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Abstract A commonly used family of statistical magnetic field models is based on a giant Gaussian
process (GGP), which assumes each Gauss coefficient can be realized from an independent normal
distribution. GGP models are capable of generating suites of plausible Gauss coefficients, allowing for
palaeomagnetic data to be tested against the expected distribution arising from a time‐averaged
geomagnetic field. However, existing GGP models do not simultaneously reproduce the distribution of field
strength and palaeosecular variation estimates reported for the past 10 million years and tend to
underpredict virtual geomagnetic pole (VGP) dispersion at high latitudes unless trade‐offs are made to
the fit at lower latitudes. Here we introduce a new family of GGP models, BB18 and BB18.Z3 (the latter
includes non‐zero‐mean zonal terms for spherical harmonic degrees 2 and 3). Our models are distinct
from prior GGP models by simultaneously treating the axial dipole variance separately from higher degree
terms, applying an odd‐even variance structure, and incorporating a covariance between certain Gauss
coefficients. Covariance between Gauss coefficients, a property both expected from dynamo theory and
observed in numerical dynamo simulations, has not previously been included in GGP models. Introducing
covariance between certain Gauss coefficients inferred from an ensemble of “Earth‐like” dynamo
simulations and predicted by theory yields a reduced misfit to VGP dispersion, allowing for GGP models
which generate improved reproductions of the distribution of field strengths and palaeosecular variation
observed for the last 10 million years.

Plain Language Summary Earth's magnetic field varies on a continuous spectrum of time scales,
ranging up to millions of years or longer. Being able to describe and predict these changes helps us
understand the processes in Earth's core which give rise to the magnetic field. One way of understanding
variations in the magnetic field is to use statistical models which assume that terms used to describe the
magnetic field follow independent and identical Gaussian (bell‐shaped) distributions and that Earth's
magnetic field averages to a dipole field with poles aligned to the geographic poles (the so‐called “Geocentric
Axial Dipole” field). However, suchmodels do not simultaneously reproduce the variations in magnetic field
direction and strength. We show that these models can be improved by using information on magnetic field
behavior from numerical simulations of the field generation processes. These new models are capable of
improving reproduction of the variations of both magnetic field strength and directions and will improve our
ability to characterize the variability of Earth's magnetic field, apply corrections to sedimentary data where
magnetic records may have been distorted by postdepositional compaction, and determine whether new
data capture a sufficient interval of time to record the average magnetic field.

1. Introduction

Palaeomagnetic statistical field models are descriptions of the time‐averaged magnetic field, typically pre-
sented as suites of spherical harmonic Gauss coefficients with assumed statistical properties. These models
allow for straightforward determinations of the magnetic field and associated metrics, such as dispersion
of magnetic directions or field strength distributions anywhere on the globe. The most common field models
have previously assumed that the variation in Gauss coefficients can be described by a giant Gaussian pro-
cess, where Gauss coefficients are normally distributed following a prescribed set of rules (e.g., Constable
& Johnson, 1999; Constable & Parker, 1988; Quidelleur et al., 1994). These assume that Gauss coefficients
are independently and identically distributed (i.i.d.) with (most) nondipole terms having zero means and
standard deviations such that the power spectrum at the core‐mantle boundary is consistent with a
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white‐noise source. A refinement on earlier GGP‐style models, TK03 (Tauxe & Kent, 2004), imposes an addi-
tional scaling term for the variance of Gauss coefficients describing the equatorially antisymmetricfield. GGP
models have been applied to model secular variation and virtual axial dipole moment (VADM) distributions
for palaeomagnetic studies across geologic history. Applications include assessing whether palaeomagnetic
data from a given study record the expected amount of dispersion typical for the time‐averaged field
(as estimated following, e.g., Cox, 1970) and estimating the degree of inclination shallowing recorded in a
sedimentary record by examining the observed elongation of directions compared against the directional
elongation predicted by TK03 (Tauxe & Kent, 2004).

Palaeosecular variation (PSV) characterizes how much Earth's field varies around a time‐averaged position
(often referred to as geocentric axial dipole, GAD) over some interval of time, typically of durations less than
∼107 years (Johnson & McFadden, 2015). Assessing PSV requires estimates of the position of geomagnetic
poles with respect to the spin axis. Palaeomagnetic observations are measured for individual sites (i.e.,
instantaneous records of the field at a specific location), which in studies of volcanic units are composed
of individual cooling units which share a similar location. Typically, these observations are reported as direc-
tions (declination and inclination) while full vector data aremuch rarer (due to the increased complexity and
challenge in recovering these palaeointensities in the laboratory). To allow for comparison between palaeo-
magnetic observations from different sites, a geometric transformation of the Fisher (1953) mean palaeo-
magnetic direction to the geomagnetic pole is often performed (e.g., Butler, 1992). For instantaneous field
records (i.e., “spot readings” capturing an instant in time much shorter than needed to average secular var-
iation), this position is referred to as a virtual geomagnetic pole. The angular dispersion of VGPs (S), which
can be used to characterize palaeosecular variation, is defined as

S2¼ 1
N − 1

∑
N

i¼1
Δi −

S2wi

ni

 !
(1)

where Δi is the angle between the Fisher mean VGP (Fisher, 1953) and the ith VGP for N sites, and S2wi
=ni

is the portion of dispersion due to intrasite scatter for ni samples. Palaeomagnetic analyses of PSV attempt

to separate contributions to S from measurement or sample variation (S2wi
=ni) and temporal variation, since

temporal variation is the parameter of interest (see Johnson & McFadden, 2015). In this study, we focus on
measures of S which exclude transitional VGPs, identified using the Vandamme (1994) iterative cutoff
method, referred to as SVD. A phenomenological model of VGP dispersion, termed Model G, was intro-
duced by McFadden et al. (1988). In their model, the latitude dependence of VGP dispersion is attributed
to a combination of equatorially antisymmetric (“dipole”‐family) and symmetric (“quadrupole”‐family)
terms, yielding a quadratic fit to data. While the dynamical basis relies on idealized dynamo behavior
(Merrill et al., 1996) and the explanatory power has been questioned (Doubrovine et al., 2019), Model G
persists as a widely used approach to describe VGP dispersion data.

