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Abstract 

Here, we demonstrate that chemical reduction of oxide layers on metal nanostructures fuses 

junctions at nanoscale to improve the opto-electrical performance, and to ensure 

environmental stability of the interconnected nano-network. In addition, the reducing reaction 

lowers the adhesion force between metal nanostructures and substrates, facilitating the 

detachment of them from substrates. Detached metal nano-networks can be easily floated on 

water and transferred onto various substrates including hydrophobic, floppy, and curved 

surfaces. Utilizing the detached metal nanostructures, semi-transparent organic photovoltaics 

is fabricated, presenting the applicability of proposed reduction treatment in the device 

applications.  
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Introduction 

Recently, transparent electrodes utilizing metallic nanomaterials such as silver nanowires 

(AgNWs), copper nanowires (CuNWs), and silver nanoparticles (AgNPs) have been reported 

as excellent alternatives to indium tin oxide (ITO), because of their high optoelectrical 

performance and mechanical robustness under bending and stretching conditions.1–5 Various 

applications based on nanostructured electrodes have been reported, e.g., in light emitting 

diodes6–8, photovoltaics9–11, touch sensors12–15, and actuators16.  

It is now well understood that the junctions of pristine metallic nanostructures are 

electrically unstable due to organic or oxide layers covering the nanomaterials, requiring 

further treatment for solid interconnection of the junction to attain higher conductivity. Post-

treatments such as thermal annealing and mechanical pressing are conventionally applied for 

fusing the junction of nanomaterials.1,17–19 Although these techniques connect the junctions 

and lower the sheet resistance Rsh of the electrode efficiently, fragile, flexible, or stretchable 

substrates cannot endure the accompanying high temperature or strain. Thus, mild post-

treatments have been proposed including laser nano-welding14, plasmonic welding20, chemical 

welding21, nanoparticle insertion22, and hybridization23–26.  

However, these treatments cannot remove natural oxide layers existing on the surface of 

nanomaterials, which may impact on junction connection and the subsequent environmental 

stability of the metallic nanostructures. Moreover, if the metal nanostructure-based electrodes 

are exposed to air, continuous oxidation quickly increases the sheet resistance of the 

electrode.27,28 Because the environmental vulnerability of the electrodes will adversely affect 

the reliability of the devices based on them, preventing the oxidation of the electrode is 

essential. Passivating the electrode by coating it with a chemically stable material blocks 

water and oxygen effectively, improving the air stability.27,28 Yet, the passivation layer could 

lead to optical loss that causes performance degradation of optoelectronic devices.  
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Meanwhile, for flexible or stretchable electronics applications, the metallic nanostructure 

networks should be provided on substrates with hydrophobic, wrinkled, or curved surfaces; 

formation of them directly on the substrates is quite challenging.2,13 Alternatively, transfer of 

the high quality electrodes using a supporting layer29 or membrane filter can be used.30 

However, the sacrificial layers should be etched away to detach the nanostructures from the 

substrates or additional post-treatments to fuse the junctions is required.  

We propose successive chemical reduction of natural oxide layers of metallic 

nanostructures as a novel post-treatment to interlock the junctions of the nano-network and 

even to assist the transfer process. With the successive reduction reaction, junctions are 

interconnected by ionized and diffused ions around the junction. Because the junctions are 

fused by self-supplied ions diffused from adjacent junction, additional ions or materials 

injection are not required. Accordingly, a high-performance AgNW electrode (T = 93 %, Rsh = 

17 Ω/□) was fabricated without any further treatment. Intriguingly, the fully interlocked 

junctions dramatically improved the AgNW chemical stability without optical loss. The 

increment in sheet resistance after exposure for 35 days in air was 10-fold lower than that of a 

non-treated AgNW reference electrode. The proposed versatile treatment can be equally 

applied to CuNWs and AgNPs for the same purpose. Furthermore, by immersing the reduced 

AgNWs into water, we were able to detach the AgNW network from the substrate and 

transfer it onto various types of substrates including curved glass, glove, leaf, and 

hydrophobic surfaces, thereby broadening the utility of AgNW electrodes to portable and 

wearable electronics. This transfer method was applied to the fabrication of semi-transparent 

organic photovoltaics (SOPVs) to illustrate its applicability. 
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Result and Discussion 

