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Towards Orientation Learning and Adaptation in

Cartesian Space
Yanlong Huang, Fares J. Abu-Dakka, João Silvério, and Darwin G. Caldwell

Abstract—As a promising branch of robotics, imitation learn-
ing emerges as an important way to transfer human skills to
robots, where human demonstrations represented in Cartesian
or joint spaces are utilized to estimate task/skill models that can
be subsequently generalized to new situations. While learning
Cartesian positions suffices for many applications, the end-
effector orientation is required in many others. Despite recent
advances in learning orientations from demonstrations, several
crucial issues have not been adequately addressed yet. For
instance, how can demonstrated orientations be adapted to pass
through arbitrary desired points that comprise orientations and
angular velocities? In this paper, we propose an approach that is
capable of learning multiple orientation trajectories and adapting
learned orientation skills to new situations (e.g., via-points and
end-points), where both orientation and angular velocity are
considered. Specifically, we introduce a kernelized treatment
to alleviate explicit basis functions when learning orientations,
which allows for learning orientation trajectories associated with
high-dimensional inputs. In addition, we extend our approach
to the learning of quaternions with angular acceleration or jerk
constraints, which allows for generating smoother orientation
profiles for robots. Several examples including experiments with
real 7-DoF robot arms are provided to verify the effectiveness of
our method.

Index Terms—imitation learning, orientation learning, gener-
alization, human-robot collaboration.

I. INTRODUCTION

IN many challenging tasks (e.g., robot table tennis [2] and

bimanual manipulation [3]), it is non-trivial to manually de-

fine proper trajectories for robots beforehand, hence imitation

learning is suggested in order to facilitate the transfer of human

skills to robots [4]. The basic idea of imitation learning is to

model consistent or important motion patterns that underlie

human skills and, subsequently, employ these patterns in new

situations. A myriad of imitation learning techniques have

been reported in the past few years, such as dynamic move-

ment primitives (DMP) [5], probabilistic movement primitives

(ProMP) [6], task-parameterized Gaussian mixture model (TP-

GMM) [7] and kernelized movement primitives (KMP) [8].
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Preliminary results have been presented in IEEE International Conference
on Robotics and Automation [1].

While the aforementioned skill learning approaches have

been proven effective for robot trajectory generation at the

level of Cartesian positions and joint angles [9], [10], [11],

learning of orientation in task space still imposes great chal-

lenges. Unlike position operations in Euclidean space, orien-

tation is accompanied by additional constraints, e.g., the unit

norm of the quaternion representation or the orthogonal con-

straint of rotation matrices. In many previous work, quaternion

trajectories are learned and adapted without considering the

unit norm constraint (e.g., orientation TP-GMM [3] and DMP

[12]), leading to improper quaternions and hence requiring an

additional renormalization.

Instead of learning quaternions in Euclidean space, a few

approaches that comply with orientation constraints have been

proposed. One representative type of approach is built on

DMP [13], [14], [15], where unit quaternions were used to

represent orientation and different reformulations of DMP

were developed to ensure proper quaternions over the course

of orientation adaptation. However, [13], [14], [15] can only

adapt quaternions towards a desired target with zero angular

velocity as a consequence of the spring-damper dynamics

inherited from the original DMP.

Another solution of learning orientation was proposed in

[16], where GMM was employed to model the distribution

of quaternion displacements so as to avoid the quaternion

constraint. However, this approach only focuses on orien-

tation reproduction without addressing the adaptation issue.

In contrast to [16] that learns quaternion displacements, the

Riemannian topology of the S
3 manifold was exploited in

[17] to probabilistically encode and reproduce distributions

of quaternions. Moreover, an extension to task-parameterized

movements was provided in [17], which allows for adapting

orientation tasks to different initial and final orientations.

However, adaptation to orientation via-points and angular

velocities is not provided.

In addition to the above-mentioned issues, learning orienta-

tions associated with high-dimensional inputs is important. For

example, in a human-robot collaboration scenario, the robot

end-effector orientation is often required to react promptly and

properly according to the user’s state (e.g., hand poses). More

specifically, the robot might need to adapt its orientation in

accordance to dynamic environments. The results [12], [13],

[14], [15] are built on time-driven1 DMP, and hence it is non-

straightforward to extend these works to learn demonstrations

1Despite that time is often transformed into a phase variable in DMP, we
will refer to DMP as a time-driven approach, since time and phase are 1-
dimensional and their mapping is bijective, which make them be equivalent
in our argument.
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TABLE I: Comparison Among the State-of-the-Art and Our Approach

Probabilistic Unit norm Via-quaternion Via-angular velocity End-quaternion End-angular velocity Angular acc (or jerk) constraints Multiple inputs†

Silvério et al. [3] X - - - X - - X

Pastor et al. [13] - X - - X -∗ - -

Ude et al. [14] - X - - X -∗ - -

Abu-Dakka et al. [15] - X - - X -∗ - -

Kim et al. [16] X X - - - - - X

Zeestraten et al. [17] X X - - X - - X

Saveriano et al. [18] - X X X X X - -

Kramberger et al. [19] - X - - X -∗ - -‡

Our approach X X X X X X X X

* In these works, primitives end with zero angular velocity, i.e., one can not set a desired non-zero velocity.
† The multiple inputs are parts of the demonstrations, which shall be distinguished from external contextual variables. For example, in a human-robot
handover task, a typical demonstration consists of a varying human hand trajectory (i.e., high-dimensional inputs) and a robot trajectory (i.e., outputs).
‡ This work considers the generalization of demonstrations towards different external contextual (or conditional) states (which could be high-dimensional).
However, the demonstrations are composed of time sequences (i.e., 1-D input) and the corresponding robot trajectories (i.e., outputs).

consisting of high-dimensional varying inputs and deal with

tasks where the robot should react to a high number of input

variables, e.g., the hand position of a human partner in a

collaborative task. In contrast, due to the employment of

GMM, learning orientations with multiple inputs is feasible

in [3], [16], [17]. However, extending these approaches to

tackle adaptations towards via-points associated with multi-

dimensional inputs is non-trivial.

While many imitation learning approaches focus on mim-

icking human demonstrations, the constrained skill learning

is often overlooked. As discussed in [20], [21], trajectory

smoothness (e.g., acceleration and jerk) will influence robot

performance, particularly in time-contact systems (e.g., strik-

ing movement in robot table tennis). Thus, it is desirable to

incorporate smoothness constraints into the process of learning

orientations.

In summary, if we consider the problem of adapting quater-

nions and angular velocities to pass through arbitrary desired

points (e.g., via-point and end-point) while taking into account

high-dimensional inputs and smoothness constraints, no pre-

vious work in the scope of imitation learning provides an all-

encompassing solution.

In this paper, we aim at providing an analytical solution

that is capable of

(i) learning multiple quaternion trajectories,

(ii) allowing for orientation adaptations towards arbitrary

desired points that consist of both unit quaternions and

angular velocities,

(iii) coping with orientation learning and adaptations associ-

ated with high-dimensional inputs,

(iv) accounting for smoothness constraints.

For the purpose of clear comparison, the main contributions

of the state-of-the-art approaches and our approach are sum-

marized in Table I.

This paper is structured as follows. We first illustrate the

probabilistic learning of multiple quaternion trajectories and

derive our main results in Section II. Subsequently, we extend

the obtained results to quaternion adaptations in Section III,

as well as quaternion learning and adaptation with angular

acceleration (or jerk) constraints in Section IV. After that, we

take a typical human-robot collaboration case as an example

to show how our approach can be applied to the learning of

quaternions along with multiple inputs in Section V. We evalu-

ate our method through several simulated examples (including

discrete and rhythmic quaternion profiles) and real experiments

(a painting task with time input on Barrett WAM robot and a

handover task with a multi-dimensional input on KUKA robot)

in Section VI. In Section VII, we discuss the related work as

well as limitations and possible extensions of our approach.

Finally, our work is concluded in Section VIII. Note that this

paper has comprehensively extended our previous work [1] in

terms of both theoretical parts (e.g., Sections IV and V) and

evaluations (e.g., Sections VI-B, VI-C and VI-E).

II. PROBABILISTIC LEARNING OF QUATERNION

TRAJECTORIES

As suggested in [7], [22], the probability distribution of

multiple demonstrations often encapsulates important motion

features and further facilitates the design of optimal controllers

[11], [23], [24], [25]. Nonetheless, the direct probabilistic

modeling of quaternion trajectories is intractable as a result

of the unit norm constraint. Similarly to [14], [16], [17],

we propose to transform quaternions into Euclidean space,

which hence enables the probabilistic modeling of transformed

trajectories (Section II-A). Then, we exploit the distribution of

transformed trajectories using a kernelized approach, whose

predictions allow for the retrieval of proper quaternions (Sec-

tion II-B). We summarize key notations used throughout the

paper in Table II.

