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Abstract— There are two main ways to construct Fuzzy Logic 

rule-based models: using expert knowledge and using data 

mining methods. One of the most important aspects of Granular 

Computing (GrC) is to discover and extract knowledge from 

raw data in the form of information granules. The knowledge 

gained from the GrC, the information granules, can be used in 

constructing the linguistic rule-bases of a Fuzzy-Logic based 

system. Algorithms for iterative data granulation in the 

literature, so far, do not account for data uncertainty during the 

granulation process. In this paper, the uncertainty during the 

data granulation process is captured using the fundamental 

concept in information theory, entropy. In the proposed GrC 

algorithm, data granules are defined as information objects, 

hence the entropy measure being used in this research work is 

to capture the uncertainty in the data vectors resulting from the 

merging of the information granules. The entropy-based 

uncertainty measure is used to guide the iterative granulation 

process, hence promoting the formation of new granules with 

less uncertainty. The enhanced information granules are then 

being translated into a Fuzzy Logic inference system. The 

effectiveness of the proposed approach is demonstrated using 

established datasets. 

Keywords-Granular models; Fuzzy Logic; Information 

Theory; Granular Computing 

I.  INTRODUCTION  

One of advantages of Fuzzy Logic (FL) based systems is 
interpretability due to their linguistic nature. The 
interpretability feature comes from the linguistic 
interpretation in the form of if-then rules that is close to 
human-like thinking. However, this approach presents some 
challenges because the expert knowledge to establish the rule-
base system is not always available. To overcome this 
problem, knowledge discovery from data can be utilized to 
establish the FL parameters, and data clustering is one 
effective way to implement this [1].  

Many clustering methods have been implemented in the 
literature to construct fuzzy rule-bases, such as fuzzy c-means 
[1] and hierarchical clustering [2]. Data clustering is a tool that 
categorizes similar data into groups, and one of the most 
commonly used techniques is hierarchical clustering. A 
granular computing (GrC) algorithm proposed by Bargiela 
and Pedrycz (2002), also known as granular clustering, 
resembles the concept of agglomerative hierarchical 
clustering [3]. However, there are significant differences 
between these algorithms. In GrC there is strong linkage 

between original data and the information granules. This is 
because every granule comprises of sub-granules [4] with 
each one originating directly from the data.  In addition, the 
compatibility measure in GrC is a very important tool that can 
be used as guidance to terminate the clustering process. The 
decrement of compatibility measure can be visualized 
throughout the iterative granulation process, indicating the 
dissimilarity between granules towards the end of granulation 
process. 

One of the most important aspects in GrC is the concept of 
information granulation. It is implemented through data 
organization and data comprehension [3].  Other than expert 
knowledge, FL models can be developed using data mining 
technique and this is where GrC plays its important role, to 
discover and extract knowledge by forming the information 
granules from the data. GrC mimics human reasoning in 
gathering objects that have similarities. A FL model can be 
formed using GrC in a transparent manner [4]. Transparency 
here refers to the link between data and information granules 
in the knowledge extraction process, and the use of this 
knowledge to build the linguistic rule-bases, from which we 
get certain decision or prediction (via some inference 
mechanism). 

However, in complex real-world problems, information is 

always related with uncertainty. According to Klir (1995), 

uncertainty is resulted from information deficiency, i.e. 

incomplete, imprecise, vague or contradictory [5]. Most 

database systems are capable of handling ideal data, while the 

data that we encounter everyday are exposed to uncertainty. 

Therefore, there is a need to incorporate the data uncertainty 

in GrC, more particularly in the data granulation process. In 

this paper, the uncertainty during the data granulation process 

is captured using the concept in information theory, entropy. 