Upon reacting with a reducing agent, the metal oxide on the surface of nanomaterials is 

ionized and leaves the nanomaterials negatively charged. A few angstroms oxide layer is 

reportedly formed on metallic nanomaterials surface upon exposure to air.31 Because the 

junctions of nanomaterials have larger surface areas than other regions, electrons are 

concentrated at these junctions and induce a lower electrostatic potential.21 (Figure S1) 

Therefore, ionized metal oxide originating from the surface of nanomaterials tends to diffuse 

to the junctions where it is recrystallized by the successive reduction, thereby interlocking the 

contact and reducing the sheet resistance. The proposed mechanism will be further proved  

below.  

The proposed redox-reaction mechanism of the AgNWs is illustrated in Figure 1a. Upon 

reacting with vaporized hydrazine, the silver oxide covering the surface of AgNWs as an 

example of metal nanostructure (presented by red surfaces in Figure 1a(i)) is reduced to silver, 

and nitrogen and water are produced.32 

2Ag2O+N2H4  4Ag + N2 + 2H2O                                    (1) 

 

In order to investigate if there exists the oxide layer on the surface of nanomaterials, an 

energy-dispersive X-ray spectroscopy (EDS) mapping was conducted. (Figure 1b-i) The EDS 

mapping images for oxygen content confirm even fresh nanomaterials, AgNWs and CuNWs, 

have the surface oxidized.  

Several reduction agents have been reacted including hydroquinone, sodium sulfite, 

sodium citrate, and hydrazine, all of which fused the junction and decreased the sheet 

resistance of the electrode. Hydrazine, which is widely used in various fields due to its 

effective reducing property33,34, showed the highest decrease. (Figure S2) The extent to which 

the sheet resistance decreased for each reducing agent may be ascribed to their own reactivity. 

The standard reduction potential of hydrazine is higher than that of hydroquinone, sodium 
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citrate, and sodium sulfite meaning hydrazine has stronger reactivity, which can explain the 

highest decrease of sheet resistance by hydrazine. 

Scanning electron microscopy (SEM) images illustrate the effect of the chemical reduction 

on the AgNWs, as shown in Figure 2a and b. The junctions were well fused after the 

reduction treatment compared to the as-prepared AgNWs. (Figure 2b) Transmission electron 

microscopy (TEM) images in the insets also reveal the coalescing effect. In as-sprayed 

AgNWs, two adjacent silver nanowires simply overlapped and the boundaries of the upper 

and lower AgNW are clearly distinguished. Figure 2c illustrates the junction of non-treated 

and chemically reduced AgNWs. Cross-sectional SEM image in Figure 2d shows as-sprayed 

AgNWs are separated (indicated by a white arrow). In contrast, the junction of reduced 

AgNWs is completely fused without boundary between the AgNWs. (Figure 2e) Inset images 

schematically illustrate the cross-sectional junction of AgNWs and Figure S3 shows the cross-

sectional SEM images for each position. Figure S4 shows TEM images and fast furrier 

transform (FFT) analysis of the junction of as-deposited and reduced AgNWs. In contrast to 

as-deposited AgNW network that are not fused, poly-crystal silver precipitation is shown at 

the junction of reduced AgNWs. FFT analysis of non-reduced AgNWs (Figure S4f) at 

junction shows crystallinity of upper and lower AgNWs, while that of reduced AgNWs 

(Figure S4g) does not, suggesting the poly-crystallinity. The silver ions originate from the 

surface near the junction, not only at the junction. The ionized Ag is concentrated near the 

junction because the junction has lower electrostatic potential than other region. It should be 

noted that it took less than an hour to spray fresh AgNWs on substrates and perform the 

chemical reduction treatment, suggesting that newly prepared AgNWs have enough Ag2O to 

react with reducing agents for interlocking the junction. Simple experiment was conducted for 

proving the recrystallizing by the reducing agent. The silver nitrate dissolved methyl alcohol 

was prepared and hydrazine solution was dropped into the methyl alcohol. Right then, 
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crystalized Ag was observed in the solution, supporting the ionized Ag ions are reduced and 

recrystallized by the reduction agent. (Figure S5) 

To further investigate the effect of the reducing agents on AgNWs, the AgNW network 

was intentionally oxidized by O2 plasma at 90 W for 10 min and reduced again by hydrazine. 