Hulot and Gallet (1996) show that spatial correlations between Gauss coefficients of the same spherical har-
monic order m and shared membership in either symmetric or antisymmetric families are expected on the
basis of field symmetry arguments (Gubbins & Zhang, 1993). Hulot and Gallet (1996) provide the caveat that
VGP dispersion alone is not sufficient to distinguish between a variance structure (e.g., anisotropic variance
between odd and even terms) and a covariance structure. This was further investigated in Hulot and
Bouligand (2005), who defined a covariance structure analytically compatible with the observed breaks in
assumed symmetry properties of convective dynamos. Dynamo simulations reveal the predicted correlation
pattern (Bouligand et al., 2005; Sanchez et al., 2019), which is expected for dynamos generated in a rotating
spherical shell due to the interaction between a dominantly axially dipolar (odd) field and equatorially sym-
metric (even) core flow. In addition to these theoretical considerations, we show that the application of this
correlation matrix, when converted to a covariance matrix with modeled variances assumed using the GGP
framework, yields reduced misfit to SVD estimates from the PSV10 data set (Cromwell et al., 2018). These
results suggest that this covariance is a fundamental statistical property of the geodynamo and motivates
its inclusion in future GGP models.

Here we first describe GGPmodels (section 2) and assess the semblance of selected existing GGPmodels with
palaeomagnetic observations for the last 10 million years, with particular focus on the distribution of field
strength estimates, VGP dispersion, and magnitude of inclination anomalies (section 3). Next, the
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observed covariance between Gauss coefficients from a wide range of numerical dynamo simulations is
characterized, from which a mean correlation matrix (section 4) and GGP model parameters (section 5) are
determined. With this covariance matrix, we introduce two new GGP models, BB18 and BB18.Z3, that
yield improved fits to the PSV10 data set through the application of a prescribed covariance pattern
inferred from dynamo simulations and theoretical considerations (section 6). The first model, BB18,
assumes that the mean value for all non‐GAD terms is 0, while the second model, BB18.Z3, allows for non‐
zero‐mean zonal terms to better fit the observed inclination anomaly estimates of PSV10. In the supporting
information, alternative BB18models without covariance and variant TK03models are considered.

2. Giant Gaussian Process Models

Constable and Parker (1988) introduced the first GGP model, CP88, which uses a small number of model

parameters: mean axial dipole (g01 ), mean zonal quadrupole (g02 ), and an isotropic scaling term, α, which is
used to define the standard deviation for each Gauss coefficient (σml , where l and m are spherical harmonic
degree and order, respectively; see Equation 2). On its own, isotropic variance of the Gauss coefficients does
not yield the observed latitude dependence of VGP dispersion. Quidelleur and Courtillot (1996) and

Constable and Johnson (1999) adapted the GGP model by adjusting g02 and variance for l= 2 terms (and
in the case of Constable & Johnson, 1999, a different α and g01 variance). Through the introduction of aniso-
tropic variances for degrees l≤ 2, a latitude dependence to VGP dispersion is achieved. A fundamental dif-
ference between TK03(Tauxe & Kent, 2004) and prior GGPmodels is the usage of a single anisotropic scaling
factor, β, for l−m odd terms. The model parameters are

σ2l¼
ðRc=REÞ2lα2

ðlþ 1Þð2lþ 1Þ (2)

σml ¼σl for l −meven; (3)

σml ¼βσl for l −modd (4)

where Rc/RE is the ratio between the Earth's core‐mantle boundary and surface radii. In effect, GGP mod-
els prior to TK03 have an implicit β of 1.

The models of Constable and Parker (1988) and Constable and Johnson (1999) assign a separate variance of
the axial dipole (Table 1), whereas TK03 uses the scaling terms of Equations 2 and 3 to define σ0

1. While the
reduction of model parameters in TK03 appeals to parsimony, the resulting simplification to the GGP yields
statistical models which do not simultaneously reproduce the observed VGP dispersion and field strength
estimates for the past 10 million years (see discussion in section 3). This suggests that the separate treatment
of the axial dipole variance, which is the primary term responsible for the distribution of virtual dipole

Table 1
Model Parameters of Selected GGP Models

Model parameters Misfit statistics

Model α β ‾g01 σ0
1 σ11 ‾g02 σg12 σh12 ‾g03 cov χ2SVD L2SVD χ2ΔI L2ΔI pKS DKS

Model Ga
— — — — — — — — — — 93 2.4 — — — —

CP88 27.7 1 −30 3.0 3.0 −1.8 — — — none 390 4.9 72 2.1 0 0.438
CJ98nz 15 1 −30 11.72 1.67 −1.5 1.16 8.12 — none 330 4.5 73 2.1 0 0.306
TK03 7.5 3.8 −18 — — — — — — none 189 3.4 115 2.7 0 0.213
BB18 12.25 2.82 −22.04 10.80 — — — — — l ≤ 4 105 2.6 121 2.8 0.764 0.058
BB18.Z3 12.25 2.82 −22.04 10.74 — −0.65 — — 0.29 l ≤ 4 103 2.5 70 2.1 0.471 0.073

Note. Model parameters: “—” represents a scaled parameter following Equations 2and 3; italics denote a fixed parameter which would otherwise be scaled;
α,β = scaling parameters following Constable and Parker (1988) and Tauxe and Kent (2004); ‾gml = mean Gauss coefficient of degree l, order m; σml , σgml , σhml
= standard deviation of specified Gauss coefficient(s); cov = covariance applied. All terms except β and cov are reported in μT. Misfit statistics: χ2SVD =misfit com-
pared to PSV10 for SVD data divided into 10° latitude bins; L2SVD = normalized misfit of SVD (Parker, 1994); χ2ΔI =misfit compared to PSV10 inclination anomaly
estimates divided into 10° latitude bins; L2ΔI = normalized misfit of ΔI; pKS, DKS = two‐sample Kolmogorov‐Smirnov test p value and test statistic comparing
predicted VDM distribution to PINT10.
aModel G only predicts SVD values.
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moments (VDM), may be necessary. It is on this basis that our BB18models assign a separate variance for the
g01 term (section 6).