In the case of uncertain data, there is a tendency of two 

dissimilar granules to be merged. This is because in most 

clustering algorithm, the geometrical distance is used as the 

similarity measure [6]. This will affect the distinguishability 

of the initial granular framework, the estimation of the FL 

parameters, and hence, the accuracy of the prediction or 

classification. In the presence of outliers, information granule 

cannot represent the actual data [7]. This will deter the 

interpretability of FL rule-base, and lead to inaccurate 

representation of the system under investigation. As the 

consequence, the FL rules being formed will be contradictory 



and inconsistent. Even though Fuzzy Logic is well known for 

its capability in modeling uncertainty, it is important to 

highlight that Fuzzy Logic mainly handles the kind of 

uncertainty termed as vagueness where the information is 

dealing with fuzzy quantifiers, e.g., most, many, few, almost 

all, etc. [8]. The novelty of this work is that for the first time 

in the literature, information theory is used as an 

assisting metric during iterative data granulation in order to 

construct Fuzzy-Logic rule-bases. Entropy is used to measure 

the uncertainty during the granulation process, hence 

constructs higher quality information granules. The result 

shows an enhanced performance as compared with a previous 

modelling framework based on the same datasets. 

II. ITERATIVE GRANULATION 

GrC is a framework that imitates human reasoning in 

grouping things [9]. The outcome of information granulation 

are information granules that consist of meaningful 

knowledge representing the data space. The GrC algorithm in 
this paper is performed by iteratively searching for two most 

compatible information granules and repeating this step until 

acceptable level of granulation has been accomplished [3]. 

The extracted knowledge and granular features are then 

translated into linguistic rule-base of a fuzzy system. GrC 

resembles the strategy of agglomerative hierarchical 

clustering by treating every data point as a single granule at 

the first iteration, but different in terms of its compatibility 

measure. Compatibility measure, in this case, refers to how 

close the information granule to the other. In GrC the 

compatibility measure C between two granules A and B is 

defined as: 
 𝐶𝐶(𝐴𝐴,𝐵𝐵) =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 −𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀,𝐵𝐵 . exp(−𝛼𝛼𝛼𝛼)       (1) 

 

In which  

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛼𝛼 =
𝐶𝐶𝐴𝐴,𝐵𝐵/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝐿𝐿𝐴𝐴,𝐵𝐵/ 𝐿𝐿𝐿𝐿𝐶𝐶𝐿𝐿𝐶𝐶ℎ𝑀𝑀𝐴𝐴𝑀𝑀  (2) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀  is the sum of maximum distances in every 

dimension 𝐷𝐷, given by: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶  )𝐶𝐶𝐶𝐶=1  (3) 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀,𝐵𝐵 is the distance between granule A and B, 

given by: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀,𝐵𝐵 =
∑ 𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖=1 (𝐷𝐷1− 𝐷𝐷2)d  (4) 

Where 

  𝐷𝐷1 = max (𝑚𝑚𝐷𝐷𝑚𝑚𝑀𝑀𝐶𝐶 ,𝑚𝑚𝐷𝐷𝑚𝑚𝐵𝐵𝐶𝐶) (5) 

 𝐷𝐷2 = min (𝑚𝑚𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶 ,𝑚𝑚𝐷𝐷𝐷𝐷𝐵𝐵𝐶𝐶) (6) 

𝑤𝑤𝐶𝐶: weight for dimension i, 𝑚𝑚𝐷𝐷𝑚𝑚𝑀𝑀𝐶𝐶: maximum value of 

dimension i in granule A, 𝑚𝑚𝐷𝐷𝑚𝑚𝐵𝐵𝐶𝐶: maximum value of 

dimension i in granule B, 𝑚𝑚𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶: minimum value of 

dimension i in granule A, 𝑚𝑚𝐷𝐷𝐷𝐷𝐵𝐵𝐶𝐶: minimum value of 

dimension i in granule B, 𝛼𝛼: weightage of distance and 

density ranges from 0 to 1, 𝐶𝐶𝐷𝐷𝐶𝐶𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 : the maximum 

number of objects in the data space, 𝐿𝐿𝐷𝐷𝐷𝐷𝐿𝐿𝐷𝐷ℎ𝑀𝑀𝑀𝑀𝑀𝑀: sum of the 

maximum length in every dimension, 𝐶𝐶𝑀𝑀,𝐵𝐵: the sum of 

cardinality of granule A and B, and 𝐿𝐿𝑀𝑀,𝐵𝐵: length of the granule 

A and B, given by: 