SEM images taken at the same position after each treatment showed the AgNW thickness 

variation attributed to the varying thickness of the oxide layer. (Figure 3a) Average diameter 

davg values and blue colored AgNWs present the varied thickness after each treatment. The 

oxygen content (in wt.%) measured by EDS becomes higher after the plasma treatment and is 

lowered again by the hydrazine treatment. (Figure 3b) Concerning the electrical conductivity, 

the sheet resistance became immeasurable as soon as the AgNWs (initial Rsh: 1 Ω/□) were 

oxidized by the O2 plasma. Subsequently, when the oxidized AgNWs were reduced by 

hydrazine, the initial sheet resistance value of 1 Ω/□ was recovered. The oxide content and 

sheet resistance variations reveal that hydrazine reduces silver oxide and the junction blocked 

by the oxide layer can be interlocked by reduction. It should be noted that other selective 

fusing treatments using plasmonic local heating, nanoparticle growth or etching Ag with Cl 

ion cannot remove the oxidized layer; these approaches would work only on newly prepared 

AgNWs.20–22  

Utilizing the reducing property, the AgNW electrode optoelectrical characteristics were 

enhanced as shown in Figure 3c. Samples with the same initial sheet resistance and 

transmittance (7 Ω/□, 84 %) were prepared and treated for different periods of time. Initially, 

the sheet resistance decreased due to the onset of interlocking of the AgNWs during the 

reduction process; however, this trend was reversed after 7 min. The increasing sheet 

resistance is attributed to AgNWs disconnections emerging in the elongated reduction process. 

As illustrated in the inset SEM images in Figure 3c, the persistent migration of atoms in water, 

by-product of the reduction process (Eq. 1), at the surface of AgNWs makes the wire 

agglomerated during elongated reaction because the overall AgNW volume is fixed. 
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Moreover, surface tension of water on the AgNWs tends to form droplets, resulting in 

disconnections of AgNWs. Contrary to the sheet resistance, the transmittance is hardly 

changed by the chemical reduction. The slight increment in transmittance can be ascribed to 

the thinning effect of the AgNWs by surface diffusion.  

By applying the optimal reduction period, the AgNW electrodes with enhanced 

optoelectrical characteristics were fabricated. Figure 3d illustrates that the successive 

reduction treatment is compared with previously reported techniques; it shows excellent 

optoelectrical performance. (T = 93 % and Rsh = 17 Ω/□) Outstanding optoelectrical 

performance is attributed to the removal of the oxide layer between the nanowires to fuse 

junctions completely. Comparison with previously proposed approaches is summarized in 

Table S1. 

To prove the benefit of our approach, the optoelectrical characteristics of as-sprayed, 

thermally annealed (230 °C, 20 min), graphene oxide (GO)-coated, and hydrazine-treated 

AgNWs are compared in Figure S6a. It should be noted that our AgNWs junctions are 

partially fused even before post-treatment because of washing, filtering and spraying 

processes, which yield high opto-electrical performance.35 Therefore, the change of the sheet 

resistance by post-treatment can be relatively small. Nonetheless, the hydrazine-treated 

electrode outperforms the as-sprayed, GO-coated, and even the thermally-annealed electrodes. 

Figure S6b and S7 show the hydrazine treatment brought about the highest and consistent 

decrement in sheet resistance for AgNW networks of different density. Although GO 

decreases the sheet resistance of AgNWs by wrapping the junctions, it does not seem to cover 

all AgNW junctions if their density is too high. Moreover, thicker GO would decrease the 

transmittance, thereby deteriorating the optoelectrical performance. Thermal annealing is also 

affected by the density of AgNWs because the heat transfer from the substrate to individual 