A. Probabilistic modeling of quaternion trajectories

For the sake of clarity, let us define quaternions q1 =

[
v1
u1

]

and q2 =

[
v2
u2

]

, where qi ∈ S
3, vi ∈ R and ui ∈ R

3, i ∈

{1, 2}. Besides, we write q̄2 =

[
v2
−u2

]

as the conjugation of

q2 and, q = q1 ∗ q̄2 =

[
v
u

]

as the quaternion product of q1

and q̄2. The function log(·) : S3 7→ R
3 that can be used to

determine the difference vector between q1 and q2 is defined

as [14]

log(q1 ∗ q̄2) = log(q) =







arccos(v)
u

||u||
,u 6= 0

[0 0 0]⊤, otherwise,
(1)
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TABLE II: Description of Key Notations

q, q̄ , quaternion and its conjugation

qa , auxiliary quaternion

ζ , transformed state of quaternion

ω , angular velocity

p , Cartesian position

C , number of Gaussian components in GMM

πc,µc,Σc , parameters of c–th Gaussian component in GMM, see (3)

w , unknown parametric vector

φ(t), Θ(t) , B-dimensional basis function vector and its corresponding expanded matrix, see (10)

ϕ(t), Ω(t) , expanded matrices, see (27) and (30)

k(·, ·) , kernel function

Dq = {{tn,m,qn,m}Nn=1}
M
m=1 , M demonstrations in terms of time and quaternion, where each demonstration has N datapoints

Dζ = {{tn,m, ζn,m, ζ̇n,m}Nn=1}
M
m=1 , transformed data obtained from Dq , where ζn,m = log(qn,m ∗ q̄a), see (2)

Dη = {{tn,m,ηn,m}Nn=1}
M
m=1 , compact form of Dζ , where ηn,m = [ζ⊤n,m ζ̇

⊤

n,m]⊤

Dr = {tn, µ̂n, Σ̂n}Nn=1 , probabilistic reference trajectory extracted from Dη , with η̂n|tn ∼ N (µ̂n, Σ̂n)

Φ,Σ,µ , expanded matrices/vectors defined on Dr , see (14)

k(ti, tj) , expanded kernel matrix, see (16) or (31)

D̃q = {t̃h, q̃h, ω̃h}
H
h=1 , H desired quaternion states

D̃ζ = {t̃h, ζ̃h,
˙̃
ζh}

H
h=1 , transformed states obtained from D̃q , see (19) and (23)

D̃η = {t̃h, η̃h}
H
h=1 , compact form of D̃ζ , where η̃ = [ζ̃

⊤ ˙̃
ζ⊤]⊤

D̃r = {t̃h, η̃h, Σ̃h}
H
h=1 , additional reference trajectory to indicate the transformed desired points

DU
r = {tUl ,µU

l ,ΣU
l }N+H

l=1 , extended reference trajectory, see (26)

D0 = {{sn,m, ξ0n,m}Nn=1}
M
m=1 , demonstration database with high-dimensional input sn,m and output ξ0n,m =

[

pn,m

qn,m

]

Ds = {{sn,m, ξn,m}Nn=1}
M
m=1 , transformed data obtained from D0 with ξn,m =

[

pn,m

log(qn,m ∗ q̄a)

]

Ds
r = {sn, µ̂n, Σ̂n}Nn=1 , probabilistic reference trajectory extracted from Ds

φ(s), Θ(s) , basis function vector with high-dimensional inputs and its corresponding expanded matrix, see (33)

k(si, sj) , expanded kernel matrix, see (35)

D̃
0
= {s̃h, ξ̃

0
h}

H
h=1 , H desired points associated with high-dimensional inputs

D̃
s
= {s̃h, ξ̃h}

H
h=1 , transformed desired data from D̃

0

D̃
s
r = {s̃h, ξ̃h, Σ̃h}

H
h=1 , additional reference trajectory for high-dimensional inputs

where || · || denotes ℓ2 norm. By using this function, demon-

strated quaternions can be projected into Euclidean space.

Let us assume that we can access a set of demonstrations

Dq = {{tn,m,qn,m}Nn=1}
M
m=1 with N being the time length

and M the number of demonstrations, where qn,m denotes

a quaternion at the n-th time-step from the m-th demon-

stration. In addition, we introduce an auxiliary quaternion2

qa, which is subsequently used for transforming demonstrated

quaternions into Euclidean space, yielding new trajectories as

Dζ = {{tn,m, ζn,m, ζ̇n,m}Nn=1}
M
m=1 with

ζn,m = log(qn,m ∗ q̄a) (2)

and ζ̇n,m ∈ R
3 being the derivative of ζn,m ∈ R

3.

It is worth pointing out that q and −q denote the same

orientation. In order to ensure that all demonstrations have

no discontinuities, we assume that q⊤

n,mqn+1,m > 0, ∀n ∈
{1, 2, . . . , N − 1}, ∀m ∈ {1, 2, . . . ,M}. Note that if this

is not satisfied, we can simply multiply qn+1,m by −1. In

addition, from the definition of log(·) in (1), we can see

that log(q ∗ q̄a) and log(−q ∗ q̄a) are different, albeit that

q ∗ q̄a and −q ∗ q̄a represent the same orientation. To avoid

this issue, at the n-th time step with n ∈ {1, 2, . . . , N}, we

assume (qn,i ∗ q̄a)
⊤(qn,j ∗ q̄a) > 0, ∀i, j ∈ {1, 2, . . . ,M},

implying that qn,1 ∗ q̄a,qn,2 ∗ q̄a, . . . ,qn,M ∗ q̄a stay in

the same hemisphere of S
3. If we write quaternion product

2qa should meet the constraint: qn,m ∗ q̄a 6= [−1 0 0 0]⊤, which shall
be seen in the Assumption 2 explained later.

into the form of matrix-vector multiplication, we have (qn,i ∗

q̄a)
⊤(qn,j ∗ q̄a) =

(
A(q̄a)qn,i

)
⊤
(
A(q̄a)qn,j

)
= q⊤

n,iqn,j ,

where A(q̄a) ∈ R
4×4 is an orthogonal matrix [3]. In summary,

demonstrations Dq should satisfy the following assumption:

Assumption 1 q⊤

n,iqn,j > 0, ∀n ∈ {1, 2, . . . , N},

∀i, j ∈ {1, 2, . . . ,M}. Moreover, q⊤

n,mqn+1,m > 0, ∀n ∈
{1, 2, . . . , N − 1}, ∀m ∈ {1, 2, . . . ,M}.

For simplicity, we denote η = [ζ⊤ ζ̇
⊤

]⊤ ∈ R
6 and accord-

ingly Dζ becomes Dη = {{tn,m,ηn,m}Nn=1}
M
m=1. Now, we

apply GMM [7] to model the joint probability distribution

P(t,η) from Dη , leading to

P(t,η) ∼
C∑

c=1

πcN (µc,Σc), (3)

where πc denotes prior probability of the c-th Gaussian

component whose mean and covariance are, respectively,

µc =

[
µt,c

µη,c

]

and Σc =

[
Σtt,c Σtη,c

Σηt,c Σηη,c

]

3. Then, Gaussian

mixture regression (GMR) [7], [26] is employed to retrieve

the conditional probability distribution, i.e.,

P(η|t) =
C∑

c=1

hc(t)N (µ̄c(t), Σ̄c) (4)

3In order to keep notations consistent, we still use notations µt,c and Σtt,c

to represent scalars.
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with

hc(t)=
πcN (t|µt,c,Σtt,c)

∑C
i=1 πiN (t|µt,i,Σtt,i)

, (5)

µ̄c(t)=µη,c +Σηt,cΣ
−1
tt,c(t− µt,c) (6)

and Σ̄c = Σηη,c −Σηt,cΣ
−1
tt,cΣtη,c. (7)

With the properties of multivariate Gaussian distributions, we

can estimate E(η|t) and D(η|t) from (4), i.e., [7]

µ̂t = E(η|t) =
C∑

c=1

hc(t)µ̄c(t),

Σ̂t = D(η|t) = E(ηη⊤|t)− E(η|t)E⊤(η|t)

=

C∑

c=1

hc(t)
(
µ̄c(t)µ̄

⊤

c(t) + Σ̄c

)
− µ̂tµ̂

⊤

t .

(8)

Furthermore, we use N (µ̂t, Σ̂t) to approximate (4), i.e.,

P(η|t) ≈ N (µ̂t, Σ̂t). (9)

Please refer to [7], [8], [26] for more details. Therefore,

for a given time sequence4 {tn}
N
n=1 that spans the input

space, we can obtain its corresponding trajectory {η̂n}
N
n=1

with η̂n|tn ∼ N (µ̂n, Σ̂n), yielding a probabilistic reference

trajectory Dr = {tn, µ̂n, Σ̂n}
N
n=1. Here, we can view Dr as

a representative of Dη since it encapsulates the distribution of

trajectories in Dη in terms of mean and covariance. Therefore,

we exploit Dr instead of the original demonstrations Dη in

the next subsection.

B. Learning quaternions using a kernelized approach

As a recently developed framework, KMP [8] exhibits

several advantages over state-of-the-art approaches:

(i) In comparison with DMP [5] and TP-GMM [7], that

focus on target adaptations, KMP is capable of adapt-

ing trajectories towards arbitrary desired points (e.g.,

start/via/end- points).

(ii) Unlike DMP and ProMP [6] that rely on explicit defini-

tion of basis functions, KMP employs the kernel trick to

alleviate the definition of basis functions and thus allows

for convenient extensions to the learning and adaptation

of demonstrations consisting of high-dimensional inputs.

(iii) In comparison to DMP and ProMP, KMP can learn

complex non-linearity underlying demonstrations with

fewer open parameters owing to the kernelized form.

