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Linear Time Canonicalization and Enumeration of

Non-Isomorphic 1-Face Embeddings

Marc Hellmuth ∗ Anders S. Knudsen † Michal Kotrbčı́k ‡ Daniel Merkle §

Nikolai Nøjgaard ¶

Abstract

Antiparallel strong traces (ASTs) are a type of walks in graphs

which use every edge exactly twice. They correspond to 1-face

embeddings in orientable surfaces and can be used to design self-

assembling protein or DNA strands. Based on a novel canonical

form invariant for ASTs, gap vector, we provide a linear-time iso-

morphism test for ASTs and thus, also for orientable 1-face em-

beddings of graphs. Using the canonical form, we develop an al-

gorithm for enumerating all pairwise non-isomorphic 1-face em-

beddings of graphs. We compare our algorithm with an indepen-

dent implementation of a recent algebraic approach (Bašić et al.,

MATCH Commun. Math. Comput. Chem. 78 (3), 2017) on large

data sets. Our results yield the first large-scale enumeration of non-

isomorphic embeddings and investigation of their properties.

1 Introduction.

Two embeddings of a graph are isomorphic if their sets of

faces coincide, where two faces are considered the same

either if their boundary walks are the same, or if one is

the reverse of the other. Enumeration of embeddings, both

with and without regard to isomorphism, is a classical topic

which attracted a significant amount of attention, see for

example [15, 16, 35, 36]. However, the enumeration of

embeddings is difficult and very little progress has been

made in enumerating pairwise non-isomorphic embeddings.

In particular, the precise number of pairwise non-isomorphic

embeddings is known only for a few very small graphs.

The three main contributions of this paper are: (i) linear-

time isomorphism test for 1-face embeddings based on a

novel embedding invariant; (ii) experimental evaluation of
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the resulting enumeration algorithm in comparison with a

previous algebraic approach [4]; and (iii) a large amount of

empirical information obtained about embeddings of graphs

in our test sets, which include all connected graphs with

at most nine vertices, all cubic graphs with at most 22

vertices, and all trees with 15 to 20 vertices. This is the

first time that such data is available for diverse sets of graph

classes consisting of more than only a few graphs. Even in

these sets, the number of pairwise non-isomorphic 1-face

embeddings of a sibgle graph can be fairly large (≫ 106).

All implemented algorithms, as well as the computed results,

are freely available [1, 2]. All designed algorithms are

nonspecific in the sense that the same algorithm can be used

for any graph class, and hence our implementations provide a

workbench for possible further experimental investigations.

1.1 Background. Our work falls into the scope of topo-

logical graph theory, which is concerned with the study of

embeddings of graphs on surfaces. Here, an embedding is,

loosely speaking, a representation of the graph on a surface,

such as a torus, in such a way that the curves representing

the edges do not cross.

Central to this area of graph theory are the minimum

and maximum genus of a graph corresponding to the mini-

mum (resp. maximum) genus of an orientable surface into

which the graph can be cellularly embedded. The mini-

mum and maximum genus and, more generally, the genus

distribution - the number of embeddings of G into each

surface into which it can be embedded, are arguably the

most fundamental topological invariants of a graph and a

large body of research is devoted to them, see for example

[13, 15, 16, 19, 22, 31, 37].

Since determining the genus distributions of nontrivial

graph families exactly seems to be well out of reach of the

existing methods, currently the focus is on the type of the

embedding distributions. It is conjectured that all embed-

ding distributions are unimodal [18] and it is suspected that

they strongly concentrate close to the maximum genus (see

Table 1 for an example). This may not come as surpris-

ing since there is a polynomial-time algorithm for maximum

genus, while the minimum genus problem is NP-hard. By

the Euler formula (Eq. (2.1)), maximizing the genus corre-



sponds to minimizing the number of faces. In the extremal

cases when the graphs have an embedding with 1 or 2 faces

(depending on the parity of |E|− |V |), the graphs are called

upper embeddable. Besides the indications that a large por-

tion of embeddings is very close to the maximum genus, the

prominence of 1-face embeddings is further signified by the

fact that every 4-edge-connected graph is upper-embeddable.

Therefore, every 4-edge-connected graph with |E|− |V | odd

has a 1-face embedding. There is essentially one known

method of constructing 1-face embeddings, which is based

on decomposing the graph into a spanning tree T and a par-

tition of E(G)−E(T ) into pairs of adjacent edges. By in-

serting these pairs of adjacent edges into different positions

in the rotation system it is possible to show that every graph

has exponentially-many maximum-genus embeddings [30].