AgNWs can vary with the AgNW layer thickness. Hydrazine treatment in vapor phase, 

however, is not affected by the AgNW density or geometry, and the transmittance is not 
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affected by the reducing reaction, thus maintaining the high optoelectrical performance. As 

shown in Figure S8, subsequent hydrazine treatment after thermal annealing decreased Rsh of 

the electrode further, which proves the advantage of vaporized treatment as well as the merit 

of removing the oxide layers that hinder the junction connection. The ratio of the DC to the 

optical conductivity σDC/σOp as a figure of merit of as-sprayed, thermally annealed, GO-coated, 

and hydrazine-treated AgNWs is 321, 374, 340, and 435, respectively.36 We also compared 

our approach with one of junction fusing processes (NaCl treatment for 40 s); hydrazine 

treated AgNWs for 40 s showed higher Rsh decrement as shown in Figure S9.21 

Interestingly, the AgNW-electrode reduction treatment improved environmental stability. 

Oxidation of AgNW electrodes without proper overcoatings increases their sheet 

resistance.27,37 Specifically, the oxidized layers at the AgNWs junctions cause higher junction 

and sheet resistance, because the junction resistance affects the sheet resistance more 

sensitively than the bulk resistance. Figure 2c schematically illustrates that if the junction gap 

is filled with migrated Ag, the junction resistance will not be affected by subsequent oxidation. 

However, the junction resistance of the non-treated AgNWs would further increase because of 

oxidation. Figure 4a shows that the reduced electrode presents 10-fold lower increment in 

sheet resistance than the non-treated AgNWs, being even 6-fold lower than that of the GO-

coated electrodes after 35 days. Although GO prohibits the contact with water and oxygen 

effectively, galvanic corrosion can degrade the metal, bringing oxidation of the electrode.38 

The small increase in the sheet resistance of the reduced sample in air is attributed to surface 

oxidation of the nanowires. It should be noted that thermal annealing of AgNWs bringing 

about interconnection to the junctions as well as surface oxidation showed better stability than 

as-sprayed AgNWs, revealing that junction interlocking is more important for the 

environmental stability than surface oxidation. (Figure S10) The sheet resistance of the as-

sprayed AgNWs after 100 days was immeasurably high due to oxidation. After reducing, 

interestingly, the sheet resistance recovered to the same value as that of the hydrazine-treated 
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sample (dashed line in Figure 4a), implying that the oxidized layer blocking the conduction 

across the junction was removed. With our proposed reduction process, therefore, AgNW 

electrode deposited on substrates can be stored in ambient conditions because oxidized 

AgNWs can be recovered at any time. 

To confirm the role of the junction interconnections on the AgNWs stability, the junctions 

were intentionally disjointed by stretching the AgNWs.8 Figure 4b presents the sheet 

resistance of the stretched AgNWs is increased faster than that of non-stretched AgNWs for 

both non-treated and hydrazine-treated electrodes. Because the junctions are disrupted by 

tensile strain, oxidation starts at the junctions and thereby the increase in the sheet resistance 

is accelerated. The result of the stretched AgNWs proves the importance of the junction´s 

interconnections on the stability and therefore, consistent mechanical strain on AgNWs can 

deteriorate the environmental stability of the electrode. 

The proposed reduction treatment was applied to such nanomaterials as CuNWs and 

assembled AgNPs. EDS mapping images also confirm existence of the oxide layer on the 

surface of as-prepared CuNWs. (Figure 1h) Figure 5a and b reveal the junction of CuNWs 

before and after reduction treatment. Upon applying the proposed treatment, the junction of 

CuNWs transparent electrode was also fused, achieving the high optoelectrical performance 

(T = 85.5 %, Rsh = 53 Ω/□) without any other post-treatments; this is comparable to that of 

CuNWs treated with other post-treatments. (Figure S11) Opto-electrical performance change 

with respect to the reduction time is similar to the AgNWs case. (Figure 5c) The faster 

reaction may be ascribed to relatively higher reactivity of CuNWs than that of AgNWs. 

Figure 5d exhibits excellent environmental stability of the hydrazine treated CuNWs 

compared to that of non-treated CuNWs. Moreover, the proposed reduction process also fused 

AgNPs. Immeasurable sheet resistance of closely packed neat AgNPs due to high contact 

resistance became 7 Ω/□ after fusing with reduction. Figure S12 shows the SEM images of 
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assembled AgNPs before and after reduction. These results suggest that the proposed 

reduction technique can be applied to various metallic nanomaterials and nanostructures. 