Note that kernel approaches generally have some limitations

[27], such as the storage of experience data and the increasing

computation complexity with the size of training data. How-

ever, our approach learns the probabilistic reference trajectory

instead of the raw demonstration data, thus the corresponding

storage load and computation cost are alleviated.

4The size of time sequence is not necessarily the same as that of demon-
strations.

We follow the treatment in KMP to learn the probabilistic

reference trajectory Dr. Formally, let us first write η in a

parameterized way5, i.e.,

η(t) =

[
ζ(t)

ζ̇(t)

]

=












φ⊤(t) 0 0

0 φ⊤(t) 0

0 0 φ⊤(t)

φ̇
⊤

(t) 0 0

0 φ̇
⊤

(t) 0

0 0 φ̇
⊤

(t)












︸ ︷︷ ︸

Θ⊤(t)

w, (10)

where φ(t) ∈ R
B represents a B-dimensional basis function

vector. In order to learn Dr, we consider the problem of

maximizing the posterior probability

J(w) =

N∏

n=1

P(Θ⊤(tn)w|µ̂n, Σ̂n), (11)

whose optimal solution w∗ can be computed as

w∗=argminw

N∑

n=1

(Θ⊤(tn)w−µ̂n)
⊤

(Σ̂n)
−1(Θ⊤(tn)w−µ̂n)

+λw⊤w,
(12)

where the objective to be minimized can be viewed as the

sum of covariance-weighted squared errors6. Note that a

regularization term λw⊤w with λ > 0 is introduced in (12)

so as to mitigate the over-fitting.

Similarly to the derivations of kernel ridge regression [28],

[29], [30], the optimal solution w∗ of (12) can be computed.

Thus, for an inquiry point t∗, its corresponding output η(t∗)
can be predicted as

η(t∗) = Θ⊤(t∗)w∗ = Θ⊤(t∗)Φ(Φ⊤Φ+ λΣ)−1µ (13)

where

Φ = [Θ(t1)Θ(t2) · · · Θ(tN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂⊤

N ]⊤.

(14)

Furthermore, (13) can be kernelized as

η(t∗) = k
∗(K+ λΣ)−1µ (15)

with k
∗
[i] = k(t∗, ti) and K[i,j] = k(ti, tj), i ∈

{1, 2, . . . , N}, j ∈ {1, 2, . . . , N}, where k(·, ·) is defined by

k(ti, tj) = Θ⊤(ti)Θ(tj) =

[
kt,t(ti, tj)I3 kt,d(ti, tj)I3
kd,t(ti, tj)I3 kd,d(ti, tj)I3

]

(16)

5Similar parametric strategies were used in DMP [5] and ProMP [6].
6Similar variance-weighted scheme has also been exploited in trajectory-

GMM [7], motion similarity estimation [22] and optimal control [24].
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with7

kt,t(ti, tj)=k(ti, tj),

kt,d(ti, tj)=
k(ti, tj + δ)− k(ti, tj)

δ
,

kd,t(ti, tj)=
k(ti + δ, tj)− k(ti, tj)

δ
,

kd,d(ti, tj)=
k(ti+δ, tj+δ)−k(ti+δ, tj)−k(ti, tj+δ)+k(ti, tj)

δ2
,

where δ > 0 is a small constant and k(ti, tj) = φ(ti)
⊤φ(tj)

represents the kernel function.

By observing (10), we can find that both φ(t) and φ̇(t)
are used. If we would have used φ(t) to parameterize ζ(t)

and ζ̇(t) independently of each other, i.e., η(t) =

[
ζ(t)

ζ̇(t)

]

=

diag
(
φ⊤(t),φ⊤(t), . . . ,φ⊤(t)

)
[

w1

w2

]

with w1 ∈ R
3B and

w2 ∈ R
3B , a simpler kernel k(ti, tj) = k(ti, tj)I6 can be

obtained in (16). However, this treatment would ignore the

derivative relationship between ζ(t) and ζ̇(t). Consequently, in

predictions (13) and (15), the derivative relationship between

ζ(t∗) and ζ̇(t∗) could not be guaranteed.

Once we have determined η(t∗) at a query point t∗ via (15),

we can use its component ζ(t∗) to recover the corresponding

quaternion q(t∗). Specifically, q(t∗) is determined by

q(t∗) = exp(ζ(t∗)) ∗ qa, (17)

where the function exp(·) : R3 7→ S
3 is [14], [15]

exp(ζ) =







[
cos(||ζ||)

sin(||ζ||) ζ
||ζ||

]

, ζ 6= 0

[1 0 0 0]⊤, otherwise.

(18)

It should be noted that the singularity issue exists in log(·),
thus an assumption is imposed throughout this paper:

Assumption 2 [14] The input domain of the mapping log(·)
is restricted to S

3 except for [−1 0 0 0]⊤, while the input

domain of the mapping exp(ζ) should fulfill the constraint

||ζ|| < π.

Under this assumption, both log(·) and exp(·) are bijective,

and exp(·) can be viewed as the inverse function of log(·),
leading to exp

(
log(q ∗ q̄a)

)
∗ qa = q. Please refer to [14]

for the discussion. Note that when we choose the auxiliary

quaternion qa in (2), it must obey the Assumption 2.

III. ADAPTATION OF QUATERNION TRAJECTORIES

While the approach in Section II-B is limited to orienta-

tion reproduction, we now consider the problem of adapting

the reference trajectory in terms of desired quaternions and

angular velocities. To do so, we propose to transform desired

orientation states into Euclidean space (Section III-A), and

subsequently we reformulate the kernelized learning approach

to incorporate these transformed desired points (Section III-B).

Finally, the adapted trajectory in Euclidean space is used to

retrieve its corresponding adapted quaternion trajectory.

7Note that φ̇(t) is approximated by φ̇(t) ≈ φ(t+δ)−φ(t)
δ

in order to
facilitate the following kernelized operations.

A. Transform desired quaternion states

Let us denote H desired quaternion states as D̃q =
{t̃h, q̃h, ω̃h}

H
h=1, where q̃h ∈ S

3 and ω̃h ∈ R
3 represent de-

sired quaternion and angular velocity at time t̃h, respectively.

Similarly to (2), the desired quaternion q̃h can be transformed

as

ζ̃h = log(q̃h ∗ q̄a). (19)

In order to incorporate the desired angular velocity ω̃h, we

resort to the relationship between derivatives of quaternions

and angular velocities, i.e., [14], [15]

q̇ =
1

2

[
0
ω

]

∗ q ⇒ q(t+ δt) = exp
(ω

2
δt

)

∗ q(t), (20)

where δt > 0 denotes a small constant. By using (20), we can

compute the desired quaternion at time t̃h + δt as

q̃(t̃h + δt) = exp

(
ω̃h

2
δt

)

∗ q̃h, (21)

which is subsequently transformed into Euclidean space via

(2), resulting in

ζ̃(t̃h + δt) = log(q̃(t̃h + δt) ∗ q̄a). (22)

Thus, we can approximate the derivative of ζ̃h as

˙̃
ζh ≈

ζ̃(t̃h + δt)− ζ̃h

δt

=
log
((
exp( ω̃h

2 δt) ∗ q̃h

)
∗ q̄a

)
−log(q̃h ∗ q̄a)

δt
.

(23)

Now, D̃q can be transformed into D̃ζ = {t̃h, ζ̃h,
˙̃
ζh}

H
h=1 via

(19) and (23), which can be further rewritten in a compact

way as D̃η = {t̃h, η̃h}
H
h=1 with η̃h = [ζ̃

⊤

h
˙̃
ζ⊤h]

⊤ ∈ R
6. In

addition, we can design a covariance Σ̃h ∈ R
6×6 for each

desired point η̃h to control the precision of adaptations. Thus,

we can obtain an additional probabilistic reference trajectory

D̃r = {t̃h, η̃h, Σ̃h}
H
h=1 to indicate the transformed desired

quaternion states.

B. Adapting quaternion trajectories towards desired points

Formally, the adaptation problem can be addressed by

incorporating D̃r into (12), i.e.,

w∗ = argminw

N∑

n=1

(Θ⊤(tn)w−µ̂n)
⊤

(Σ̂n)
−1(Θ⊤(tn)w−µ̂n)

︸ ︷︷ ︸

imitation

+

H∑

h=1

(
Θ⊤(t̃h)w−η̃h

)
⊤

(Σ̃h)
−1
(
Θ⊤(t̃h)w−η̃h

)

︸ ︷︷ ︸

adaptations

+ λw⊤w
︸ ︷︷ ︸

regularizer

,

(24)

whose compact representation is

w∗ = argminw

N+H∑

l=1

(
(
Θ⊤(tUl )w − µU

l

)⊤
(ΣU

l )
−1

(
Θ⊤(tUl )w − µU

l

)
)

+ λw⊤w,

(25)
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with
{

tUl = tl,µ
U
l = µ̂l,Σ

U
l = Σ̂l, 1 ≤ l ≤ N

tUl = t̃l−N ,µU
l = η̃l−N ,ΣU

l = Σ̃l−N , N+1 ≤ l ≤ N+H.
(26)

It can be observed that the new objective (25) shares the

same form with (12), except that the reference trajectory

DU
r = {tUl ,µ

U
l ,Σ

U
l }

N+H
l=1 in (25) is longer than that in

(12), thus the solution of (25) can be determined in a similar

way. Finally, η(t) = [ζ⊤(t) ζ̇
⊤

(t)]⊤ can be computed via (15)

and, subsequently, q(t) is recovered from (17) by using ζ(t).
In this case, q(t) is capable of passing through the desired

quaternions q̃h with desired angular velocities ω̃h at time t̃h,

provided that Σ̃h is small enough8.