3. Comparing Extant GGP Models With Observations for the Past 10Myr

Several global databases of palaeomagnetic data for directional analysis have been compiled for the past 5–10
million years (e.g., Johnson & Constable, 1996; Lee, 1983; Quidelleur et al., 1994) which have been used to
construct GGP models. Of particular focus was the PSVRL (McElhinny &McFadden, 1997) database, which
is an updated compilation of several previous data sets (e.g., Lee, 1983) and is used to constrain TK03.
Cromwell et al. (2018) revisited this data set in their compilation of the PSV10 data set, applying new selection
criteria to exclude lower quality data. In their analysis, only 12% of the PSVRL database meet the criteria that
remanence directions were determined through principal component analysis of step‐wise demagnetization
experiments. The inclusion of lower quality demagnetization datamay bias resulting GGPmodels which will
affect VGP dispersion predictions. We therefore used the PSV10 data set, which compiled the results of 81
palaeomagnetic studies on volcanic units, representing a total of 2,401 sites. An approximately global distri-
bution of sites is achieved, albeit with a bias toward the Northern Hemisphere; temporally, most of the sites
were emplaced during the last two chrons, with some data extending to 10Ma. VGP dispersion estimates,
SVD, applying the Vandamme cutoff technique and averaged into 10° latitudinal bins, from PSV10 are sys-
tematically higher than the SVD estimates of Tauxe and Kent (2004) and TK03model predictions.

To estimate the field strength, we use the Palaeointensity Database PINT (Biggin et al., 2009; updated Biggin
et al., 2015). Broadly, the PINT database for the past 10Myr mimics the spatiotemporal distribution of the
PSV10 data set and represents the best available database for estimating past field strength. We apply two
mild quality filters to the approximately 2,000 records for the past 10 million years. First, the experimental
protocol should be capable of recognizing nonideal recording potential (e.g., multidomain contribution or
alteration); only studies reporting the following method codes were included: low‐temperature Shaw
method (“LTD‐DHT‐S”; Yamamoto & Tsunakawa, 2005), low‐temperature Thellier with partial thermore-
manent (pTRM) tail checks (“LTD‐T+” Yamamoto et al., 2003), microwave technique with pTRM checks
(“M+” Shaw, 1974), Multi‐Specimen Parallel Differential Technique (“MSPDp”; Dekkers & Böhnel, 2006),
Shaw & Thellier (“ST+”), Thellier or variant with pTRM checks (“T+” Thellier & Thellier, 1959), Thellier
with pTRM checks and correction (“T+Tv” Valet et al., 1996), Wilson (Wilson, 1961), and Thellier with
pTRM checks (“WT+”). This reduces the data set to ∼1,350 records. Second, the number of intensity esti-
mates per site mean (Nint) must be greater than or equal to 5. Applying both filters reduces the number of
observations to 258 sites; however, we note that there are only subtle differences in the distribution of
VDMs beyond the number of observations between the data set filtered by Nint and by method alone.
While a more thorough examination of the paleointensity record is needed (along with a more considered
filtering procedure, such as the QPImethod; Biggin & Paterson, 2014), we view this as a compromise between
existing data reliability and availability. From this data set, a median VDM can be determined for the past 10
Myr of 57 ZAm2 with 95% confidence intervals (based on a bootstrap resampling) of 54 to 62 ZAm2, some-
what higher than the 0 to 300Ma average of Selkin and Tauxe (2000) used to define the mean field strength
of TK03 but less than the mean field strength of ∼82 ZAm2 (Tanaka et al., 1995) used to define CJ98nz.

The availability of new data in the PSV10 data set and substantial new contributions to the palaeointensity
database in the last decade affords the opportunity to assess how well extant GGP models predict PSV and
field strength behavior. Three measures are used to compare with palaeomagnetic observations: distribution
of VDMs; VGP dispersion grouped into 10° latitude bins; and inclination anomaly estimates (grouped in 10°
latitude bins), ΔI (defined as the difference in inclination between an observation and the predicted inclina-
tion from a GAD field). In order to establish how well SVD and ΔI are reproduced, a bootstrapping approach
(Efron & Tibshirani, 1993) is used, in combination with a χ2 metric which allows for weighting by observa-
tion variance:

χ2¼∑
Nb

i¼1

ðOi − EiÞ2
σ2i

(5)

following the approach of Doubrovine et al. (2019). Here, Oi represents the ith Nb binned observation from
the PSV10 data set (Nb= 16), Ei represents the predicted value from a given field model for the parameter
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of interest (e.g., SVD), and σ2
i is the variance of the ith observed value, which is estimated from the 95%

confidence intervals of the PSV10 estimates of SVD and ΔI (assuming normally distributed uncertainties).
To assess predicted VDM distributions, a two‐sample Kolmogorov‐Smirnov (KS) test (Massey, 1951) is
applied between the distribution of PINT V(A)DMs and a distribution of VDMs realized from the given
GGP model following the same spatial and temporal sampling as PINT. This yields a test statistic (DKS),
which measures the maximum absolute difference between each sample's corresponding empirical
cumulative distribution functions (cdf), and its p value (pKS), which is the probability of observing a higher
test statistic under the null hypothesis. We have chosen the following three GGP models for comparison
whose model parameters are reported in Table 1: CP88(Constable & Parker, 1988), CJ98nz (Constable &
Johnson, 1999), and TK03 (Tauxe & Kent, 2004).

We show that these models are not able to simultaneously reproduce both PSV and PINT observations for
the past 10 million years (Table 1). Distributions of VDMs from all three GGPmodels yield vanishingly small
pKS, suggesting that the PINT10 data set and these GGP models sample significantly different distributions
(Table 1, inferred in Figure 1a). GGP models which yield good fits to VGP dispersion data (low χ2), such as
TK03, do not also yield low χ2 values when considering inclination anomaly (albeit with predominantly
overlapping 95% confidence intervals when sampled similarly to the PSV10 data set; Figures 1b and 1c).
Qualitatively it can be seen that even when considering the 95% confidence intervals of VGP dispersion
CP88, CJ98nz, and TK03overpredict or underpredict low‐latitude to equatorial VGP dispersion, and, with
the exception of CJ98nz, also underpredict high‐latitude VGP dispersion. Inclination anomaly is less
straightforward to assess, due to the higher uncertainty in the PSV10 data set; however, a prominent feature
of the PSV10 record is a hemispheric asymmetry between Northern and Southern Hemispheres. The GGP
model which best reproduces the VGP dispersion, TK03, yields a symmetric inclination anomaly trend
because of the GAD assumption used in its formulation, which is inconsistent with the PSV10 inclination
anomaly trend (see section 8 for discussion on estimation of inclination anomalies).