Besides the junction interlocking, water is generated as a reaction byproduct on the AgNW 

surface and lowers the adhesive force between them and the substrate. If the AgNWs on a 

substrate are immersed into water after reduction but before being dried, the bare AgNW 

network can float on the water. Figure 6a shows the floating AgNWs and the substrate sunken 

into the bath. Because the AgNWs are fused and tightly bound, they are not dispersed and do 

not sink. Figure 6b–e show that the floating AgNW electrode can be transferred on various 

substrates, such as hydrophobic or wrinkled surfaces, polymers having low melting 

temperature, gloves, curved glass, and a leaf. Usually, the AgNW electrode is difficult to form 

directly on such substrates because of their surface properties. However, by using the transfer 

process, uniform AgNW networks can be formed on it. Moreover, because the AgNWs are 

already fused prior to the transfer, no additional post-treatment is needed. Transferring the 

AgNW network on glove shows the possibility of applying this electrode to wearable devices, 

for example directly on clothes. Even patterned letters using AgNWs were successfully 

transferred to the centrifuge tube. (Figure 6f and S13) The lighting LED connected with a 

battery via the AgNW electrodes implies that the AgNW network was not damaged during the 

transfer process onto the curved surface. (Figure 6g) Indeed, the sheet resistance does not 

change after the transfer process. Although the adhesion of as-transferred AgNWs to the 

substrate is weak similar to that of bar-coated, spray-coated or spin-coated AgNWs, it can be 

promoted with adhesive layers.  

Utilizing the transfer process of AgNWs, AgNWs were transferred on organic layers to 

fabricate semi-transparent organic photovoltaics (SOPVs). The inset of Figure 7a illustrates 

the structure of the SOPVs using AgNWs as top electrode. The device structure is glass / ITO 

/ ZnO / PTB7:PC70BM / PEDOT:PSS / AgNW electrode. The AgNW electrode was 

transferred on top of the PEDOT:PSS layer and compared with a device using directly 
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sprayed AgNWs.39–41 Figure 7a shows the J–V characteristics of the SOPVs. The SOPV with 

transferred AgNWs shows higher power conversion efficiency (PCE) of 3.11 % than the 

SOPV with sprayed AgNWs (2.12 %) due to its improved fill factor (FF), because the 

transferred AgNW electrode had lower sheet resistance by the interlocking of the AgNW 

junctions as a result of the hydrazine treatment compared to the sprayed AgNW electrode.42,43  

The short circuit current (Jsc) of the SOPV with transferred AgNWs was lower than that of the 

reference device due to the reduced absorption of the active layers as shown in Figure 7b. The 

average transmittance at wavelengths in the range of 400–800 nm was approximately 47 %. 

The lower FF of the AgNW device was probably caused by the incomplete electrical contact 

between PEDOT:PSS and AgNW electrode.44 The photovoltaic performance is summarized 

in Table 1. 
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Conclusion 

To conclude, a novel post-treatment method for fusing the metallic nanomaterials was 

proposed. By chemically reducing the oxide layer existing on the surface of metal 

nanostructures using vaporized reducing agents, the AgNW junctions were interconnected 

effectively and high-performance transparent electrodes were fabricated with enhanced the 

stability. The proposed post-treatment method is also applied to CuNWs and AgNPs to cause 

junction interlocking. Furthermore, the reduced AgNW networks were easily detached from 

the original substrate and transferred onto various other substrates, allowing the AgNWs to be 

used in the fabrication of SOPVs. The proposed post-treatment technique can facilitate the 

fabrication of wearable devices and broadens the applicability of metallic nanomaterials in 

various fields. 