IV. QUATERNION ADAPTATIONS WITH ANGULAR

ACCELERATION/JERK CONSTRAINTS

It is well known that robot trajectories should be smooth

in order to facilitate the design of controllers as well as the

execution of motor commands [20], [21]. For instance, in

a striking task that needs fast striking motions, extremely

high accelerations or jerks may degrade the final striking

performance, given the physical limits of motors. It is possible

to formulate this constraint as an optimization problem and

search for the optimal trajectory via an iterative scheme, as

done in [20]. In this section, we consider the problem of

learning and adapting quaternion trajectories while taking into

account angular acceleration or jerk constraints. Specifically,

we aim to provide an analytical solution to the issue.

Formally, we consider the angular acceleration or jerk con-

straints as minimizing
∑N

n=1 ||ω̇(tn)||
2 or

∑N
n=1 ||ω̈(tn)||

2.

Note that the aforementioned imitation learning problem (12)

is built on the trajectory ζ(t), therefore we need to find the

relationship between ω(t) and ζ(t). Here, we provide two

main results:

Theorem 1 Given the definition ζ(t) = log(q(t) ∗ q̄a),
if we let q(t1) = qa, then the optimal quaternion trajectory

{q(tn)}
N+2
t=1 of minimizing

∑N
n=1 ||ζ̈(tn)||

2 corresponds to the

optimal solution of minimizing
∑N

n=1 ||ω̇(tn)||
2.

Proof. The minimization of
∑N

n=1 ||ζ̈(tn)||
2 implies that

ζ̇(t1) = ζ̇(t2) = · · · = ζ̇(tN ) = ζ̇(tN+1).

Consequently, we can write ζ(tn+1) = ζ(tn)+∆ with ∆ ∈ R
3

being a constant. Given q(t1) = qa, we have ζ(t1) = 0 and

ζ(tn) = (n− 1)∆, n = 1, 2, . . . , N + 2.

Using the definition of ζ(t), we can obtain the optimal quater-

nion trajectory {q(tn)}
N+2
t=1 of minimizing

∑N
n=1 ||ζ̈(tn)||

2,

i.e.,

q(tn) = exp
(
(n− 1)∆

)
∗ qa.

8In (24) both the ‘imitation’ and ‘adaptation’ have impacts on w∗ and
both terms rely on their own covariance matrices. Thus, if one needs precise

adaptation, Σ̃h should be set far smaller (e.g., at least 2-3 orders of magnitude)
than the variance of the reference trajectory.

Now, we use the optimal quaternion trajectory to calculate the

corresponding {ω(tn)}
N+1
n=1 . Specifically, we have9

ω(tn) =
2

δt
log
(
q(tn+1) ∗ q(tn)

)

=
2

δt
log
(
exp(n∆) ∗ exp((n− 1)∆)

)

=
2

δt
log(exp(∆)) =

2

δt
∆

with δt being the time interval between q(tn) and q(tn+1),
which implies

ω(t1) = ω(t2) = · · · = ω(tN ) = ω(tN+1).

Thus, we have ω̇(tn) = 0, n = 1, 2, . . . , N , which corre-

sponds to the optimal solution of minimizing
∑N

n=1 ||ω̇(tn)||
2.

Theorem 2 Given the definition ζ(t) = log(q(t)∗q̄a), if we

let q(t1) = qa and ω(t1) = 0, then the optimal quaternion

trajectory {q(tn)}
N+3
t=1 of minimizing

∑N
n=1 ||

...
ζ (tn)||

2 corre-

sponds to the optimal solution of minimizing
∑N

n=1 ||ω̈(tn)||
2.

Proof. Minimizing
∑N

n=1 ||
...
ζ (tn)||

2 corresponds to

ζ̈(t1) = ζ̈(t2) = · · · = ζ̈(tN ) = ζ̈(tN+1).

Then, we have ζ̇(tn+1) = ζ̇(tn) + ∆, where ∆ ∈ R
3 is

a constant. With the approximation ζ̇(t) = ζ(t+δt)−ζ(t)
δt

, we

have ζ(tn+2) = 2ζ(tn+1)−ζ(tn)+δt∆. Note that we assume

q(t1) = qa and ω(t1) = 0. Hence, q(t1) = q(t2) = qa and

ζ(1) = ζ(2) = 0. It can be further seen that

ζ(tn) =
(n− 1)(n− 2)

2
δt∆, n = 1, 2, . . . , N + 3.

Using the definition of ζ(t), we have the optimal quaternion

trajectory {q(tn)}
N+3
t=1 of minimizing

∑N
n=1 ||

...
ζ (tn)||

2, i.e.,

q(tn) = exp

(
(n− 1)(n− 2)

2
δt∆

)

∗ qa.

The corresponding angular velocity {ω(tn)}
N+2
n=1 of using the

optimal quaternion trajectory is

ω(tn) =
2

δt
log
(

q(tn+1) ∗ q(tn)
)

=
2

δt
log

(

exp

(
n(n− 1)

2
δt∆

)

∗ exp

(
(n− 1)(n− 2)

2
δt∆

))

=
2

δt
log
(
exp
(
(n− 1)δt∆

))
= 2(n− 1)∆,

9The following results are used in Theorems 1 and 2:

(i) If ∆ 6= 0 and i 6= j,

exp(i∆) ∗ exp(j∆) =

[

cos(||i∆||)
sin(||i∆||) ∆

||∆||

]

∗

[

cos(||j∆||)
−sin(||j∆||) ∆

||∆||

]

=

[

cos(||i∆|| − ||j∆||)
sin(||i∆|| − ||j∆||) ∆

||∆||

]

=

[

cos((i− j)||∆||)
sin((i− j)||∆||) ∆

||∆||

]

=

[

cos(|i− j|||∆||)

sin(|i− j|||∆||) (i−j)∆
|i−j|||∆||

]

= exp((i− j)∆).

(ii) If ∆ = 0 or i = j,

exp(i∆) ∗ exp(j∆)=

[

1
0

]

=exp((i− j)∆).
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which implies that ω(tn+1)− ω(tn) = 2∆. Thus,

ω̇(t1) = ω̇(t2) = · · · = ω̇(tN ) = ω̇(tN+1),

leading to ω̈(tn) = 0, n = 1, 2, . . . , N . So, we can con-

clude that the optimal trajectory {q(tn)}
N+3
n=1 that minimizes

∑N
n=1 ||

...
ζ (tn)||

2 yields the optimal solution {ω(tn)}
N+2
n=1 of

minimizing
∑N

n=1 ||ω̈(tn)||
2.

With Theorems 1 and 2, the problem of learning quater-

nions with angular acceleration or jerk constraints can be

approximately tackled by incorporating
∑N

n=1 ||ζ̈(tn)||
2 or

∑N
n=1 ||

...
ζ (tn)||

2 into the objective (12). For brevity, we take

the angular acceleration constraints as an example, while the

case of angular jerk constraints can be treated in a similar way.

Following the parameterization form in (10), we have

ζ̈(t) =






φ̈
⊤

(t) 0 0

0 φ̈
⊤

(t) 0

0 0 φ̈
⊤

(t)






︸ ︷︷ ︸

ϕ⊤(t)

w. (27)

Thus, the problem of learning orientations with angular accel-

eration constraints becomes

w∗=argminw

N∑

n=1

(Θ⊤(tn)w−µ̂n)
⊤

(Σ̂n)
−1(Θ⊤(tn)w−µ̂n)

︸ ︷︷ ︸

imitation

+λa

N∑

n=1

(ϕ⊤(tn)w)⊤(ϕ⊤(tn)w)

︸ ︷︷ ︸

angular acceleration constraints

+ λw⊤w
︸ ︷︷ ︸

regularizer

,

(28)

where λa > 0 acts as a trade-off regulator between orientation

learning and angular acceleration minimization.

Let us re-arrange (28) into a compact form, resulting in

w∗=argminw

N∑

n=1

(Ω⊤(tn)w−µ̄n)
⊤

(Σ̄n)
−1(Ω⊤(tn)w−µ̄n)

+λw⊤w,
(29)

where

Ω(tn)=[Θ(tn) ϕ(tn)] , µ̄n=

[
µ̂n

0

]

, Σ̄n=

[
Σ̂n 0

0 1
λa

I

]

. (30)

It can be observed that (29) shares the same formula as (12),

and hence we can follow (13)–(18) to derive a kernelized

solution for quaternion reproduction with angular acceleration

constraints. Note that Ω(t) comprises the second-order deriva-

tive of φ(t), thus a new kernel matrix

k(ti, tj) = Ω⊤(ti)Ω(tj) =

[
Θ⊤(ti)Θ(tj) Θ⊤(ti)ϕ(tj)
ϕ⊤(ti)Θ(tj) ϕ⊤(ti)ϕ(tj)

]

(31)

is required instead of (16). Please see the detailed derivations

of kernelizing (31) in Appendix A.