However, it is not known how tight this bound is and there

are no results on the number of pairwise non-isomorphic

maximum-genus embeddings beyond a few very small ex-

amples.

1.2 Our Contribution. In this work, we propose three

novel invariants collectively called gap representations,

namely vertex, edge, and bio gap. For each element of a trace

(i.e. the boundary walk of the single face of the embedding),

the gap vectors contain the distance to the next (for vertex

gap and edge gap), resp. the nearest (bio gap) occurrence of

this element, see Section 3 for details. We propose a canon-

ical form CanonGAP of the vertex gap vector obtained as the

lexicographically minimal vector in the equivalence class of

all shifts and reversals of the gap vector. We prove that two

strong traces, or equivalently, two 1-face embeddings, are

isomorphic if and only if they have the same CanonGAP. We

provide a linear-time algorithm computing CanonGAP of an

arbitrary graph and based on it we design a new algorithm,

GapEST (GapEnumeration of Strong Traces), for the enu-

meration of pairwise non-isomorphic orientable 1-face em-

beddings of an arbitrary graph. For comparison and to de-

termine the suitability of these algorithms, we also provide

an independent implementation of a recent algorithm from

[4], which we call AEST (Algebraic Enumeration of Strong

Traces). Gap representations can additionally be used for

early pruning the search space to speed-up either of the al-

gorithms, or when searching only for traces with particular

properties.

In addition to the latter results, our main contributions

are experimental evaluation and data collection. For the eval-

uation, we compare AEST and GapEST algorithms, investi-

gate hardness of instances depending on various graph pa-

rameters, and explore the feasibility of gap representations

for the speed-up via pruning.

To evaluate the algorithms, we test both implementa-

tions and three pruning strategies based on gaps on several

graph classes. As a baseline have chosen the sets of all con-

nected graphs with at most nine vertices. Moreover, due to

their suitable size and their interesting topological features

we have additionally chosen all cubic graphs with at most 22

vertices, and all trees with 15 to 20 vertices. With time limit

30 seconds per graph, we solve 56,4% of feasible instances

on 9 vertices and all the cubic and tree instances.

In the data collection direction, we are driven by the

lack of understanding of behavior of embedding parameters.

Therefore, we provide a very large amount of information

about embeddings and their properties in general graph

classes, and the dependency of the properties on graph

parameters such as girth and connectivity. While from

the theoretical point of view it is well known that these

parameters affect embeddability, up to this point it was not

known how significant these effects are and whether they can

be observed on scale. It should be noted that the number

of pairwise non-isomorphic 1-face embeddings of a single

graph can be rather high (≫ 106) even for graphs on 8 or

9 vertices (cf. Table 1). In total, we successfully solve

and obtain the exact number of pairwise non-isomorphic

orientable 1-face embeddings for over 8 millions graphs.

This is the first time that such data is available for diverse

sets of graph classes consisting of more than only a small

number of graphs. We expect that the data collected will be

of value to theoreticans for deepening their understanding

of the relationships among the parameters, forming their

intuition, and suggesting areas for further study. Since the

gap representations seems to be quite interesting on their

own, to a certain extent we also investigate their properties

and collect empirical information about their distributions.

1.3 Potential Applications. Recently, Gradisar et al. [12]

and Kovcar et al. [25] devised methods for building self-

assembling protein and DNA nanostructure polyhedra from

linear chains. It turns out that under a natural stability re-

quirements, the methods are feasible exactly when the lin-

ear chain corresponds to a strong double trace of the de-

sired polyhedra, see also [10] for details. Motivated by

this biological development, theoretical properties of traces

were revisited [3, 11, 24, 32] and Bašić et al. [4] proposed

a branch-and-bound algorithm computing all pairwise non-

isomorphic strong traces. The algorithm is based on prun-

ing of the search tree using the automorphisms of the graph

and can also enumerate and compute all Antiparallel Strong

Traces (ASTs). Since the assembly of a protein or DNA

is constrained by its chemical properties, besides listing all

strong traces or ASTs it is desirable to be able to also restrict

the set of all ASTs of the polyhedra and to filter it according

to additional properties. The likelihood of two segments to

bind in the biochemical setting depends on their proximity.