 

 

Experimental Procedures 

Materials preparation: AgNWs were synthesized based on a modified polyol process and 

prepared on the substrates in the same way as reported in previous reports.35,45 Diameter and 

length are 60-80 nm and 15-30 μm, respectively. CuNWs were synthesized based on the 

previous report.46 Graphene oxide solution was prepared based on modified Hummer’s 

method and silver nanoparticle is synthesized following a modified polyol method.47,48 

Sample preparation: To fabricate the AgNW or CuNW electrodes, the AgNWs or CuNWs 

solution is sprayed on the substrates using a lab-built spray system, which can move along x 

and y directions, following preset trajectory. While the solution is sprayed, the substrate is 

placed on 100 °C hot plate in order to evaporate the solvent. By controlling the density of 

AgNW or CuNW solution and the number of trajectories, AgNW or CuNWs electrodes 

having various densities are fabricated. AgNP film is prepared by convective assembly 

method.49 
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Reduction of the metal nanowires electrode: 30 mM of each sodium sulfite, sodium citrate, 

and hydroquinone is prepared in deionized (DI) water. Hydrazine hydrate solution (45% in DI 

water) was purchased from Sigma Aldrich. The water bath was heated to 80 °C and the 

beaker containing 1 ml of reducing agent and the sample tray was put into the water bath.  

Other post-treatment processes: To anneal the AgNWs thermally, the AgNW electrode is 

placed on a hot plate at 230 °C for 20 min. To prepare AgNWs / GO hybrid films, 0.05 wt% 

GO was spun at 500 rpm for 5 s, subsequently at 1500 rpm for 30 s, and finally dried on a hot 

plate at 120 °C for 10 min.  

Durability test: AgNW electrodes treated by different methods were placed under an 

ambient condition on a laboratory table for over 100 days. Average temperature and humidity 

were 22 °C and 24 %, respectively. 

Stretching the AgNW electrodes: To stretch the AgNW electrodes, AgNWs sprayed on 

polyimide (PI) films and AgNWs / PI films were 20 % stretched uniaxially and released using 

a lab-made stretching instrument. 

Preparation of SOPVs: On pre-cleaned ITO glass, a zinc oxide (ZnO) layer was spun at 

6000 rpm for 30 s that was then annealed at 200 °C for 1 h on a hot plate. Subsequently, a 

solution of PTB7:PC70BM at the weight ratio of 1:1.5 in chlorobenzene with 3 vol% of 1,8-

diiodooctane (DIO) was spun at 3500 rpm for 30 s on the ZnO layer.47,50,51 Next, PEDOT:PSS 

(Al4083, Clevios) diluted in 2-propanol (Sigma Aldrich) at 1:5 weight ratio was spun on the 

active layer at 3000 rpm for 30 s. Then, the AgNWs floating on water (Rsh: 5 Ω/□) were 

scooped up on the PEDOT:PSS layer. Subsequently, a further PEDOT:PSS layer diluted in 2-

propanol was spun once again. For comparison, an otherwise identical device using spray-

deposited AgNWs was prepared by spraying the AgNWs in methanol directly onto the 

PEDOT:PSS layer on a hot plate (40 °C). The reference OPV was produced by placing the 

PEDOT:PSS-coated device into a vacuum chamber (< 3 × 10-7 Torr) and a thin Ag film (150 

nm) was evaporated. The device area was 15 mm2. The OPVs were illuminated at the 



  

14 

 

intensity of 100 mW/cm2 using a solar simulator with AM 1.5G filter (PEC-L12, Peccell 

Technologies) and then the current density–voltage (J–V) characteristics were measured.  

Characterization: SEM images were acquired using field-emission scanning electron 

microscopy (FE-SEM, Nova230, FEI Co.) and EDS data were also obtained using FE-SEM 

(Sirion, FEI Co.). Transmission electron microscopy (TEM) and EDS mapping were taken on 

the instrument FE-TEM (Tiatan cubed G2 60-300, FEI Co.). The sheet resistance was 

measured using a 4-point probe sheet resistance meter and the transmittance by a UV-vis 

spectrophotometer (UV-3600, Shimadzu) equipped with an integrating sphere. Transmittance 

data is averaged (400 ~ 800 nm) with reference to a glass substrate. Cross-sectional images of 

the AgNW junctions were prepared using focused ion beam (Helios NanoLab 450 F1, FEI 

Co.). 