Similarly, by analogy with (12) and (24), the adaptation

issue with angular acceleration or jerk constraints can be

addressed by reformulating (29) to include the desired points.

It is noted that the assumptions in Theorem 1 (i.e., q(t1) = qa)

and Theorem 2 (i.e., q(t1) = qa and ω(t1) = 0) are trivial

since they can be guaranteed by simply specifying a desired

point at time t1.

V. LEARNING QUATERNIONS ASSOCIATED WITH

HIGH-DIMENSIONAL INPUTS

While the aforementioned results focus on learning and

adapting orientation trajectories associated with time input,

we now consider the case of learning orientations with high-

dimensional varying inputs. Specifically, we focus on the prob-

lem of learning demonstrations D0 = {{sn,m, ξ0n,m}Nn=1}
M
m=1

consisting of inputs sn,m and outputs10 ξ0n,m =

[
pn,m

qn,m

]

,

where sn,m ∈ R
I denotes an I-dimensional input vector

and ξ0n,m stands for the concatenation of end-effector position

p and quaternion q in Cartesian space. Please note that the

varying high-dimensional input trajectories {{sn,m}Nn=1}
M
m=1

are parts of demonstrations, which shall not be confused with

external contextual variables describing the conditions under

which demonstrations are recorded.

In order to illustrate the importance of learning demon-

strations that consist of multiple varying inputs, we first

motivate this problem in Section V-A. After that, we show the

modeling of demonstrations D0 in Section V-B, which is later

exploited to derive the kernelized approach for learning and

adapting quaternions associated with high-dimensional inputs

(Sections V-C and V-D).

A. Why learning demonstrations comprising high-dimensional

inputs?

Let us take human-robot collaboration as an example, where

the robot is demanded to react properly in response to the

human states (e.g., human hand positions/orientations). In

many previous work, human and robot motions are encoded by

taking time as input (e.g., DMP was used in [31] and ProMP

in [32]). Specifically, when the human trajectory is rescaled in

time, the corresponding robot trajectory with respect to time

will also be modified. However, this treatment will cause a

synchronization issue, since human motions in the new eval-

uations could be significantly different (e.g., faster/slower ve-

locity) from the demonstrated ones. For instance, assuming in

a human-robot handover task where demonstrations (including

human and robot motions) lasting for 10s are recorded, but in

the evaluation stage human hand has a pause for more than 10s
before moving. In this case, the robot will still keep moving as

its trajectory is driven by time. As a consequence, before the

human hand starts to move, the robot has finished its hand-

over action, which violates the synchronization constraints.

To avoid this issue, in [33] human movement duration in

new evaluations is required to be the same as the one in the

training demonstrations. However, as pointed out in [32], this

restriction on human motion duration is impractical. In order

to provide a generic solution for human-robot collaboration,

various strategies of phase-estimation and time-alignment are

designed towards synchronizing human and robot in [31], [32].

10Note that outputs that comprise multiple Cartesian positions, quaternions,
rotation matrices and joint positions can be tackled similarly.
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In contrast, we propose to consider high-dimensional vary-

ing signals (e.g., human hand positions/orientations) as inputs

and predict robot motions (e.g., Cartesian positions and ori-

entations) according to the sensed states of the human hand.

We have successfully tested this solution in previous work on

human-robot collaboration, namely in the collaborative hand

task [8] and robot-assisted painting task [11], [34]. However, in

none of those works we have considered orientation outputs, as

the proposed tools were designed for Euclidean data, and only

[8] considers adaptation to new, unseen inputs. Note that now

robot trajectory is directly driven by the state of the human

hand, thus time is not explicitly involved when predicting

robot actions. Recalling the above-mentioned example and

following our strategy, if the human hand has a pause (i.e.,

inputs are unchanged), the corresponding robot trajectory (i.e.,

outputs) will also remain unchanged. Therefore, the main

advantage of learning demonstrations consisting of multiple

inputs is that additional synchronization procedures are not

needed, providing a straightforward solution for accomplishing

complex collaboration tasks.

B. Modeling quaternions with high-dimensional inputs

Handling high-dimensional inputs requires a different treat-

ment, when compared to the time-driven case described in

Section II, due to the higher complexity of the input space.

Since we are considering quaternions as outputs, we follow

the procedure in Section II-A, transferring D0 into Ds =

{{sn,m, ξn,m}Nn=1}
M
m=1, where ξn,m=

[
pn,m

log(qn,m ∗ q̄a)

]

∈R
6.

Then, we model the joint probability distribution P(s, ξ) from

Ds via GMM, i.e.,

P(s, ξ) ∼
C∑

c=1

πcN (µc,Σc) (32)

with µc =

[
µs,c

µξ,c

]

and Σc =

[
Σss,c Σsξ,c

Σξs,c Σξξ,c

]

.

However, unlike the generation of probabilistic reference

trajectories from time-driven demonstrations (Section II-A), it

is not straightforward to decide the input sequence {sn}
N
n=1

for retrieving the corresponding reference trajectory, due to the

fact that s is high-dimensional.

Note that a proper input sequence should span the whole

input space, in order to adequately encapsulate all shown robot

behaviors. This is relatively straightforward when the input is

time, since the inputs of all demonstrations lie on one axis

and have roughly the same duration. When the input is high-

dimensional, one intuitive solution is to use the input parts of

all demonstrations, which, however, will lead to two issues:

(i) if all training inputs are used, redundancy will often arise,

leading to a data-inefficient solution, where multiple data-

points map to the same robot pose; (ii) if only parts of input

trajectories are exploited, one risks failing to capture important

input points.

Therefore, we propose to sample inputs from the marginal

probability distribution11 P(s). Specifically, we sample an

11Readers are suggested to refer to [35] for GMM sampling.

indicator variable zc with the probability πc and, subsequently,

we sample s from N (µs,c,Σss,c). By using this sampling

strategy, the input sequence {sn}
N
n=1 can be determined.

In this way, the input sequence captures the probabilistic

properties of the input space of demonstrations, where data-

dense regions (hence important) will lead to more sampled

input points and vice-versa for more sparse regions of the input

space. Accordingly, by using GMR we have the probabilistic

reference trajectory with high-dimensional inputs, denoted by

Ds
r = {sn, µ̂n, Σ̂n}

N
n=1. The resulting probabilistic reference

trajectory Ds
r hence encapsulates the probabilistic features

of demonstrations. It should be noted that, for sampling, N
needs not be the same as the number of points in each

demonstration, hence one has the freedom to sub-sample when

higher computational efficiency is required.

C. Learning quaternions with high-dimension inputs

Similarly to (10), we formulate the parametric trajectory

associated with high-dimensional inputs as

ξ(s) =








φ⊤(s) 0 · · · 0

0 φ⊤(s) · · · 0
...

...
. . .

...

0 0 · · · φ⊤(s)








︸ ︷︷ ︸

Θ⊤(s)

w. (33)

Note that
dφ(s)
dt

is not included in (33) since it relies on ds
dt

,

which is often unpredictable in real applications. Formally, we

formulate the imitation learning problem with multiple inputs

as maximizing

J(w) =

N∏

n=1

P(Θ⊤(sn)w|µ̂n, Σ̂n). (34)

Consequently, we can follow (12)–(15) to derive the kernelized

approach that is capable of learning high-dimensional inputs,

except that the definition of φ(·) is different and thus the kernel

definition in (16) becomes

k(si, sj) = Θ⊤(si)Θ(sj) = k(si, sj)I6. (35)

Therefore, given a query input s∗, we can employ (15) to

predict the output ξ(s∗) =

[
ξp
ξq

]

and, subsequently, re-

trieve the corresponding Cartesian state through

[
p(s∗)
q(s∗)

]

=
[

ξp
exp(ξq) ∗ qa

]

.

D. Adapting quaternions with high-dimensional inputs

Let us write H desired points as D̃
0
= {s̃h, ξ̃

0

h}
H
h=1 with

ξ̃
0

h =

[
p̃h

q̃h

]

. Then, we transform the desired points D̃
0

into Euclidean space, leading to D̃
s

= {s̃h, ξ̃h}
H
h=1 with

ξ̃h =

[
p̃h

log(q̃h ∗ q̄a)

]

. In order to incorporate the adaptation

precision, we can assign covariance matrices Σ̃h for various

transformed points ξ̃h. Thus, we have an additional reference
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Fig. 1: Evaluations of various approaches on simulated examples. (a) shows simulated quaternion trajectories and their corresponding angular velocities. (b)–(d)
display adapted quaternion trajectories towards new target (i.e., end-point) as well as the adapted angular velocities by using our approach (b), orientation-DMP
[14], [15] (c) and orientation TP-GMM [3] (d). Note that for all approaches the desired movement duration is 10s, the shaded area in (c) denotes extra time
required for DMP. The circles with bright colors denote desired quaternions and angular velocities, while the gray circles in (c) correspond to the delayed
desired points.