 𝐿𝐿𝑀𝑀,𝐵𝐵 = ∑ (𝑚𝑚𝐷𝐷𝑚𝑚𝑀𝑀𝐶𝐶 −𝑚𝑚𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶)𝐶𝐶𝐶𝐶=1  (7) 

where 𝑚𝑚𝐷𝐷𝑚𝑚𝑀𝑀𝐶𝐶 and 𝑚𝑚𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶 are the maximum and minimum 

length of the resulting granule at each dimension 𝐷𝐷, 
respectively. 

After one iteration, a compatibility matrix will be created. 

It consists of compatibility index for each projected merging. 

The two granules with the highest compatibility index are 

considered the most compatible, hence will be merged. The 

compatibility index also plays role as a monitoring tool for 

the whole granulation process.  

 

Fig. 1 shows the typical plot of the evolution of the 
compatibility index throughout the iterative granulation 

process based on the well-known Iris data. Iris data contains 

three main categories, namely Setosa, Versicolour and 

Virginica of 50 instances each. The x-axis represents the 

number of iteration while the y-axis represents the maximum 

compatibility index for each iteration. The small gradient of 

the curve at the early stages of granulation process indicates 

merging of compatible granules, while merging of 

incompatible granules is indicated by the large gradient at the 

end of granulation. The gradients of the curve are shown by 

the dotted lines, and the intersection of these two gradient 
lines can be used to approximate the optimal number of 

clusters. An example of compatibility matrix is shown in 

Table I. 

 

 
 

Figure  1. Maximum compatibility index 
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TABLE I.  EXAMPLE OF COMPATIBILITY MATRIX 

 G1 G2 G3 G4 G5 

G1 -   4.41   4.48    4.2   4.15 

G2 - -    4.6   4.57    4.6 

G3 - - -   4.61   4.53 

G4 - - - -    4.7 

G5 - - - - - 

 
In Table I, the two most compatible granules are granule 

4 (G4) and granule 5 (G5) with compatibility of 4.7, and 

hence, these two granules will be merged. In the next 

iteration, the compatibility index will be computed from four 

granules: G1, G2, G3 and (G4+G5). The merging process is 

done iteratively until a satisfactory level of granulation is 

achieved. 

In this research all attributes are treated with same 

importance, hence the 𝑤𝑤𝐶𝐶 for all attributes is one. However, 

this weightage can be adjusted in the case of different 

importance among the features.   
In the first iteration, every data point is considered as one 

granule, meaning that the maximum and minimum boundaries 

are the same. Information granules are then formed in the form 

of hyper boxes. Since the compatibility index considers the 

maximum and minimum points during merging of two 

granules, a data point will always present at the boundaries of 

the hyper boxes.  

Fig. 2 shows a granulation process, starting from 120 data 

vectors of Iris training dataset and compressed to five 

information granules. These five information granules are 

then translated into five fuzzy rules. The details are elaborated 
in Section III. To see the relationship between the input and 

output, all the four-input data are granulated together with the 

output, hence this approach can be considered as supervised 

learning. However, this approach is also applicable in 

unsupervised learning. Out of these five dimensions, only two 

dimensions are shown in Fig. 2. 

 

 
(a) 

 
(b) 

 
Figure 2. Granulation process from (a) 120 data vectors to (b) 5 

information granules 

III. FROM INFORMATION GRANULES TO FUZZY 

RULE-BASES 

 Each information granule represents one fuzzy rule-base 

[10]. In this study Gaussian membership functions (MFs) are 

used. The formation of Gaussian MFs requires two important 

parameters, namely centre of MFs 𝐷𝐷 and sigma 𝜎𝜎 . Median and 

standard deviation of the data in granules are used to represent 𝐷𝐷 and 𝜎𝜎. The relationship between an information granule and 

a FL linguistic rule is based on one-to-one basis. The FL rule-
base can be written as: 

 𝐼𝐼𝐼𝐼 𝑉𝑉𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷1 𝐷𝐷𝐷𝐷 𝐴𝐴 𝐷𝐷𝐷𝐷𝑑𝑑 𝑉𝑉𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷2 𝐷𝐷𝐷𝐷 𝐵𝐵 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇… 

 … . 𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐶𝐶𝐴𝐴𝑇𝑇𝐼𝐼𝐼𝐼𝑇𝑇 (8) 

Fig. 3 shows how five information granules in Fig. 2(b) 

are being translated into five Fuzzy MFs. These MFs represent 

the rule-bases for Iris data which consists of four inputs and 

one output.  