4. Characterizing Dynamo Covariance and the Application to GGP Models

We consider possible inferences from 21 dynamo simulations which demonstrate “Earth‐like” time‐averaged
behavior following theQPM framework of Sprain et al. (2019), here defined as havingmisfit values ofΔQPM≤
10 and a τt< 0.15 (where τt is the fraction of the total integration time when the absolute dipole latitude is
<45°).While we did not explicitly filter simulations by dipolarity, fdip, we wanted to excludemultipolar simu-
lations. Assigning a threshold which delineates stable dipolar from multipolar dynamos is not clear
(Christensen & Aubert, 2006; Wicht & Tilgner, 2010; Wicht et al., 2015). Instead, we apply the QPM frame-
work (Sprain et al., 2019) to define “Earth‐likeness” based on palaeomagnetic observations, which uses
clearly defined thresholds. We note that the lowest fdip of the simulations selected is 0.28, which is close to,
but not clearly within, the multipolar solutions described by Oruba and Dormy (2014). This minimum fdip
brackets the multipolar thresholds of Christensen and Aubert (2006) (of 0.35) and Wicht et al. (2015) (of
∼0.20), and we therefore consider that QPM effectively filters out multipolar states without excluding rarely

(a) (b) (c)

Figure 1. Predictions from three existing GGP models. (a) Empirical cumulative density function of VDMs sampled
similarly to PINT. (b) VGP dispersion using Vandamme (1994) cutoff. Blue circles, PSV10 SVD in 10° bins; dashed
line, Model G‐style fit of Doubrovine et al. (2019). (c) Inclination anomaly predictions. Shaded regions in (b) and (c) show
95% confidence intervals from a bootstrap resampling reproducing the number of samples for each latitude bin of PSV10
(Cromwell et al., 2018). χ2 values reported in the legend.
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reversing, “Earth‐like” dynamos. TheQPM framework compares fivemeasures of PSV between observational
data for the past 10 million years and a given numerical dynamo simulation: equatorial VGP dispersion, the
latitude dependence of VGP dispersion (through theModel G‐style fit of SVD), maximum absolute inclination
anomaly, proportion of time spent in transtion (i.e., absolute dipole latitude <45°) including the
presence/absence of reversals, and VDM variability (VDM interquartile range normalized by median
VDM). For a complete description of the QPM framework, see Sprain et al. (2019).

Dynamo simulations used in this analysis (Table 2) have been reported previously (Davies & Constable,
2014; Sprain et al., 2019; Wicht & Meduri, 2016) and are thus only described briefly. These simulations were
integrated for at least four magnetic diffusion times, representing 400 to 800 kyr dependent on the choice of
thermal conductivity (Konôpková et al., 2016; Pozzo et al., 2012), and include both reversing and nonrever-
sing cases. The simulations consider a convecting, electrically conducting fluid under the Boussinesq
approximation, with no‐slip boundary flow conditions, and consider an electrically insulating mantle while
the inner core is either insulating or conducting. Fixed heat flux or temperature are prescribed at the inner
core and core‐mantle boundaries. In some simulations a lateral heat flux pattern was imposed at the
core‐mantle boundary (see Sprain et al., 2019, for additional details). Simulations previously described by
Wicht and Meduri (2016) explored both thermally and purely chemically driven dynamos under different
input parameters, while the dynamos of Davies and Constable (2014) and Sprain et al. (2019) were solely
thermally driven. Following the definitions of Davies and Gubbins (2011), all dynamo simulations used
Ekman numbers spanning 1.2 × 10−4 to 3 × 10−3, with Rayleigh numbers spanning up to 100 times the

Table 2
Dynamo Simulations Selected for Defining BB18 Covariance

Name E(×10−4) Ra Pm BBC TBC Conv. HBC ϵ τ Rm τt fdip ΔQPM Reference

Model 4 5 350 5 II FF T N 0 13 226.0 0.112 0.28 7.0 Sprain et al. (2019)
Model 5 5 400 5 II FF T N 0 14 226.7 0.114 0.28 8.1 Sprain et al. (2019)
Model 6 5 250 10 II FF T N 0 5 326.8 0.003 0.34 6.2 Sprain et al. (2019)
B2a 5 200 10 II TF T N 0 9 326.1 0.026 0.38 6.6 Sprain et al. (2019)
Model 11 5 400 5 II TF T N 0 6 258.2 0.053 0.31 7.2 Sprain et al. (2019)
Model 19 5 100 10 II TF T R 1.5 4 218.6 0 0.48 6.5 Sprain et al. (2019)
Model 20 5 100 10 II FF T R 1.5 4 210.3 0 0.52 5.6 Sprain et al. (2019)
C1‐4 1.2 100 2 CI TF T N 0 4 264.4 0 0.64 8.2 Davies and Constable (2014)
C3‐3 1.2 50 2 CI TF T N 0 10 102.7 0 0.71 8.4 Davies and Constable (2014)
Model 30 10 60 10 II TF T N 0 19 118.9 0 0.62 8.3 Sprain et al. (2019)
Model 31 10 70 10 II TF T N 0 14 134.1 0 0.60 7.6 Sprain et al. (2019)
Model 32 10 90 10 II TF T N 0 13 160.6 0 0.57 7.0 Sprain et al. (2019)
Model 51 5 100 20 II TF T N 0 4 332.2 0 0.49 8.4 Sprain et al. (2019)
E4R53C 1.5 1500 3 CI TF C N 0 11 264.0 0 0.66 9.3 Wicht and Meduri (2016)
E4R78C 1.5 2250 3 CI TF C N 0 37 340.0 0 0.59 6.2 Wicht and Meduri (2016)
E4R106C 1.5 3000 3 CI TF C N 0 87 408.0 0.064 0.40 3.2 Wicht and Meduri (2016)
E3R23C 5 625 10 CI TF C N 0 431 442.0 0.080 0.30 5.6 Wicht and Meduri (2016)
E3R5 5 125 10 CI TT T N 0 935 202.0 0 0.60 6.4 Wicht and Meduri (2016)
E3R7 5 200 10 CI TT T N 0 58 350.0 0 0.44 5.8 Wicht and Meduri (2016)
E3R8 5 225 10 CI TT T N 0 87 393.0 0.007 0.38 5.9 Wicht and Meduri (2016)
E3R9 5 250 10 CI TT T N 0 693 436.0 0.051 0.31 4.8 Wicht and Meduri (2016)

