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Abstract 
 
Streptococcus pneumoniae is a Gram-positive human pathogen that causes millions of infections 
worldwide with an increasing occurrence of antibiotic resistance. Iron acquisition is essential for 
its survival and virulence, especially under host-imposed nutritional immunity. S. pneumoniae 
expresses several ATP-binding cassette (ABC) transporters to facilitate acquisition under iron 
limitation, including PitABC, PiaABC, and PiuABC. The substrate specificity of PiuABC is not 
fully established.  Herein, we report the backbone 1H, 13C and 15N resonance assignments of the 
31 kDa soluble, extracellular domain of PiuA in the apo form and in complex with Ga(III) and the 
catechol siderophore-mimic 4-LICAM. These studies provide valuable information for further 
functional studies of interactions with other proteins, metals, and small molecules.  
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Biological context 
 
Streptococcus pneumoniae is an important Gram-positive human pathogen (Lanie et al. 2007; 
Lynch and Zhanel 2010). Iron (Fe) is essential for its survival and pathogenicity, as it is essential 
for most living organisms, due to its ability to perform redox reactions and function as a cofactor 
for many proteins (Andreini et al. 2018). During infection, the host often limits the availability of 
iron in a process known as nutritional immunity (Hood and Skaar 2012). To respond to iron 
limitation, various S. pneumoniae strains express three different ABC transporters. PitABC, 
PiaABC, and PiuABC each facilitate iron uptake from different sources and as different Fe(III)-
chelate complexes. Transporters such as these commonly recognize iron bound to heme or other 
small organic molecules, including various classes of siderophores (Zhang et al. 2020). S. 
pneumoniae is not known to endogenously biosynthesize siderophores and thus must rely on Fe 
piracy to meet nutritional Fe demands (Cheng et al. 2013). Hence, the regulated uptake of 
siderophore- or other small molecule-Fe(III) complexes produced by other, often competing, 
bacteria in polymicrobial communities or by the host is foundational to Fe piracy in S. 
pneumoniae.  
 
PiuA is the solute-binding protein (SBP) of the PiuABC transporter. As an extracellular 
membrane-bound lipoprotein, its role is to recognize and bind a specific Fe(III)-complex and 
transfer it to the transmembrane subunit of the ABC complex embedded in the cytoplasmic 
membrane for import into the cell. Like most SBPs known to be involved in iron transport in 
bacteria, PiuA belongs to class III (cluster A), consisting of two / lobes connected by a rigid 
helical linker, with the ligand binding site in a cleft between the lobes (Delepelaire 2019). 
Members of this class typically display very little structural rearrangement upon ligand binding 
(de Boer et al. 2019). This feature leaves some questions as to how substrate binding promotes 
transport.  
 
Previous nuclear magnetic resonance studies of a similar protein, the E. coli FepB, an SBP 
involved in import of Fe(III) in complex with the siderophore enterobactin, shows that Ga(III) is 
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a suitable diamagnetic substitute for the paramagnetic Fe(III), enabling detailed structural and 
dynamic analysis without extensive line-broadening (Chu et al. 2014).  
 
Similarity to the SBPCeuE of Campylobacter jejuni predicts that PiuA might also bind 
coordinately unsaturated iron complexes of tetradentate siderophores and their mimics, for 
example 4-LICAM, a  bis-catecholate which contains a four-atom linker between two simple 
catecholamide units (Raines et al. 2013; Wilde et al. 2017).  
 
Herein, we report the resonance assignments of the backbone 1H, 13C and 15N atoms of the 31 
kDa soluble, extracellular domain of S. pneumoniae PiuA in the apo form and in complex with 
Ga(III) and 4-LICAM, which provide valuable information for further studies of the dynamics 
and interactions with other proteins, metals, and small molecules.  
 