 
Figure 3. Converting information granules to fuzzy membership 
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IV. USE OF INFORMATION THEORY TO 

MEASURE UNCERTAINTY 

Information theory is one of the theories that concerns with 

quantifying uncertainty. One of the most important concepts 

in information theory is Shannon’s entropy [11], that can be 

formulated as: 

 𝑇𝑇(𝑋𝑋) =  −∑ 𝑝𝑝(𝑚𝑚)𝐶𝐶𝑙𝑙𝐿𝐿2𝑝𝑝(𝑚𝑚)𝑥𝑥𝑥𝑥𝑀𝑀  (9) 

where 𝑝𝑝(𝑚𝑚) is the probability of occurrence of an event 𝑚𝑚 and 𝑋𝑋 is a random variable. In information theory, the dimension 

or feature is described as a random variable.  

In GrC, the compatibility measure is used to determine 

the most compatible granules to be merged. However, there 
is uncertainty occurs throughout the granulation process. For 

example, in the case of outliers, the new formed granule is 

not capable to represent the actual data space. Besides, there 

is a tendency to create unnecessary overlapping. This will 

result in information granules with high uncertainty and 

hence, producing indistinguishable fuzzy rule-bases. 

To overcome this issue, a new framework of iterative 

granulation is proposed, considering the uncertainty measure. 

In information theory, the measure of uncertainty in a random 

variable is described by Shannon’s entropy in equation in (9). 

The concept of entropy is always used to represent disorder, 
chaos, or unpredictability in a dataset [12]. Hence, entropy in 

the proposed GrC compatibility measure characterizes the 

reluctance of granules to be merged. In other words, the target 

of the proposed method is to find a grouping of objects such 

that uncertainty is smallest. 

As mentioned, entropy is a measure of uncertainty in a 

random variable. This is, however, not applicable for a 

random vector. Let 𝑋𝑋𝐶𝐶 be the random variable, and 𝑋𝑋 =

 [𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, …𝑋𝑋𝐶𝐶] is considered the random vector. The 

entropy 𝑇𝑇(𝑋𝑋) is defined using the chain rule in [13] as: 𝑇𝑇(𝑋𝑋) = 𝑇𝑇(𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝐶𝐶) =  ∑ 𝑇𝑇(𝑋𝑋𝐶𝐶|𝑋𝑋𝐶𝐶−1, …𝑋𝑋1)𝐶𝐶𝐶𝐶=1    (10)           

For example, in the case of two random variables, the 

entropy of a random vector is given by: 

 𝑇𝑇(𝑋𝑋) = 𝑇𝑇(𝑋𝑋1,𝑋𝑋2) = 𝑇𝑇(𝑋𝑋1) +𝑇𝑇(𝑋𝑋2|𝑋𝑋1) (11) 

The use of geometrical distance in (1) is sensitive to 

outliers. Therefore, the entropy provides additional 

information to capture the differences between uncertain 
objects with different distributions. The example in Fig. 4 

illustrates the entropy of Granule 1 and Granule 2 if object 

(b1, c2) is being merged. For simplicity, a two-dimensional 

data is used in this example. The object (b1, c2) is potentially 

being merged with Granule 1, or Granule 2. Even though it 

has similarity with both Granules (elements b1 and c2), but it 

is more likely to merge with Granule 2, since the entropy is 

lower than in Granule 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Entropy in granules. 