Note. Columns 2–4 detail the input model parameters which are the following: the Ekman number E= ν/2Ωd2 where ν is the fluid kinematic viscosity, Ω the
shell rotation rate, and d the shell gap. In thermally driven dynamos, the Rayleigh number is Ra= αgΔTd/2Ωκ where α and κ are the fluid thermal expansivity
and thermal diffusivity, respectively, g is gravity at the outer boundary, and ΔT denotes a temperature scale that depends on the specified boundary conditions
and heating mode (see Davies & Constable, 2014; Sprain et al., 2019). Chemically driven dynamos employ a standard codensity formulation (Wicht & Meduri,
2016), and the Rayleigh number is Ra= gΔCd/2Ωκ where ΔC is the codensity jump across the shell. Note that the two definitions of Ra coincide when consider-
ing ΔC= αΔT. In all cases the shell aspect ratio is 0.35 and the Prandtl number Pr= ν/κ= 1. BBC = magnetic boundary conditions, “I” for insulating, “C” for
conducting, first letter for inner core boundary, second letter for core‐mantle boundary; TBC= thermal boundary conditions, “F” for fixed heat flux, “T” for fixed
temperature, first letter for inner core boundary, second letter for core‐mantle boundary; Conv. = convection type, “T” for thermally driven convection, “C” for
chemically driven convection; HBC = heterogeneous thermal boundary condition, “N” for none, “T” for tomographic boundary after Masters et al. (1996), “R”
for recumbent Y 0

2 following Dziewonski et al. (2010); ϵ = amplitude of heterogeneous thermal boundary condition following Sprain et al. (2019); τ = simulation
duration reported in outer core magnetic diffusion times, italicized values have different durations than reported in the original study; Rm =magnetic Reynolds
number; τt = proportion time in a transition state, following Sprain et al. (2019); fdip = time‐averaged ratio of the mean dipole field strength to the field strength
in degrees l≤ 12 evaluated at the core‐mantle boundary; ΔQPM = total misfit of simulation to Earth's time‐averaged field, following Sprain et al. (2019).
aNote that Model B2 was previously reported in Sprain et al. (2019) as Model 7 erroneously.
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critical value for nonmagnetic convection and magnetic Prandtl numbers
ranging from 2 and 20. The dynamo simulations of Wicht and Meduri
(2016) have not been previously assessed under the QPM framework; thus,
we have included the relevant QPM statistics in supporting information
Tables S1 and S2.

We determined the Pearson correlation coefficient (ρ) of all pairs of Gauss
coefficients for the dynamo simulations, which are sampled at ∼10,000
year steps, to reduce possible contributions due to autocorrelation
(Bouligand et al., 2005). From the 21 dynamo simulation correlation
matrices, we determined a mean correlation matrix, ρ , presented in
Figure 2 up to degree 4, with relevant terms reported in Table 3. We find
that Gauss coefficients of the same order m and membership to either
symmetric (l−m even) or antisymmetric (l−m odd) families are corre-
lated, consistent with prior descriptions of dynamo covariance
(Bouligand et al., 2005; Sanchez et al., 2019); otherwise, correlations clus-
ter close to 0, suggesting that other pairs of Gauss coefficients are indepen-
dent. The amplitude of correlated terms varies between dynamo
simulations; whether any systematic variation in correlation coefficient
amplitude can be associated with dynamo control parameters was not
explicitly explored in this study (supporting information Figure S1 shows
the variation of selected correlation coefficients for simulations included
in this study).

The mean correlation matrix ρ is used to define a covariance matrix (Σ) for our new GGP models BB18 and
BB18.Z3 by scaling correlation with a predefined variance for each Gauss coefficient (Equations 2 and 3,
except for the g01 variance discussed below):

Σij¼σiσjρij (6)

where σ is the standard deviation for each Gauss coefficient, and i and j refer to individual Gauss coeffi-
cients. Sensitivity testing suggests that covariances are required for degrees l≤ 4, with no substantial
change to the latitude dependence of VGP dispersion when covariances with degree l= 5 and higher terms
are also included. While the covariance matrix applied to the BB18 models is restricted to spherical har-
monic degrees 4 and lower on the basis of parsimony, we note that similar to the studies of Bouligand et al.
(2005) and Sanchez et al. (2019), the covariance pattern observed in our simulations extends to all degrees
examined.

5. Model Construction

Our strategy to determine model parameters considered here ( g01, α, β, σ
0
1, and zonal terms for the non‐GAD

model) was to apply an iterative approach to find the best fitting values which minimizes χ2SVD, χ
2
ΔI, and DKS.

We estimated the model parameter g01 directly from PINT (section 5.1). Next, we determined α and β terms
which yield the lowest misfit to PSV10 (section 5.2). We then determined the variance of g01 which best repro-

duces the distribution of VDMs (section 5.3). For models with non‐zero‐mean zonal terms, g02 and g03 were
determined using a multiobjective genetic algorithm (Deb & Kalyanmoy, 2001) to minimize total power at
the core‐mantle boundary and misfit to PSV10 (section 5.4).

Figure 2. Mean and standard deviation of correlation coefficients
determined from dynamo simulations considered in this study (n= 21).
Gauss coefficients are listed in the following sequence: g01; g

1
1; h

1
1; …; g

m
l ; h

m
l

, up to spherical harmonic degree l≤ 4. The matrix is symmetric; only one
triangle is shown, with diagonal terms (ρ= 1 by definition) colored gray.
Lower triangle: mean correlation coefficients (ρ); upper triangle: standard
deviation of correlation coefficients for all simulations.

Table 3
Mean Correlation Coefficients (ρ) for Select Terms Determined From Dynamo Simulations

ð g01; g03Þ ð g11; g13Þ ðh11; h13Þ ðg02; g04Þ ð g12; g14Þ ðh12; h14Þ ð g22; g24 Þ ðh22; h24Þ
ρ 0.51 0.55 0.53 0.14 0.60 0.58 0.42 0.37
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5.1. Estimating g01 Mean

From the PINT data set, we estimated a g01 term which would yield the observed median VDM using the fol-
lowing equation:

g01¼
μ0VDM
4πRE

3 (7)

where μ0 is magnetic permeability of free space. Here we assume the median VDM can be used to approx-
imate the mean g01 for the time‐averaged field (under the assumptions that the VDM is entirely described

by the dipole field and that the time‐averaged equatorial terms are zero mean). The assumption that g01 can
be approximated by the median VDM is not strictly accurate because VDMs include all nonaxial‐dipole

contributions and the distribution is not Gaussian. However, for a reasonably dipolar field (i.e., g01 > 10

μT, g02 < 3 μT, and α< 30 μT), the amount of overestimation due to these assumptions is small, and for

the chosen g01 we estimate the possible misfit to be <1 μT (supporting information sections S1 and

Figure S3). We determined an estimated g01 of −22.04 μT.