Methods and experiments 
 
Sample preparation 
 
The region of the gene encoding the soluble, extracellular domain of PiuA, SPD_1652 residues 
37-321 was PCR-amplified from the genomic DNA of S. pneumoniae D39 strain (Lanie et al. 
2007), and inserted into the pSUMO expression vector (Peroutka et al. 2011). Uniformly 15N, 
13C, 2H protein was expressed in E. coli BL21 (DE3) cells in M9 minimal medium containing 1 
kg D2O, as well as 1.0 g of 15NH4Cl and 2 g 13C6,2H-glucose as the sole nitrogen and carbon 
sources, respectively. Expression was induced by addition of 1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) at OD600 0.7 and allowed to continue overnight at 18 °C. Cells 
were harvested by centrifugation, resuspended in buffer A (25 mM Tris pH 8.0, 500 mM NaCl, 
10% glycerol, and 20 mM imidazole), then lysed by sonication on ice. The crude lysate was 
clarified by centrifugation. 70% ammonium sulfate was added to the soluble fraction, and the 
precipitated protein was collected by centrifugation, and then resuspended in buffer A. The 
tagged protein was isolated by Ni(II) affinity chromatography using a 5 mL HisTrap FF column 
(GE Healthcare Life Sciences) with a gradient from 100% buffer A to 100% buffer B (25 mM 
Tris pH 8.0, 500 mM NaCl, 10% glycerol, and 500 mM imidazole). Eluted fractions were pooled 
and cleaved with SUMO protease while dialyzing overnight at room temperature into buffer A 
supplemented with 2 mM dithiothreitol (DTT). Uncleaved protein, protease, and the SUMO tag 
were removed by passage through the HisTrap FF column equilibrated in buffer A prior to 
further purification by size-exclusion chromatography in buffer C (25 mM Tris pH 8.0, 500 mM 
NaCl, 2 mM ethylenediaminetetraacetic acid [EDTA]), using a Superdex-75 column on an Akta 
Pure system (GE Healthcare Life Sciences).  
 
To facilitate exchange of deuterated amides back to protons, the purified protein was incubated 
with 2.5 M guanidinium-HCl and 5 M EDTA for 3 hours, then dialyzed into buffer C and then 
into NMR buffer (25 mM MES pH 6.5, 150 mM NaCl, treated with Chelex (Biorad). 15N 
TROSY spectra on samples labeled with only 15N were used to confirm nearly complete back-
exchange of the deuterated sample.  
 
To obtain the holo sample, 4-LICAM, synthesized according to a previously published procedure 
(Wilde et al. 2013), was dissolved in neat DMSO to a concentration of 30 mM and mixed with 
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20 mM GaCl3 in 0.3 M HCl and diluted to a final concentration of 1 mM GaCl3 in 50 mM 
HEPES, pH 7.2, 150 mM NaCl.  This was used as a stock Ga(III)-4-LICAM complex and added 
to ≈3-fold molar excess over [PiuA] in the same buffer, incubated 4 h at RT, and buffer 
exchanged into NMR buffer using an Amicon ultra centrifugal filter unit (10 kDa cut-off) while 
removing free ligand. 
 
NMR experiments 
 
NMR samples for backbone assignment contained 0.8-0.9 mM protein, with 25 mM MES pH 
6.5, 150 mM NaCl, and 10% v/v D2O, with 0.3mM 2,2-dimethyl-2-silapentanesulfonic acid 
(DSS) as an internal reference. NMR spectra were recorded at 35 °C on a 600 MHz Bruker 
Avance Neo spectrometer equipped with a cryogenic probe in the METACyt Biomolecular NMR 
Laboratory at Indiana University, Bloomington. Backbone chemical shifts were assigned for 
each state using TROSY versions of the following standard triple-resonance experiments: 
HNCACB, HNCOCACB, HNCA, HNCOCA, HNCO, and HNCACO (Salzmann et al. 1999), 
using non-uniform sampling with Poisson gap schedules (Hyberts et al. 2010). Data were 
processed using NMRPipe (Delaglio et al. 1995) and istHMS (Hyberts et al. 2012), and analyzed 
using CARA (Keller 2004) and Sparky (Lee et al. 2015), all on NMRbox (Maciejewski et al. 
2017).  
 