It is conceivable that the proximity might be reflected by the

biological gap representation, which we introduce in Sec-

tion 3. Therefore, protein or DNA sequences might be more



Genus: ♯ embeddings: Genus: ♯ embeddings: Genus: ♯ embeddings:

0 0 3 3 746 107 320 6 158 500 382 165 280

1 240 4 594 836 922 960 7 178 457 399 105 280

2 3 396 5 20 761 712 301 960 8 0

Table 1: The genus distribution of K7 [14]. The minimum and maximum genus of K7 is 1 and 7, respectively. The embeddings of

genera 1−4 constitute less than 0.2% of all embeddings, while embeddings of maximum genus and one less constitute over 97% of all

embeddings. The embeddings of K7 with genus 7 have 1 face by Euler Formula (Eq. (2.1)).

likely to self-assemble for a graph G if max(BioGAP(t)) is

not too large for the BioGAP-optimal strong trace t, but this

would have to be tested by biological experiments. Our im-

plementations allow to filter and investigate any set of can-

didate graphs according to BioGAP. The graphs in our eval-

uation are slightly larger than the maximum size of chains

that are possible to be assembled now and mostly likely will

in the foreseeable future. Therefore, our tools provide read-

ily available methods to enumerate and investigate candidate

graphs of appropriate size. The runtime costs of such investi-

gations are in at most days of single-core equivalent of a typ-

ical desktop machine for completely solving a single-graph

instance, or in hundreds of days to solve majority of a large

set of instances. Note that such costs are at least partly un-

avoidable since the number of all embeddings or the number

of ASTs can be prohibitive from the computational perspec-

tive even for very modest graph sizes. Therefore, searching

only for specific embeddings might be desirable or neces-

sary. Gap vectors, and BioGAP in particular, are natural can-

didates for partitioning search and solution spaces to, at least

partly, mitigate these difficulties.

1.4 AEST algorithm. AEST algorithm [4] uses a branch-

and-bound strategy to prune partial strong traces using the

automorphism group of the graph. More precisely, it gen-

erates partial traces and uses a set of automorphisms to de-

cide whether the partial trace can be lexicographically min-

imum in its equivalence class. The lexicographically mini-

mum strong trace is then the canonical representative of its

class. The set of automorphisms used starts as the set of

all automorphisms and is pruned as the partial trace is being

extended. Note that the AEST algorithm, in principle, can

enumerate also strong traces which are not antiparallel (see

the next section for the precise definitions), while our work

focuses only on ASTs. The paper [4] illustrates the perfor-

mance of the AEST algorithm on a small number of cases; in

Table 2 we summarize the cases focusing on ASTs. Since no

implementation is publicly available, we reimplemented the

AEST algorithm and compare it with our algorithm in Sec-

tion 5.

Graph: Y3 Y5 Y7 Y9 Py4

Run time (s): 0.005 0.006 0.024 0.43 0.008

♯ASTs: 2 10 76 536 4

Table 2: Runtimes and numbers of ASTs produced by AEST

algorithm. The graph Yi is the prism on 2i vertices, that is, two

cycles of length i with the corresponding vertices joined by an

edge. Py4 is the graph obtained by joining a new vertex to each

vertex of a 4-cycle. The running times corresponds to runs in the

SageMathCloud, see [4] for details.

2 Preliminaries.

This section gives a brief overview of the used main concepts

and definitions. For further and detailed discussion of

topological graph theory, we refer the reader to [19] and [28].

All the graphs in this paper are simple, finite, and

undirected. We use standard graph-theoretic terminology, in

particular, a graph G = (V,E) has a vertex set V and an edge

set E and the sizes of these sets are denoted by n and m,

respectively.

For a given graph G, an embedding Π of G is (infor-

mally) a representation of G on a surface S in such a way that

the vertices correspond to different points of S and the edges

of G do not cross. We deal only with orientable surfaces;

an orientation is a choice of the preferred direction on the

surface, either clockwise or counterclockwise. It is known

that any orientable surface is homeomorphic to a generalized

torus Sg, or equivalently, to a sphere with g handles attached.

For Sg, the number g is the genus of the surface. It is custom-

ary to work only with cellular embeddings where each face

is an open disc. We do not need formal topological definition

of an embedding since it is known that cellular embeddings

in orientable surfaces (with a chosen orientation) are in 1-to-

1 correspondence with rotation systems of G as follows. For

a vertex v, a rotation Πv on v is a cyclic permutation of edges

incident with v. A rotation system of G is a set of rotations,

one for each vertex of G. For a given embedding Π(G), the

set of faces of Π is denoted by F(Π). Since each face is a

cyclic walk F = (v1v2 . . .vk), the starting point bears no sig-

nificance and all the rotations (v2 . . .vkv1), (v3 . . .vkv1v2), . . .
corresponding to F are identical.