5.2. GGP Model Minimization

Ourminimization approach applied the following procedure: Generate a TK03‐style model, varying α, β, and

g01 and compare the SVD at the equator with the Model G a parameter of the PSV10 data as fit by Doubrovine

et al. (2019), which acts as an estimate of equatorial SVD (SD19VD ðλ¼0Þ). While the Model G fit to PSV10 data
does not satisfy the strict statistical threshold defined by Doubrovine et al. (2019) to predict SVD, we feel that
the estimation of minimum S provided by Model G is a good proxy for equatorial VGP dispersion. We note
that currently no GGP model considered here (or even Model G‐style fit) adequately reproduces the PSV10
observations. This can be shown using a normalized χ2 misfit, L2 , defined as the χ2 misfit divided by the
number of observation bins (Nb) (Parker, 1994); here, the expected L2∼ 1 is not achieved by any model
(Table 1), which is consistent with the observations of (Doubrovine et al., 2019) of Model G‐style fits.
Untangling the contributions to misfit from biases in the PSV10 data set and issues inherent in GGP models
is nontrivial; however, it is clear that the PSV10 data set may contain some biases which affect model con-
struction (cf. ΔI in PSV10 vs. Behar et al., 2019). The approach we have taken prevents the biasing of S by
individual studies which may be affected by unrecognized tectonic effects (Opdyke et al., 2015). For a given

set of α, β, and g01 , the SVD at the equator (SmVDðλ¼0Þ) was determined, and the square of the residual (ERS)

between SD19VD ðλ¼0Þ and the estimated SmVDðλ¼0Þ was calculated.
We find there is a clear relationship betweeng01 and α (for a given value of β, explored here from 1 to 5) which
describes the relative variance of nonaxial‐dipole terms assuming zero means (supporting information

Figure S2). This allowed us to construct a model where g01 is specified as an input from a prescribed distribu-

tion. For a specified SVD(λ= 0) and g01 , β remains to be constrained, since α is dependent on g01 and β terms.
Here, the β term which minimizes χ2SVD was chosen for the BB18 models (2.82, Table 1).

5.3. Estimating g01 Variation

The standard deviation of g01 is estimated through minimizing DKS across BB18 models while varying the

standard deviation of g01 (supporting information Figure S4). Here, we account for the contribution of

nonaxial‐dipolar fields through approximating the variance of the non‐g01 terms through α and β, which
can be estimated through comparison with PSV data. Uncertainty in PINT data is approximated by including
a Gaussian‐distributed noise term which approximates the median percent error of the PINT data set (δF%n
= 15%, the true standard deviation accounting for sample size; Paterson et al. 2010).

The choice of σ01 is dependent on the assumption of howmuch noise is present in the palaeointensity record.
The use of a normally distributed noise term almost certainly underpredicts noise at lower field strengths.
Here, we chose 15% noise based on the median percent error in the PINT data set; however, it is conceivable
that up to 20% noise is possible, which would reduce the model parameter σ01 correspondingly (supporting

information Figure S4). This yielded a best fitting σ01 of ∼10.8 μT.
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5.4. Zonal Non‐Zero‐Mean Terms

For defining BB18.Z3, which includes zonal terms with non‐zero‐mean
values, a multiobjective genetic algorithm (Deb & Kalyanmoy, 2001)
was employed to search for global minima in residuals. Here, three objec-
tive functions were independently defined: sum of squared error (SSE)
between a givenmodel and the PSV10 SVD data set, the SSE for theΔI data
set, and spectral power (Lowes, 1974) at the core‐mantle boundary for
spherical harmonic degrees 2 through 10 (W), defined as follows:

SSESVD¼∑
Nb

i¼1
SVD; i − SPSV10VD; i

� �2
(8)

SSEΔI¼∑
Nb

i¼1
ΔIi − ΔIiPSV10
� �2

(9)

W¼∑
10

l¼2

RE

Rc

� �2ðl þ 2Þ
∑
l

m¼0
½ðgml Þ2 þ ðhml Þ2� (10)

where SVD,i (and ΔIi) and SPSV10VD; i (and ΔIiPSV10) are the estimates for the

ith Nb latitude bin for the GGP model and PSV10, respectively.

Previously determined model parameters for BB18 (g01 , σ
0
1 , α and β) are retained. Because dipole mean

and variance are not adjusted in minimizing higher‐order terms, the misfit between modeled VDM distri-
butions and the PINT data set is not considered in this analysis.

The first two objectives (Equations 8 and 9) represent our desired model predictions of PSV behavior, while
the third objective (Equation 10) yields models consistent with a white‐noise source at the CMB for degrees l
> 1 (Figure 3). Since no single solution exists which minimizes all three defined objectives, a set of solutions
can be found beyond which no further minimization in one objective can be achieved without increasing
another objective (effectively, a trade‐off “surface”; supporting information Figure S5). From this set of solu-
tions, the pair of zonal terms which yields a minimum to the sum of misfit for SVD and ΔI is chosen, that is,
the “knee” of the trade‐off relation between SSESVD and SSEΔI from the set of solutions whereW has already
been minimized. Solutions including zonal nonzero terms for spherical harmonic degrees 2 and 3 were
explored.

6. New BB18 GGP Models and Methods

Presented here are two new GGPmodels named BB18 and BB18.Z3. BB18 assumes all nonaxial‐dipole terms
have a mean of 0, whereas BB18.Z3 allows for nonzero means for the g02 and g

0
3 Gauss coefficients. Both mod-

els introduce a covariance pattern (Σ) informed from dynamo simulations correlation matrix ρ.