 

Hence, the proposed compatibility measure includes the 

entropy H, and the weight 𝑤𝑤 in the equation as follows: 

 𝐶𝐶(𝐴𝐴,𝐵𝐵) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 −
                                      (𝑤𝑤𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀,𝐵𝐵 . exp(−𝛼𝛼𝛼𝛼)      (12) 

 

In the case study, the equation in (12) is used to compute 
the compatibility index. It can be expected that the 

compatibility in GrC with uncertainty is less than the 

conventional GrC. This indicates that the merging process in 

the case with an entropy measure is more competitive 

because it will find the granules that not only with shortest 

distance, but also with minimum uncertainty.  

 

V. CASE STUDY AND SIMULATION RESULTS 

 

Fig. 5 shows how the maximum compatibility for each 

iteration in GrC with entropy measure changes. With entropy 

measure, the compatibility decreases because the merging 
process now becomes more competitive. The iterative 

granulation process starts to be selective in choosing the best 

pair to be merged, not only distance wise, but also to produce 

granule with minimum uncertainty. The performance of the 

proposed algorithm is evaluated with Iris, wine and glass 

datasets and the results are shown in Table II. 

 
Figure 5. Comparison between compatibility index of GrC and GrC 

with entropy measure 
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TABLE II.  AVERAGE PERFORMANCE OF 10 TRIALS OF GRC, GRC WITH ENTROPY, K-MEANS 

AND FUZZY C-MEANS 

Dataset Iris Wine Glass 

 RMSE Accuracy (%) RMSE Accuracy (%) RMSE Accuracy (%) 

GrC 0.1354 91 0.1233 91.33 0.1968 69.77 

GrC with entropy measure 0.0957 96.33 0.0964 95.33 0.2065 72.09 

K-means 0.1032 94.33 0.1055 92.67 0.2293 67.44 

Fuzzy c-means 0.1257 96 0.088 95 0.2173 65.17 

The datasets are divided into training and testing data with 

the ratio set to 80:20. All features are normalized to the 

interval [0,1] to bring all variables to the same range. Ten 

experiments are conducted for each algorithm, and their 

performance is evaluated by measuring the accuracy of the 

classification and the root mean square error (RMSE). The 
accuracy is calculated based on the percentage of correct 

classifications out of the total number of predictions, while 

RMSE represents the model error.  

For simplicity purpose, probability mass functions are 

used to represent the probability of a random variable in the 

case of GrC with entropy measure. The weight 𝑤𝑤 used for 

Iris, wine and glass are 0.2, 0.1 and 0.3, respectively. Ideally, 

the value of 𝑤𝑤 is used in the interval [0,1]. For the glass 

dataset, the data needs to be pre-processed by using a 

bootstrapping method due to the imbalance among the six 
classes.  

From Table II, it can be viewed that in general, GrC with 

entropy measure outperforms the conventional GrC, k-means 

and fuzzy c-means. It achieves highest accuracy for all 

datasets and lowest RMSE for Iris. This is due to the 

penalizing the uncertainty during the iterative granulation 

process, and hence, producing low uncertainty granules. The 

accuracy of prediction using GrC with entropy measure for 

Iris, wine and glass are 96.33%, 95.33% and 72.09%, 

respectively, which are acceptable as benchmarked with other 

works in literature using the same datasets, such as [14]. 

CONCLUSION 

In this paper, a data capture and modelling framework 
based on Granular Computing and information theory is 
proposed. The fundamental concept of information theory is 
implemented to model the uncertainty during the data 
granulation. In the presence of outliers, entropy appears as a 
significant tool to identify uncertainties.  The entropy 
represents the hesitation of two granules to be merged and 
potentially guide the granulation process into merging the 
granules with minimum uncertainty in order to produce high 
quality information granules.  

The main idea of this framework is to avoid having 
granules with high disorder in the data distribution. This 
prevents the granules from having outliers that may affect the 
distinguishability of the granules and hence, enhance the 
interpretability of FL rule-bases. The proposed framework is 
successfully tested with three datasets that deal with 
classification problem – Iris, wine and glass, and significant 
improvement can be observed in terms of the accuracy of the 
prediction and reducing the error.  
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