Clearly, every graph has Πv(degv−1)! distinct rotation

systems and thus also embeddings. We sometimes call this



the number of all combinatorial embeddings when we want

to stress that we are comparing this number to the number of

(pairwise non-isomorphic) 1-face embeddings.

For a graph G cellularly embedded in Sg with |F | faces,

the Euler formula

(2.1) |V |− |E|+ |F |= 2−2g

implies that embeddings of G minimizing the number of

faces maximize the genus of the surface. In the rest of the

paper, the adjectives cellular and orientable will usually be

omitted, since all our embeddings are cellular and all the

surfaces are orientable.

It is well known that the faces of any embedding tra-

verses every edge of the graph exactly twice. Therefore, the

unique face of any 1-face embedding, orientable or not, is a

closed walk in the graph which traverses every edge exactly

twice. Walks traversing every edge exactly twice are called

double traces of G. Not every double trace corresponds to

1-face embedding in an orientable surface. However, dou-

ble traces that traverses each edge once in each of its two

directions and induce cyclic permutations at all vertices cor-

respond to 1-face embedding in orientable surfaces and are

called antiparallel strong traces (AST) (c.f. [4]). The rela-

tionship between strong traces and embeddings is summa-

rized by the following theorem, see [4] for more details and

further properties of various types of traces.

THEOREM 2.1. Any antiparallel strong trace S uniquely de-

termines a graph G. Furthermore, there is 1-to-1 correspon-

dence between 1-face embeddings in orientable surfaces of

G and antiparallel strong traces S of G.

Unless stated otherwise, by trace we always mean an-

tiparallel strong trace. A partial trace is a walk t in a graph

G such that there exists a walk t ′ in G for which appending

t ′ at the end of t yields a trace in G.

In different contexts it is convenient to represent traces

as sequences of either edges or vertices. Since the graphs

are simple, both these representations are unambiguous. To

stress that we use a particular representation, we use the

terms edge trace and vertex trace, respectively. Finally, as

with faces, since traces are closed walks, we implicitly iden-

tify the equivalence classes of strong traces corresponding to

cyclic shifts of the starting point.

When we append an element to the end of a partial trace

t, usually a vertex v, we denote the concatenated (partial)

trace by t⊙ v.

As is customary, we define two embeddings Π1 =
Π1(G) and Π2 = Π2(G) to be isomorphic if there is an

automorphism σ of G such that (v1 . . .vk) is a face of Π1

if and only if (σ(v1) . . .σ(vk)) is a face of Π2. In the case

of 1-face embeddings, the embeddings with faces F1, resp.

F2 are isomorphic if σ(F1) is either F2 or the reverse of F2

(recall that we implicitly identify the equivalence class of

cyclic shifts of a face).

3 Gap Representation and Canonicalizing Strong

Traces.

In this section we introduce three gap representations, vertex,

edge, and bio gap. Our main goal is to design linear-time

isomorphism test (Theorem 3.4) based on canonical form

of vertex gap CanonGAP (Theorem 3.2). The edge and bio

gap representations are natural variants of vertex gap. Since

edge and bio gap are not utilized in the canonical form

and isomorphism testing, the reader interested only in the

isomorphism algorithm may wish to skip them. On the other

hand, the definitions are almost identical so we present them

here as well. Furthermore, edge and bio gap seem interesting

on their own from both theoretical and practical perspective

and since they are currently not very well understood, they

might warrant further investigation. In Section 5.2 we

present experimental results on using all gap representations

for pruning and on empirical data on their distributions in our

data sets.

For an illustrative example of the definitions, see Fig.

1 and Tab. 4 in the Appendix. We start with vertex and

edge gaps which, for each element ti of the trace, contain

the cyclical distance from ti to the occurrence of the same

element.

DEFINITION 3.1. (VERTEX AND EDGE GAP REPR.) Let

t = (t0, t1, . . . , t2m−1) be a vertex (resp. edge) strong trace of

a graph G. The vertex, resp. edge gap representation GAP(t),
resp. EGAP(t), is the vector (g0,g1, . . . ,g2m−1), where gi is

the minimum positive integer such that ti = t j and j = i+gi

(mod 2m).

Bio gap representation differs from vertex and edge gaps

by taking the minimum of the distances in both directions

when calculating the gap for ti.