The resulting Gauss coefficients are drawn from amultivariate normal distribution with the probability den-
sity function (P):

P¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΣjð2πÞk

q exp −
1
2
ðcml − cml ÞΣ−1ðcml − cml ÞT

� �
(11)

where k= 120, the number of Gauss coefficients, and cml and cml are Gauss coefficients and their means. For
spherical harmonic degrees 1–4, the observed covariance pattern from dynamo simulations introduced in
the prior section is applied (Figure 2), and for higher degrees (5≤ l≤ 10) no covariance is applied (i.e.,
independence). The specified model parameters are detailed in Table 1 with nonzero correlation coeffi-
cient terms reported in Table 3. Alternative BB18 family GGP models without covariance were also
explored (supporting information section S2, Tables S3 and S4, and Figure S6). While the variant models
yielded improved fits to PSV10 relative to extant GGP models, the addition of a covariance structure
results in better fits overall, as we shall show in the following section.

Figure 3. Power spectra at the core‐mantle boundary (Lowes, 1974) of
1,000 realizations of BB18.Z3 (black lines). Magenta line shows the mean
power spectrum for BB18.Z3.
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7. Results

Considering all three metrics of resemblance between GGPmodels and the palaeomagnetic field for the past
10 million years, BB18 models simultaneously achieve quantifiable improvements over prior GGP models.
The BB18models are able to reproduce the median VDM and distribution observed in the PINT data, yield-
ing a pKS≫ 0.05, suggesting the null hypothesis that BB18 and PINT sample the same underlying distribu-
tion cannot be rejected (Table 1 and Figure 4a), which earlier GGP models do not. VGP dispersion (SVD)
predictions from the BB18 models yield improved fits to the PSV10 data set, as measured by Equation 5
(Figure 4b and Table 1) and produce predictions with confidence intervals which contain all VGP dispersion
estimates (and all but one inclination anomaly estimate, Figure 4). Between BB18 and BB18.Z3, we see a
small improvement in goodness of fit for BB18.Z3, likely due to the slight hemispheric asymmetries that
the non‐GAD zonal terms introduce.

Much of the improvement in fit in the BB18 models, with respect to existing GGP models considered here,
can be seen at the highest latitudes, which are less well sampled relative to lower latitudes (and thus do not
contribute as much in the χ2 metric). Prior GGP models yield SVD curves with a prominent difference to
Model G: An inflection point at some midlatitude point which moves toward the equator as the difference
in SVD at the equator versus high latitudes increases, whereas Model G has no inflection point.
Introducing a covariance matrix to the GGP models (i.e., BB18‐family) reduces the effect of this inflection
point while still yielding a latitude dependence in VGP dispersion. In supporting information section S2, var-
iants of BB18 without covariance are explored. While these models yield improved fits relative to existing
GGP models, BB18 models with covariance presented here have lower χ2 values and visually improved fits
at high latitudes to BB18 models without covariance.

BB18.Z3 (which includes non‐zero‐mean zonal degree 2 and 3 terms) yields comparable χ2 values to CP88
and CJ98nz when compared to the PSV10 (Cromwell et al., 2018) inclination anomaly estimates
(Figure 4c and Table 1). The BB18 model assumes a time‐averaged GAD field and yields higher χ2 values
relative to existing GGP models. Similarly, TK03 also assumes GAD and yields a somewhat lower χ2 than
BB18 (but substantially higher than GGP models with zonal terms, including BB18.Z3); however,
TK03sacrifices goodness of fit for VGP dispersion.

8. Discussion

The BB18 family of GGP‐style models provides a flexible framework for the generation of statistical field
models, which incorporates the correlation pattern observed in dynamo simulations to improve PSV predic-
tions. Prior GGP models are able to reproduce some aspects of the palaeomagnetic field but are unable to
simultaneously reproduce all three metrics considered in this study (VDM distribution, VGP dispersion,
and inclination anomaly). While the BB18 models, like prior GGP models considered here, are unable to
satisfy the L2 normalization expectation, the specific models presented here, BB18 and BB18.Z3, yield predic-
tions which are in closer agreement with PSV data for the past 10Myr as compiled by PSV10 than GGPmod-
els considered here while also reproducing the VDM distribution of the PINT data set.

While other statistical properties beyond correlation of Gauss coefficients are available from dynamo simu-
lations, here we chose to only incorporate the correlation pattern. To first order, BB18models reproduce the
VGP dispersion of PSV10 better than dynamo simulations; however, it is worth acknowledging that

(a) (b) (c)

Figure 4. BB18 model predictions, with TK03 (Tauxe & Kent, 2004) for comparison, following the style presented in
Figure 1.
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simulations are able to reproduce some salient features of PSV behavior (e.g., latitude‐dependent VGP dis-
persion; Lhuillier & Gilder, 2013; Sprain et al., 2019). Furthermore, we are not aware of any dynamo simula-
tion that reproduces the hemispheric asymmetry of inclination anomalies observed in PSV10 (albeit with
some models reproducing the amplitude of the peak inclination anomaly observed). With respect to the
mean values and standard deviations of Gauss coefficients, the appropriate scaling law to relate dimension-
less simulation values to physical units remains an open question, with different scaling approaches yielding
strengths which can vary substantially (Christensen &Wicht, 2015); this also precludes the determination of
model parameter α.

Conceivably, the model parameter β could be determined directly from dynamo simulations, and indeed, in
the suite of dynamo simulations considered, we do observe larger variances of l−m odd terms relative to l−
m even terms of the same degree, yielding β values >1. Estimated β terms from simulations were all <2,
below the β terms found to best fit PSV10 observations. Closer inspection of the ratio of odd to even Gauss
coefficient variance within each degree suggests greater complexity than modeled in the GGP framework
(i.e., differences in variance within a degree, violating the assumption of identical distributions of Gauss
coefficients); however, the source of this complexity and whether this behavior is found in Earth's magnetic
field are beyond the scope of this study (supporting information Figures S7 and S8). Because of the assump-
tions and complexities associated with directly importing additional statistical behavior from dynamo simu-
lations, we have employed a conservative approach of modifying the GGP approach as little as possible while
still capturing what we think are fundamental dynamo characteristics.