 

 

Supporting information  

Simulation for electrostatic potential at the junction of AgNWs; Graph of sheet resistance 
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dissolved solution before and after dropping hydrazine solution; Opto-electrical performance 

comparison with different post-treatment methods; Sheet resistance decrement distribution 

after reduction treatment; Comparison of change of sheet resistance after thermal annealing 

and additional hydrazine treatment; Comparison of decrement of sheet resistance of the 

hydrazine and NaCl chemical treatment; Photographs AgNW electrodes after 20 days; 

Comparison of optoelectrical performance of hydrazine treated CuNWs with other treatments; 
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Figure 1. (a) Schematic illustration of oxide reduction of metal nanostructure by vaporized 

hydrazine. Red surfaces present the oxidized AgNWs in air. TEM and EDS mapping images 

of as-prepared (b-e) AgNWs and (f-i) CuNWs. Even fresh AgNWs and CuNWs have oxide 

layer on the surface. Scale bar: 80 nm  
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Figure 2. Top view of SEM images (a) before and (b) after reduction of the AgNWs. The 

inset images of (a) and (b) show TEM images that reveal the fused AgNWs after the reducing 

process. The scale bars in (a,b), and inset images represent 1 μm and 20 nm, respectively. (c) 

Schematic view of non-treated and reduced AgNW junctions. Contrary to non-treated 

AgNWs, reduced AgNWs are fully connected without subsequent oxidation. Rc denotes the 

contact resistance. Cross-sectional SEM images of AgNW junctions (d) before and (e) after 

reduction. (AgNW junction boundary is indicated by a white arrow) Scale bar: 100 nm. Inset 

images: schematic illustration of cross-sectional images.  
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Figure 3. (a) SEM images of as-sprayed, plasma treated, and hydrazine treated AgNW 

networks taken at the same position. AgNWs become thick after plasma treatment and thin 

again by the subsequent hydrazine treatment. The average thickness davg values and blue 

colored AgNWs present the varied thickness after each treatment. Scale bar: 2 μm. (b) 

Normalized thickness of AgNWs and oxygen content acquired from EDS data in pristine state 

(left), after plasma (middle), and subsequent hydrazine treatments (right). (c) Transmittance 

(left scale) and sheet resistance (right scale) according to the hydrazine reduction time. The 

inset images (i–iii) are the SEM micrographs of AgNWs reduced for 0, 7, and 60 min, 

respectively. Scale bar: 1 μm. (d) Comparison of optoelectrical performance of AgNWs 

treated by hydrazine with previous reports. 
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Figure 4. (a) Resistance changes of non-treated, GO coated, thermally annealed, and 

hydrazine treated AgNWs over exposure time in air. (b) Resistance changes of stretched 

AgNWs.  
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Figure 5. Top view of SEM and TEM images (inset) of CuNWs (a) before and (b) after 

reduction treatment. After reduction treatment, CuNWs junctions are fused. Scale bar: 200 nm 

(Inset scale bar: 40 nm) (c) Transmittance (left) and sheet resistance (right) of CuNWs 

according to the hydrazine reduction time. (d) Resistance change of non-treated and hydrazine 

treated CuNWs over exposure time in air.  
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Figure 6. (a) AgNW network detached from the substrate and floating on the water. (b–f) 

Transferred AgNWs on (b) PET, PDMS, polyacrylate and polyimide, (c) a latex glove, (d) a 

curved glass, (e) a leaf, and (f) patterned AgNWs forming letters on the centrifuge tube. (g) 

Transferred AgNWs on curved glass lighting the LED.  
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Figure 7. (a) Current density–voltage (J–V) characteristics of the SOPVs. Inset: schematic 

set-up of the SOPVs using AgNWs as top electrode. (b) Transmittance of bare AgNWs and 

SOPVs with and without AgNW electrode. Insets are photographs of the SOPVs with and 

without AgNW electrode in front of Carillon in KAIST. 

 



  

28 

 

Tables 

Table 1. Performance of inverted PTB7:PC70BM semi-transparent OPVs  

Inverted 

PTB7:PC70BM 

OPVs 

Jsc [mA/cm2] Voc [V] FF PCE [%] 

Reference 15.52 0.73 0.67 7.54 

AgNWs sprayed 8.08 0.72 0.36 2.12 

AgNWs 

transferred 
8.36 0.73 0.51 3.11 
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