering vag < cra < ¢ is taken, just as with the solution for the frequency given in Equation (27).

For both quasi-kink amplitude difference solutions B is an arbitrary constant that can be set equal to one. The
amplitude difference between the two sides of the slab, for both quasi-kink eigenfrequencies, also shows a complex
dependence on the characteristic speeds, just as for the quasi-sausage modes. Both are linearly dependent on the
magnetic asymmetry parameter ¢, and do not depend on ¢ to leading-order. Due to the assumptions that m2, m? > 0,
and the consequently ordered characteristic speeds, the second solution, given by Equation (34), has been simplified.

As discussed in Section 4.2, none of the derived frequencies for the quasi-kink modes can be compared to those

derived in Oxley et al. (2020), and consequently the above obtained amplitude expressions cannot be compared with
those derived by Oxley et al. (2020).

6. DISCUSSION

This study has built on the MHD wave studies in symmetric magnetic slab models introduced by Edwin & Roberts
(1982), which was further generalised for studying propagating MHD waves by Zsamberger et al. (2018) through the
inclusion of magnetic asymmetry, by considering now standing waves. Our work, here, is also a generalisation of
Oxley et al. (2020) who considered the asymmetry in external density with no external magnetic fields present. Now,
we introduced asymmetry between the external magnetic fields, and examined its effect on the standing modes. For
analytical progress, the thin slab and weak magnetic asymmetry approximations are used.

The derived equations for the eigenfrequencies of the standing harmonic modes in Section 4 show that they are more
prone to changes in the width of the magnetic slab than they are to changes in the external magnetic field, under the
assumption of an isothermal plasma.

Where it was possible to derive equations for the eigenfrequency which included dependence on ¢, which happened
to be the quasi-sausage modes, the frequency ratio of the first harmonic to the fundamental mode was also calculated.
Such frequency ratios are popular tools when conducting the analysis of signatures of MHD wave observations with
diagnostics in mind. It is confirmed that as the parameter ¢ is reduced to zero, so the slab becomes infinitely thin,
the frequency ratio is reduced to ws/w; = 2. This is as expected as the slab should then behave like a homogeneous
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magnetic string with fixed ends, representing line-tying. Note that as we take € — 0, we also need to reduce the f ¢ to
obey the ordering used to derive the analytic expressions. However, provided ¢ is non-zero, there is still a tangential
discontinuity (i.e. magnetic interface) and surface waves may exist.

The equations derived for the eigenfrequency ratio of the first harmonic to the fundamental mode can be applied
to observational results. Both solutions, given by Equations (19) and (22), could be inverted and an expression for
the asymmetry parameter ¢ could be determined. Then, given an observational measurement for the frequency ratio
wa /w1, it would be possible to calculate the percentage difference between the magnetic field strength on the two sides
of the slab, under the assumption that e.g. density remains constant and the asymmetry comes only from the magnetic
fields. Of course, if density-sensitive intensity measurements would accompany the frequency ratio measurements, the
restriction on assuming a constant density may be removed. Here, for the sake of making our point, we retain the
assumption on density.

Consider, as an example, a sunspot light bridge using the magnetic slab model presented in this study, with ap-
proximate estimates of width and length given by 0.7 Mm and 2.5 Mm (Schlichenmaier et al. 2016; Yang et al. 2017),
respectively, giving € =~ 0.14. Estimates of internal and external sound speeds are ¢y ~ 7 km/s and ¢; ~ 6 km/s
(Sobotka et al. 2013). Estimating the plasma-g in the interior and on the left-hand side, say, 5y ~ 1 ~ 2.5 (Borrero
& Ichimoto 2011; Felipe et al. 2016; Liu et al. 2016), allows approximate values for the Alfvén speed to be calculated,
and consequently approximate values for the tube speed can be obtained. Using pressure balance given by Equation
(4), a value for the ratio of the external (recall, here we use p; = p3) to the internal density can be determined (taking
v =5/3). Now, assume a deviation of say 2.5% is observed in the frequency ratio, ws/wy & 1.95. Using Equation (22),
an estimate for ¢ can now be determined. Consequently, a value for the percentage difference between the magnetic
field strength on the two sides of the slab can be calculated. Applying the explicit values given here, it is then found
that the magnetic field strength on the right-hand side is ~ 8.5% larger than the left-hand side.

The amplitude difference between the two sides of the magnetic slab, a potentially practical quantity to be utilised
through solar spatio-magneto-seismology for e.g. MHD diagnostics, was also calculated for both the quasi-sausage and
quasi-kink oscillations. The amplitude differences reduce to zero when the magnetic asymmetry is removed from the
system, as expected. The amplitude difference is a potentially observable quantity, and combining observational data
with inversion of the equation for the amplitude difference could yield expressions for the magnetic field strength in
one of the regions. Applying such inversions to the observations provides an example of the power of solar magneto-
seismology. It is expected that observations with ultra-high spatial resolution will be needed that only may be yielded
by the capabilities of Daniel K. Inouye Solar Telescope (DKIST).

In Oxley et al. (2020), a similar procedure was employed to study a magnetic slab embedded in a non-magnetic
asymmetric environment, and the eigenfrequencies and amplitudes were analysed under the thin slab and weak asym-
metry assumptions. As the present study provides a similar analysis with the complication of an external magnetic
field, a comparison can be carried out between the solutions for eigenfrequencies and amplitudes of the two studies.
It is evident that the eigenfrequency given by Equation (18) reduces to that given by Equation (26) in Oxley et al.
(2020) provided the asymmetry in both studies is reduced to zero and the external magnetism is removed from this
model. Due to the different types of asymmetry considered in the two studies, terms involving asymmetry are not
compared. Further, there are solutions presented here that have no counterpart in the magnetic slab embedded in a
non-magnetic external environment.

A derivation of estimating both the relative eigenfrequency and the relative amplitude differences due to asymmetry
were carried out in Oxley et al. (2020). By considering the phenomenon of weak asymmetry as a perturbation to a
symmetric magnetized plasma slab, an application of the Rayleigh-Ritz technique was made. Here, we have carried
out a derivation of the eigenfrequencies of the quasi-sausage waves, under the assumptions of ¢ and ¢ being of the same
order, and taking a similar approach to that in Oxley et al. (2020) is possible here. Consider the solution given by
Equation (18), the results would yield that the relative differences in the eigenfrequency due to magnetic asymmetry
would be of the order (e, whereas the relative amplitude difference due to asymmetry would be of the order ¢. This
finding shows, as predicted by the Rayleigh-Ritz technique, that the eigenfrequencies are affected by asymmetry to
higher-order in small quantities than the amplitudes.
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