We note that earlier GGPmodels of Constable and Johnson (1999) are also able to yield high VGP dispersion
predictions at high latitudes, albeit with underpredictions of equatorial VGP dispersion. The high‐latitude

dispersion is due to the additional variance given to the g12 and h12 terms (an observation also made by
Quidelleur & Courtillot, 1996). By contrast, BB18models achieve increases in high‐latitude VGP dispersion

due to the positive correlation betweeng12 andg
1
4 (h

1
2 andh

1
4) terms. Asmentioned previously, Hulot and Gallet

(1996) identified both the significance of orderm= 1 terms to the latitude dependence of VGP dispersion, as
well as the inability to distinguish between contributions from variance and covariance.While previous GGP
models have improved fit to VGP dispersion through directly adjusting the σ12 terms, the improved fit to data
by BB18models is achieved through a process which is consistent with the observed behavior of dynamos in
numerical simulations (i.e., covariance).

BB18 models reproduce the distribution of VDMs observed for the past 10 million years without sacrificing
fit to PSV measures, in contrast with existing GGP models considered in this study (Table 1). This outcome
can be achieved by adjusting themean and variance of the axial dipole. However, simply adjusting themodel
parameters of a TK03‐style model is not sufficient (see supporting information section S3 and Figure S10). By
reintroducing a separate model parameter for the variance of the axial dipole term, decoupling σ01 from the
variances of the other Gauss coefficients (which are determined by α and β), the observed VDM distribution
can be reproduced. The increased variance of the axial dipole term in BB18 models is consistent with the
observations of Constable and Johnson (1999). We also find that, visually, BB18models are capable of repro-
ducing the variation and mean trend observed in the PINT data set of palaeointensity versus latitude (sup-
porting information Figure S9). We note that there are a few caveats to the assumptions made in
determiningmodel parameters with respect to VDM observations (sections 5.1 and 5.3). In our efforts to esti-

mate g01, we chose not to increase the complexity of our model by accounting for the potential bias when con-
verting from VDMs, given the likelihood of additional, unaccounted for sources of error.

The third metric used in this study, the pattern and amplitude of inclination anomalies, requires additional
consideration. In our study, inclination anomaly predictions from GGPmodels are treated in the same man-
ner as palaeomagnetic data in the PSV10 data set; specifically, inclinations are determined using unit vector
magnetic directions and subsequently binned into 10° latitude groups. In the PSV10 data set, two salient
observations suggest that the observed inclination anomalies represent persistent non‐GAD field contribu-
tions for the past 10 million years: There is a pronounced asymmetry between Northern and Southern hemi-
sphere inclination anomaly estimates, and the maximum observed inclination anomaly is greater than 5°.
These features are reproduced in early GGP models (Constable & Johnson, 1999; Constable & Parker,
1988), which used a different palaeomagnetic data set than PSV10, assuming a small (∼1–2 μT) quadrupole
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contribution. Prior studies (Constable & Johnson, 1999; Constable & Parker, 1988; Quidelleur & Courtillot,
1996) empirically determined zonal terms g02 on the order of 1–5% of g01 , with one analysis by Muxworthy
(2017) suggesting an octupole contribution of ∼15%. We reproduce the observed inclination anomaly asym-
metries through the contribution of small zonal quadrupole and octupolemean terms, <5% the strength ofg01,
in BB18.Z3, which is our preferred model (Table 1).

When full vector magnetizations recording a GAD field are considered, no inclination anomalies are
expected; however, due to the latitude dependence of both inclination and field strength, the treatment of
magnetic directions as unit vectors results in small (∼2–5°) inclination anomalies, antisymmetric about
the equator and peaking near ∼20–30° latitude. Therefore, some inclination anomalies are expected in a
time‐averaged GAD field when calculated from unit vector magnetizations. However, significant deviations
from either zero inclination anomaly or the antisymmetric anomaly arising from unit vector treatment may
be due to persistent non‐GAD contributions to the time‐averaged field. Alternative methods to calculate ΔI
and additional data since PSV10, presented in Behar et al. (2019), suggest that the inclination anomaly esti-
mates of PSV10 may be biased due to data selection and inclination anomaly calculation methods. If this is
the case, then the persistent non‐GAD contribution to the time‐averaged field is likely to be negligible, and
the BB18 model is optimal.

9. Conclusions

The new GGP models presented in this study (BB18 and BB18.Z3) both yield improved fits to the VGP dis-
persion estimates of PSV10 relative to existing GGP models, approaching what can be achieved with
Model G‐style fits of Doubrovine et al. (2019) while also predicting field directions and intensities which can-
not be done with Model G. Furthermore, BB18 models are also able to reproduce the distribution of field
strengths observed for the past 10 million years, which prior GGP models are unable to do. We find that
the introduction of a covariance matrix allows for improved reproductions of the observed latitude depen-
dence of VGP dispersion. This finding reinforces expected theoretical symmetry relationships of the field
(Hulot & Gallet, 1996) and numerical dynamo simulations (Bouligand et al., 2005; Sanchez et al., 2019)
which predict a covariance between Gauss coefficients. Generating accurate predictions of VGP dispersion
at all latitudes is necessary to determine whether palaeomagnetic data sets sufficiently average secular var-
iation and have properly excluded transitional directions and outliers. Identifying the precise physical pro-
cesses which yield the observed covariance, what parameters control the amplitude of covariance, and
further tests of the assumptions in GGP models (e.g., Hulot & Bouligand, 2005; Khokhlov & Hulot, 2017)
are critical questions for future study.

The addition of zonal non‐zero‐mean terms yields an improved fit, relative to GAD field models, for VGP dis-
persion and inclination anomaly estimates from the PSV10 data set. This supports previous assertions that
the time‐averaged field of the past 10million years is not a perfect geocentric axial dipole but one with amore
complex mean field morphology. Field strength compilations (e.g., Biggin et al., 2015; Bono et al., 2019;
Kulakov et al., 2019; Hawkins et al., 2019; Shcherbakova et al., 2017; Smirnov et al., 2016) demonstrated that
earlier times record different VDM distributions from the past 10 million years. It is suspected that for other
intervals further back in geologic time, VGP dispersion and other estimates of PSV behavior are different than
seen for this most recent interval (e.g., Biggin, Strik, et al., 2008; Biggin, van Hinsbergen, et al., 2008, 2009; de
Oliveira et al., 2018; Doubrovine et al., 2019; Smirnov et al., 2011; Tarduno et al., 2002). Given the variation of
field strength and morphology, new statistical field models based on the approach applied in this study are
needed, which can reproduce the statistical properties of the time‐averaged field and the validity of these
assumptions during those intervals.
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