Fig. 2: Adaptations of quaternion and angular-velocity profiles with various constraints of desired points (depicted by circles), where (a1)–(a2) and (b1)–(b2)
correspond to the first and second evaluations, respectively. Note that (a1) and (b1) represent adaptations in the transformed space R3 that is determined via
(2), while (a2) and (b2) correspond to adaptations in S3 space.

trajectory that represents the transformed desired points in

Euclidean space, i.e., D̃
s

r = {s̃h, ξ̃h, Σ̃h}
H
h=1. According to

the discussion in Section III-B, we can concatenate D̃
s

r with

Ds
r = {sn, µ̂n, Σ̂n}

N
n=1, resulting in an extended reference

trajectory Ds
r
U

that can be used to generate a 6-D trajectory12

in Euclidean space and later recover the Cartesian trajectory

(comprising Cartesian position and quaternion) that passes

through various desired points defined by D̃
0
.

It is worth mentioning that, given the joint probability dis-

tribution P(s, ξ) in (32), GMR can be employed to predict the

corresponding output for a query input s∗ through calculating

P(ξ|s∗) . However, GMR is only limited for task reproduction

(i.e., reproducing demonstrations). When the adaptation prob-

lem is encountered, e.g., the predicted trajectory must pass

through the desired points D̃
0
, GMR becomes inapplicable,

since P(s, ξ) (extracted from demonstrations) does not address

the constraints from desired points. In contrast, within our

framework, both reproduction and adaptation issues can be

directly tackled by using Ds
r or Ds

r
U

.

12This trajectory passes through the transformed desired points D̃
s

.

VI. EVALUATIONS

In this section, we report several examples to illustrate the

performance of our approach:

(i) orientation adaptation towards a desired target point

(Section VI-A1), where orientation-DMP [14], [15] and

orientation TP-GMM [3] are employed as comparisons13;

(ii) orientation adaptations towards arbitrary desired

points in terms of quaternions and angular velocities

(Section VI-A2);

(iii) orientation adaptations with angular acceleration

constraints (Section VI-B);

(iv) rhythmic orientation reproduction and adaptations

(Section VI-C);

(v) concurrent adaptations of Cartesian position and ori-

entation in a painting task (Section VI-D);

(vi) learning Cartesian trajectory with high-dimensional

inputs in a human-robot collaboration scenario (Sec-

tion VI-E).

13In this section, q is represented as q = [qs qx qy qz ]⊤.
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TABLE III: Planned Errors of Our Approach and State-of-the-Art

Quaternion distance error∗ Angular velocity error
t = 10s∗∗ t = 15s t = 10s t = 15s

Our approach 0 - 0.0017 -

Orientation–DMP [14], [15] 0.0285 0.0046 0.0513 0.0034

Orientation TP-GMM [3] 0.0085 - 0.0498 -

*Quaternion distance is calculated by [14], [15]:

d(q1,q2) =

{

2π, q1 ∗ q̄2 = [−1 0 0 0]⊤

2|| log(q1 ∗ q̄2)||, otherwise.

**Note that the desired movement duration is 10s.

TABLE IV: Smoothness Costs of Our Approach and State-of-the-Art

Quaternion smoothness Angular-velocity smoothness
cost cq cost cω

Our approach 7.4326 × 10−4 8.5820 × 10−4

Orientation–DMP [14], [15] 7.7441 × 10−4 9.3905 × 10−4

Orientation TP-GMM [3] 7.8706 × 10−4 1.6463 × 10−3

*The smoothness costs (36)−(37) are evaluated between 0s and 10s.

The evaluations (i)–(iv) are verified in simulated examples

while (v)–(vi) are carried out on real robots. Videos of the

experimental evaluations as well as didactic codes are provided

at https://sites.google.com/view/quat-kmp.

A. Evaluations on quaternion adaptations

We collected five simulated quaternion trajectories with

time-length 10s, as depicted in Fig. 1(a), where minimal

jerk polynomial and renormalization are used to generate

smooth and proper quaternion trajectories. In order to show

the performance of our approach, we first compare it with

orientation-DMP [14], [15] and orientation TP-GMM [3] in

Section VI-A1. Subsequently, we evaluate our approach by

adapting quaternions and angular velocities towards vari-

ous desired points in Section VI-A2. The Gaussian kernel

k(ti, tj) = exp(−ℓ(ti − tj)
2) with ℓ = 0.01 and the regu-

larization factor λ = 1 are used in this section.

1) Comparison with state-of-the-art approaches: Since

orientation-DMP is restricted to target (i.e., end-point) adap-

tation while having zero angular velocity at the ending point,

we here consider an example with the desired point being

t̃1 = 10s, q̃1 = [0.7172 0.3586 0.5123 0.3074], ω̃1 = [0 0 0].
The auxiliary quaternion qa is set as the initial value of

simulated quaternion trajectories.

The evaluations of using our approach and orientation–DMP

are provided in Fig. 1(b)–(c). It can be seen from Fig. 1(b)

that our approach is capable of generalizing learned quaternion

trajectories to the new target point q̃1 while having zero

angular velocity at the ending time t̃1. However, orientation–

DMP needs extra time (depicted by shaded area) to converge to

the desired point. Furthermore, we use orientation TP-GMM14

to tackle the same target adaptation problem, whose adapted

trajectories are shown in Fig. 1(d).

14A second-order linear dynamics model is employed together with TP-
GMM towards obtaining smooth trajectories. Please refer to [3] for imple-
mentation details.

TABLE V: Angular Acceleration Costs Under Different λa

λa 101 102 103 104 105

cωd 0.0307 0.0303 0.0273 0.0183 0.0140

The planned errors of three methods in comparison with

the desired point is summarized in Table III, showing that our

approach achieves the best performance in terms of adaptation

precision. Note that the errors from DMP can possibly be

further reduced by tuning the relevant parameters, e.g., the

number of basis functions, bandwidth of basis functions and

the length of time step, but here we present the best results

we could obtain. In addition, we evaluate the smoothness of

adapted quaternion and angular-velocity profiles, where the

smoothness cost for quaternion is defined as

cq =
1

N

N−1∑

n=1

||q(tn+1)− q(tn)|| (36)

and the cost for angular velocity is

cω =
1

N

N−1∑

n=1

||ω(tn+1)− ω(tn)||. (37)

As can be seen in Table IV, our approach corresponds to the

smallest costs in terms of both cq and cω .

2) Adapting quaternion trajectory towards various desired

points: Now, we consider a more challenging adaptation task

that needs various desired points (i.e., via-/end- points) in

terms of quaternion and angular velocity. Note that orientation-

DMP [14], [15] and orientation TP-GMM [3] are not applica-

ble in this case. Two groups of quaternion adaptations in S
3,

accompanied by the corresponding adaptations of the projected

trajectories via (2) in R
3, are shown in Fig. 2, showing that our

approach indeed modulates quaternions and angular velocities

to pass through various desired points (plotted by circles).

B. Evaluations on quaternion adaptations with angular accel-

eration constraints

In this section, we consider quaternion adaptations with

angular acceleration constraints, where the same simulated

demonstrations, as plotted in Fig. 1(a), are employed. Specif-

ically, we aim to adapt quaternion profile, while taking into

account the angular acceleration constraints. In order to quan-

titatively show the performance of our approach, we define the

angular acceleration cost as

cωd =
1

N

N∑

n=1

||ω̇(tn)||
2 (38)

and meanwhile a group of penalty parameters λa are used.

We use Gaussian kernel for the evaluations. Other relevant

parameters are set as ℓ = 0.01 and λ = 1.

The evolved trajectories of quaternion and angular velocity

are depicted in Fig. 3, where the color changes from light to

dark as λa increases. Note that the evolved trajectories pass

through various desired points (depicted by circles) precisely.

The corresponding angular acceleration costs with different λa
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Fig. 3: Orientation adaptations with angular acceleration constraints, where quaternion profiles are adapted towards various desired points (depicted by colorful
circles). The cross ‘+’ represents the starting point of trajectories. The solid curves correspond to different values of λa, with color that switches from light
red to dark red corresponding to the increasing direction of λa.

Fig. 4: Reproduction and adaptation of rhythmic orientation trajectories by using our approach. (a) plots simulated quaternions and their corresponding angular
velocities, where the motion period is 10s. (b) and (c) show orientation reproduction and adaptation over three periods (i.e., 30s), respectively. Circles in (c)
denote the desired quaternion and angular velocity.

are provided in Table V, representing that cωd decreases as

λa increases (which indeed coincides with our interpretation

of the penalty coefficient). Thus, we can conclude that our

approach is capable of adapting quaternions towards various

desired points while incorporating angular acceleration con-

straints.

C. Evaluations on rhythmic quaternion trajectories

Differing from the aforementioned examples on point-to-

point quaternions, we here test our approach on rhythmic

quaternion trajectories. Note that rhythmic quaternions are

very important in many orientation-sensitive tasks, such as

screwing a lid off the bottle and wiping a surface. Simi-

larly to Section VI-A, we use polynomials to generate five

demonstrations (each lasts for 10s) for training our approach,

as shown in Fig. 4(a). The periodic kernel [36] k(ti, tj) =
exp(−ℓsin2(

ti−tj
T

π)) with ℓ = 0.4 and T = 10s is employed.

The regularization factor is set to be λ = 10. In this section,

the angular acceleration constraints are not considered, i.e.,

λa = 0, but one can easily incorporate these constraints into

rhythmic movements.