Assignments and data deposition 
 
The soluble, extracellular domain of PiuA consists of 285 residues. Nearly complete backbone 
assignments were obtained for the apo (ligand-free) and holo [Ga(III)-4-LICAM] forms of PiuA, 
as shown in the 15N TROSY spectra in Figure 1 and Figure 2, respectively. Amide proton and 
nitrogen assignments are missing for R237 and H238 of the apo form, and for R216 and R237 in 
the holo form. These crosspeaks are missing likely due to line-broadening caused by 
conformational exchange; the crystal structure of a close homolog (PDB 4JCC) from S. 
pneumoniae Canada MDR_19A shows that residues 237-238 are in the middle of a long loop, 
between  strands 10 and 11, with relatively high B-factors, and R216 is also in a loop between  
strand 9 and helix 6 (Figure 3A). With two missing amide 1H and amide 15N assignments and 12 
prolines, 99.3% of all possible amide 1H and 15N atoms are assigned in both the apo and holo 
states. 99.6% of all possible 13C’, 13C, and 13C atoms are assigned in the apo form, and 100% 
of all possible 13C’, 13C, and 13C atoms are assigned in the holo form.  
 
Chemical shifts were analyzed for indications of secondary structure using TALOSN (Shen and 
Bax 2014). The results, shown in Figure 3B-C, are in good agreement with the existing crystal 
structure of the apo form of PiuA (PDB 4JCC). As expected, the secondary structure regions for 
apo and holo PiuA are nearly identical. The only differences are a slightly increased likelihood of 
strand in residues 232-234, as if Fe(III) coordination by H238 induces a hairpin in the 
relatively flexible loop formed by residues 231-243, and perhaps two residues unwinding from 
the N-terminus of 3, as R126 is likely to interact electrostatically with the siderophore (Wilde 
et al. 2017). F217 also may open up from 7 upon ligand binding. All chemical shifts have been 
deposited in the BioMagResBank (http://www.bmrb.wisc.edu) under accession number 28056 
(apo) and 28057 (holo). 
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Figure Legends 
 
Figure 1 2D 1H-15N TROSY spectrum of apo PiuA, annotated with the backbone assignments. 
The assignments are labeled with the one-letter amino acid code and residue number of full-
length PiuA. The TROSY spectrum was collected at 600 MHz 1H frequency. The crowded 
region at the center is shown in expanded view in the lower right, and the tryptophan sidechain 
region is shown in the inset in the upper left.  

Figure 2 2D 1H-15N TROSY spectrum of PiuA in complex with Ga(III) and 4-LICAM, 
annotated with the backbone assignments. The assignments are labeled with the one-letter amino 
acid code and residue number of full-length PiuA. The TROSY spectrum was collected at 600 
MHz 1H frequency. The crowded region at the center is shown in expanded view in the lower 
right, and the tryptophan sidechain region is shown in the inset in the upper left.  

Figure 3 A) Sequence alignment of S. pneumoniae D39 PiuA studied here by NMR with the 
previously solved crystal structure (PDB 4JCC) of S. pneumoniae Canada MDR_19A in the apo 
form. The four residues that are different are highlighted in a red background. Secondary 
structures from the crystal structure are shown above. B) Chemical-shift derived secondary 
structure assignments of apo and holo PiuA are painted onto the ribbon representation of the 
crystal structure. Where assignments are identical for apo and holo forms, helices are painted 
blue and beta strands red. Magenta indicates residues in beta strand conformation only in the 
holo form, while cyan indicates residues in alpha helical conformation only in the apo form. 
Sidechains are depicted as spheres for those residues that differ between strains. C) Chart of 
chemical-shift derived secondary structure predictions for apo (open bars) and holo (filled bars) 
PiuA, showing only subtle differences upon ligand binding.  
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Figures 
 
Figure 1 
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Figure 2 
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Figure 3 

 