We first consider the reproduction capability of our ap-

proach, where quaternion and angular-velocity profiles over

three periods (i.e., 30s) are generated. It can be seen from

Fig. 4(b) that our method can reproduce trajectories that

maintain the shape of demonstrations and meanwhile exhibit

rhythmic properties. Second, we test the adaptation capa-

bility of our method by imposing a via-point constraint at

t = 3s. The adapted trajectories over three periods are

given in Fig. 4(c), where the quaternion and angular-velocity

trajectories are modulated towards the via-point (depicted by

circles) in each period. Moreover, the rhythmic property is

kept in this adaptation case.

D. Evaluations of learning time-driven Cartesian trajectories

on real robot

We here consider a painting task that requires the real

Barrett WAM robot to paint different areas with proper ori-

entations. Through kinesthetic teaching (first row in Fig. 5),
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Fig. 5: Painting task on the real Barrett WAM robot. First row shows
kinesthetic teaching of the painting task. Second row represents the task
reproduction.

six demonstrations comprising time, Cartesian position and

quaternion are recorded, as shown in Fig. 6(a). We first apply

our approach to task reproduction, i.e., without incorporating

the desired points. The auxiliary quaternion qa is set as the ini-

tial value of demonstrations. Gaussian kernel with ℓ = 0.001
is used and λ = 1. The reproduced Cartesian trajectory (solid

curves) and its corresponding measured trajectory (dashed

curves) are shown in Fig. 6(b). Snapshots of task reproduction

are provided in Fig. 5 (second row), where we can see that

the robot is capable of reproducing a similar task to that

demonstrated by the human.

Now, we consider two groups of adaptation evaluations

and, in each group, demonstrated Cartesian trajectories are

modulated towards two unseen desired points (i.e., via-point

and end-point). The adapted Cartesian trajectories are shown

in Fig. 6(c)-(d), where the planned trajectories (solid curves)

and real measured trajectories (dashed curves) are provided. It

can be seen that the planned trajectories are capable of meeting

various constraints, i.e., Cartesian position and quaternion

constraints. More explanations of the adaptation evaluations

are provided in our previous work [1].

E. Evaluations of learning Cartesian trajectories with high-

dimensional inputs on real robot

In this section, we consider a human-robot handover task,

where the robot moves towards the human user in order to

accomplish the handover task. Specifically, we consider human

hand position15 as inputs while robot end-effector position and

orientation as outputs. It is worth emphasizing that we aim to

predict robot Cartesian state (6-D16) in accordance to human

hand state (3-D) directly, without any additional operations

like phase-estimation [31], [32].

We collect five demonstrations in terms of human hand

position (red curves), as well as robot end-effector position

(black curves) and quaternion, as show in Fig. 7. Note that

the transformed trajectories of quaternions (yellow curves)

via (2) are plotted for the sake of visualization. Then, by

following the description in Section V-B, we can generate a

reference trajectory (associated with high-dimensional inputs)

for training our approach. The auxiliary quaternion qa is set

to be qa = [1 0 0 0]⊤. The Gaussian kernel is used and the

related parameters are ℓ = 1 and λ = 2.

15An optical tracker is used to measure human hand position.
16We here refer to quaternion as a 3-D variable due to the norm constraint,

albeit that our approach predicts four elements of quaternion simultaneously.

In order to evaluate our approach, we first consider a

reproduction task and subsequently an adaptation task where

a new handover location is needed. Figure 8 depicts human

hand trajectory (dashed red curve) and the corresponding robot

Cartesian trajectory planned by our approach (dashed black

and yellow curves) in the reproduction case, where Fig. 8(a)

and Fig. 8(b) correspond to positions and transformed quater-

nion data, respectively. In addition, in Fig. 9(a) the human

hand positions, robot Cartesian positions and orientations (in

terms of frames) are depicted together. It can be seen that

the robot accomplishes the handover task when human hand

trajectory resembles the demonstrated ones.

Now, we apply our approach to the adaptation situation,

where the handover takes place at a new point that is unseen

in demonstrations. This adaptation can be achieved by adding a

desired point {s̃1, p̃1, q̃1} into the original reference trajectory,

where s̃1 = p̃1 = pnew and q̃1 = qnew, ensuring that the

robot reaches the new handover location pnew with desired

quaternion qnew when the human hand arrives at pnew. The

adaptation evaluation is provided in Fig. 8, where the solid

red curve denotes the user hand trajectory while the solid

black and yellow curves correspond to the planned Cartesian

trajectory for the robot. Again, we here only provide the

transformed data of quaternions for the sake of easy observa-

tion. Similarly to the reproduction case, we represent human

hand positions, robot Cartesian positions and orientations (in

terms of frames) into a single plot, as shown in Fig. 9(b). By

observing Fig. 8 and 9(b), we can find that robot trajectory is

indeed modulated according to the user hand position, leading

to a successful handover at the new location. Snapshots of

kinesthetic teaching of handover task as well as reproduction

and adaptation evaluations are shown in Fig. 10. Thus, our

approach is effective in both reproduction and adaptation cases

while considering high-dimensional inputs.

VII. DISCUSSION

In this section, we discuss some related work on learn-

ing time-driven demonstrations with via-point constraints, as

well as learning demonstrations comprising high-dimensional

inputs (Section VII-A). Then, we discuss limitations and

possible extensions of our approach (Section VII-B).

A. Related work

The topic of via-point adaptation has been the focus of a few

works in the imitation learning literature, e.g., [6], [37], [38].

In [6], Gaussian conditioning operation was used in ProMP

to address the via-point issue. In [37], the task-parameterized

DMP was studied, where the via-point constraint was handled

as a task parameter vector. However, both [6] and [37] did not

take into account the Cartesian orientation. Please note that

[37] in essence focuses on learning time-driven demonstrations

(i.e., demonstrations comprising 1-D time input), albeit that the

task parameters that describe the condition of demonstrations

could be high-dimensional. Similarly, within the DMP frame-

work, a time-varying target function was formulated in [38]

to incorporate via-points in terms of Cartesian position, while

the orientation was missing.
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Fig. 6: Evaluations of our approach through a painting task on the real Barrett WAM robot. (a) shows demonstrated Cartesian positions and quaternions in
the painting task. (b) represents Cartesian trajectory in task reproduction. (c)–(d) correspond to adapted Cartesian trajectories with various desired points. In
plots (b)–(d), solid curves represent planned trajectories by using our approach while dashed curves denote real measured trajectories. Circles depict desired
Cartesian positions and quaternions.

Fig. 7: Demonstrated human hand trajectories and robot Cartesian trajectories
in a human-robot handover task. (a) shows human hand positions (red curves)
and robot Cartesian positions (black curves). For the sake of visualization, the
transformed trajectories of robot quaternions are plotted in (b).

Fig. 8: Reproduction (dashed curves) and adaptation (solid curves) evaluations
in the handover task. (a) represents human hand positions (red curves) and
robot Cartesian positions (black curves). (b) plots the transformed trajectories
of robot quaternions via (2).

In order to cope with the via-quaternion and via-angular

velocity constraints, the strategy of sequencing different DMPs

was proposed in [18]. To take the sequence of two DMPs

as an example, in [18] the first DMP was used to plan a

trajectory from the starting quaternion to the via-quaternion,

and subsequently the second DMP was used to generate a

trajectory from the via-quaternion to the target quaternion.

Note that these two DMPs were trained by using different parts

of a demonstration. Differing from [18] where the demonstra-

tion needs to be segmented for each movement primitive, we

propose to learn and adapt the entire demonstrations using a

single movement primitive, where the segmentation of demon-

Fig. 9: Illustration of human hand trajectory and robot Cartesian trajectory in
reproduction (a) and adaptation (b) evaluations, where the red curves denote
human hand positions, the black curves denote the end-effector positions and
frames correspond to its orientations.

strations and the sequence of multiple motion primitives are

not required. Specifically, in contrast to [37], [38], [18] where

each DMP corresponds to a single training trajectory, we study

imitation learning from a probabilistic perspective and exploit

the consistent features underlying multiple demonstrations. As

a result, including via-points in our approach can be done in

a rather straightforward way by simply defining the via-point,

its associated input and the desired precision in the form of a

covariance matrix.

Various imitation learning approaches (e.g., DMP [5] and

ProMP [6]) have been employed in human-robot collaboration

[31], [32]. However, the majority of these works model human

motion and robot motion with time (i.e., learning demonstra-

tions with time input), which will lead to the synchronization

issue (see Section V-A). Note that DMP and ProMP explicitly

depend on basis functions, which are non-trivial to extend

to learn demonstrations comprising high-dimensional inputs,

due to the curse of dimensionality. As discussed in [27],

the number of basis functions often increases significantly

as the dimension of inputs increases. In addition, the process

of defining proper parameters for basis functions over high-

dimensional state is cumbersome. For instance, the definition

of a multivariate Gaussian basis function requires a center

vector and a covariance matrix. In contrast, our approach

introduces the kernel trick (see (35)) and thus basis functions

are not needed, yielding a non-parametric solution.
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Fig. 10: Handover task on the real KUKA robot. First row shows kinesthetic
teaching of the handover task. Second row and third row represent the repro-
duction and adaptation evaluations, respectively. Green circle corresponds to
the optical tracker which measures the user’s hand position on-line.

Moreover, note that GMM/GMR based approaches [16]

are capable of learning demonstrations comprising high-

dimensional inputs, whereas the adaptation feature is not

provided. In order to endow GMM/GMR with the adaptation

capability, the task parameterized treatment (i.e., TP-GMM)

was studied in [3], [17]. However, TP-GMM suffers from

two main limitations: (i) for the case of adapting demon-

strations with multiple inputs, TP-GMM is restricted to target

adaptation, where the via-point adaptation is not allowed; (ii)

for the case of adapting demonstrations with time input, TP-

GMM is unable to deal with the via-point and angular-velocity

constraints (see also the discussion in Section VI-A2). Unlike

TP-GMM, our approach can handle the adaptation issue with

arbitrary desired points (including via-/end- points), as well as

the angular velocity constraints.

Finally, it is worth mentioning that, as an extension of [14],

[15], in [19] the orientation DMP was used for generalizing

demonstrations towards different contextual (or conditional,

task-specific) states. Specifically, in the training phase, each

fixed contextual state17 corresponds to one demonstration that

consists of a time sequence (i.e., 1-D input) and its associated

robot trajectory (i.e., outputs), and in the evaluation phase, the

new contextual state is used to predict the corresponding DMP

parameters that, subsequently, can be used to generate the

entire robot trajectory. Thus, the work in [19] can be viewed as

learning of demonstrations with time input, while considering

additional contextual states. Differing from [19], in our frame-

work (see Section V), each demonstration comprises a high-

dimensional varying input trajectory and a robot trajectory,

and in the evaluation phase, the high-dimensional inputs are

employed to directly predict the corresponding robot actions

(see the hand-over experiment, where the 3-D user’s hand

position is utilized to predict the 6-D robot Cartesian state). As

we have shown, our approach alleviates the synchronization

issue, allowing the robot to react in run-time to the human

behavior that changes arbitrarily (e.g. with different speed).

The adaptation capabilities of our approach complement this

17The contextual state in [19] can be interpreted as the condition under
which the whole time-driven demonstration has taken place.

feature by allowing the robot to react, even to human behaviors

that were not explicitly shown.

B. Limitations and extensions of our approach

As explained in Section II, the learning and adaptation of

quaternions are carried out in Euclidean space, where the

log(·) mapping in (1) is used to transform quaternions into

Euclidean space. In order to guarantee that similar quaternions

q correspond to similar ζ in Euclidean space, we have imposed

the Assumption 1. This assumption may restrict the appli-

cations of our method. For example, when the demonstrated

quaternion trajectories differ from each other dramatically, the

Assumption 1 could be violated, potentially invalidating the

teaching of highly dynamic motions.

It is noted that we only focus on the prediction of quater-

nion profile in this paper. In fact, we can also predict the

covariance (i.e., 3 × 3 matrix) of ζ in R
3, similarly to [8].

Indeed, specifying a covariance matrix directly in S
3 is not

possible, with other state-of-the-art approaches following the

direction of representing variability/correlation in Euclidean

spaces with 3× 3 matrix [16], [17]. Interestingly, some recent

works on exploiting the covariance of trajectories and optimal

control were reported, e.g., uncertainty-aware controller [11]

and minimum intervention controller [39]. Thus, it would be

useful to integrate these ideas with our framework so as to

perform orientation tasks in a safe and user-friendly way.

In addition, we set kernel parameters experimentally in our

evaluations. Despite the definition of the parameters being

relatively straightforward (intuition about the kernel width

can be derived from the order magnitude of the inputs), as

an extension of our work, we plan to provide a theoretical

guidance for choosing kernel parameters.

VIII. CONCLUSIONS

In this paper, we proposed an analytical approach for

adapting quaternion and angular velocity towards arbitrary

desired points. In addition, our method is capable of incorpo-

rating angular acceleration or jerk constraints. In comparison

with previous works (e.g., [14], [15]) that mostly focus on

orientation adaptation towards target points, our work allows

for broader applications, particularly when both quaternion

and angular velocity need to be modulated. Moreover, our

approach is capable of learning quaternions associated with

high-dimensional inputs (e.g., 3-D inputs were used in the real

handover task), which is a quite desirable property in human-

robot collaboration.
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APPENDIX A

KERNEL DERIVATION UNDER ANGULAR ACCELERATION

CONSTRAINTS

According to the definitions of Θ(t) and ϕ(t), i.e., (10) and

(27), we have
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Ω⊤(ti)Ω(tj) =

[
Θ⊤(ti)Θ(tj) Θ⊤(ti)ϕ(tj)
ϕ⊤(ti)Θ(tj) ϕ⊤(ti)ϕ(tj)

]

=






φ⊤(ti)φ(tj)I3 φ⊤(ti)φ̇(tj)I3 φ⊤(ti)φ̈(tj)I3
φ̇

⊤

(ti)φ(tj)I3 φ̇
⊤

(ti)φ̇(tj)I3 φ̇
⊤

(ti)φ̈(tj)I3
φ̈

⊤

(ti)φ(tj)I3 φ̈
⊤

(ti)φ̇(tj)I3 φ̈
⊤

(ti)φ̈(tj)I3






(39)

It is well known that we can write φ⊤(ti)φ(tj) = k(ti, tj)
[27]. However, when we calculate Ω⊤(ti)Ω(tj) in (39), the

terms φ⊤(ti)φ̇(tj), φ⊤(ti)φ̈(tj), φ̇
⊤

(ti)φ(tj), φ̇
⊤

(ti)φ̇(tj),

φ̇
⊤

(ti)φ̈(tj), φ̈
⊤

(ti)φ(tj), φ̈
⊤

(ti)φ̇(tj), φ̈
⊤

(ti)φ̈(tj) are also

encountered. We here propose to approximate φ̇(t) and φ̈(t),
i.e.,

φ̇(t) ≈
φ(t+ δ)− φ(t)

δ
and

φ̈(t) ≈
φ̇(t+ δ)− φ̇(t)

δ
≈

φ(t+ 2δ)− 2φ(t+ δ) + φ(t)

δ2
,

where δ > 0 denotes a small constant. By using these

approximations, (39) can be kernelized.

To take φ̈
⊤

(ti)φ̈(tj) as an example, we have

φ̈
⊤

(ti)φ̈(tj) =

(
φ⊤(ti + 2δ)− 2φ⊤(ti + δ) + φ⊤(ti)

δ2

)

(
φ(tj + 2δ)− 2φ(tj + δ) + φ(tj)

δ2

)

=
φ⊤(ti+2δ)φ(tj+2δ)−2φ

⊤(ti+2δ)φ(tj+δ)+φ
⊤(ti+2δ)φ(tj)

δ4

−
2φ⊤(ti+δ)φ(tj+2δ)−4φ

⊤(ti+δ)φ(tj+δ)+2φ
⊤(ti+δ)φ(tj)

δ4

+
φ⊤(ti)φ(tj + 2δ)− 2φ⊤(ti)φ(tj + δ) + φ⊤(ti)φ(tj)

δ4

=
k(ti + 2δ, tj + 2δ)− 2k(ti + 2δ, tj + δ) + k(ti + 2δ, tj)

δ4

−
2k(ti + δ, tj + 2δ)− 4k(ti + δ, tj + δ) + 2k(ti + δ, tj)

δ4

+
k(ti, tj + 2δ)− 2k(ti, tj + δ) + k(ti, tj)

δ4
.

Therefore, (39) can be kernelized as

k(ti, tj) =





ktt(ti, tj)I3 ktd(ti, tj)I3 kta(ti, tj)I3
kdt(ti, tj)I3 kdd(ti, tj)I3 kda(ti, tj)I3
kat(ti, tj)I3 kad(ti, tj)I3 kaa(ti, tj)I3



, (40)

where

ktt(ti, tj)=k(ti, tj),

ktd(ti, tj)=
(
k(ti, tj + δ)−k(ti, tj)

)
/δ,

kta(ti, tj)=
(
k(ti, tj + 2δ)−2k(ti, tj + δ) + k(ti, tj)

)
/δ2,

kdt(ti, tj)=
(
k(ti + δ, tj)− k(ti, tj)

)
/δ,

kdd(ti, tj)=
(
k(ti + δ, tj + δ)− k(ti, tj + δ)− k(ti + δ, tj)

+ k(ti, tj)
)
/δ2,

kda(ti, tj)=
(
k(ti + δ, tj + 2δ)− 2k(ti + δ, tj + δ)

+ k(ti + δ, tj)− k(ti, tj + 2δ) + 2k(ti, tj + δ)

− k(ti, tj)
)
/δ3,

kat(ti, tj)=
(
k(ti + 2δ, tj)− 2k(ti + δ, tj) + k(ti, tj)

)
/δ2,

kad(ti, tj)=
(
k(ti + 2δ, tj + δ)− 2k(ti + δ, tj + δ)

+ k(ti, tj + δ)− k(ti + 2δ, tj) + 2k(ti + δ, tj)

− k(ti, tj)
)
/δ3,

kaa(ti, tj)=
(
k(ti + 2δ, tj + 2δ)− 2k(ti + 2δ, tj + δ)

+ k(ti + 2δ, tj)− 2k(ti + δ, tj + 2δ)

+ 4k(ti + δ, tj + δ)− 2k(ti + δ, tj)

+ k(ti, tj + 2δ)− 2k(ti, tj + δ) + k(ti, tj)
)
/δ4.
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