DEFINITION 3.2. (BIO GAP REPRESENTATION) Let t =
(e0,e1, . . . ,e2m−1) be an edge strong trace of a graph G. For

each i, let ai and bi be minimum positive integers such that

ei = ei+ai (mod 2m) and ei = ei−bi (mod 2m). The biological gap

gi is the the minimum of ai and bi, and the biological gap

representation is the vector BioGAP(t) = (g0,g1, . . . ,g2m−1).

While it would be conceivable to consider also a variant

of bio gap for vertex traces, in the self-assembling scenario

the binding occurs over edges, not vertices, and thus we do

not explore this possibility further.

THEOREM 3.1. Given a strong trace t corresponding to a

1-face embedding of a graph G, each of GAP(t), EGAP(W ),
and BioGAP(t) can be computed in time O(m).

Proof. The reader is referred to Appendix A for details of

the proof.
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Figure 1: Shown is a square pyramid with vertex strong

trace t = (0,2,1,4,2,0,3,4,1,3,0,4,3,1,2,4). Here,

GAP(t) = (5,3,6,4,10,5,3,4,5,3,6,4,10,5,3,4). The gap

representation of the reversed walk t−1 is GAP(t−1) =
(4,10,5,3,4,5,3,6,4,10,5,3,4,5,3,6). Note, GAP(t−1) is not the

reversal of GAP(t). The canonical representation is then obtained by

taking the lexicographic minimum of GAP(t) and GAP(t−1). Thus,

we get CanonGAP(t) = (3,4,5,3,6,4,10,5,3,4,5,3,6,4,10,5)
which corresponds to a cyclic shift of GAP(t−1). The edge

strong trace (an edge {i, j} is just written as i j or ji) is tE =
(02,21,14,42,20,03,34,41,13,30,04,43,31,12,24,40). We ob-

tain GAP(tE) = (4,12,5,11,12,4,5,11,4,12,5,11,12,4,5,11) and

CanonGAP(tE) = (4,5,11,4,12,5,11,12,4,5,11,4,12,5,11,12).
The biological gap is BioGAP(tE) =
(4,4,5,5,4,4,5,5,4,4,5,5,4,4,5,5). Here t is the only strong

trace for the square pyramid that has smallest max bio gap 5, cf.

Tabular 4, where this specific embedding has ID 4.

For a vector W = w1w2 . . .wk, let W R denote the reverse

wk . . .w2w1 of W .

DEFINITION 3.3. Let t be a strong trace on the graph

G, then the canonical representation of t, denoted by

CanonGAP(t), is defined by

CanonGAP(t)= lex min{lex min(GAP(t)), lex min(GAP(tR))},

where lex min represents a function that returns the lexico-

graphical smallest shift of a given vector.

THEOREM 3.2. Let t1 and t2 be strong traces corresponding

to 1-face embeddings Π1 = Π1(G) and Π2 = Π2(G). Then

CanonGAP(t1) = CanonGAP(t2) if and only if Π1 and Π2 are

isomorphic.

Proof. We give here a sketch of the proof; for full details see

the Appendix. Our proof is based on several observations.

First, if a vector W is the vertex gap of an AST t, then

W determines t uniquely up to isomorphism; we call the

embedding corresponding to t the associated embedding of

W . Second, while GAP(t) depends on the starting point of t,

the cyclic shifts of GAP(t) are in 1-to-1 correspondence with

cyclic shifts of t. In particular, there is an unique embedding

associated with all shifts of GAP(t). The final ingredient

is that choosing the minimum among shifts of gaps of t

and tR leads exactly to identification of Π and Π
R in our

enumeration.

THEOREM 3.3. Given a strong trace t corresponding to a

orientable 1-face embedding of a graph G, CanonGAP(t) can

be computed in time O(m).

Proof. By Theorem 3.1, it is possible to compute the GAP(t)
and GAP(tR) in linear time. Additionally it was shown in [34]

that finding the lexicographically smallest shift of a vector

can be done in O(m). It follows directly that CanonGAP(t)
can be computed in O(m).

Theorem 3.3 immediately implies that there is a linear-

time algorithm deciding isomorphism of two embeddings

whose running time does not depend on the size of the

automorphism group of the graph.

THEOREM 3.4. There is an algorithm deciding isomor-

phism of any two 1-face embeddings in time O(m).

4 Algorithms.

The basis for all used algorithms is a branching strategy

for generating strong traces, as given in Algorithm 1. This

general strategy depends on the following three routines,

whose specifications leads to a particular algorithm.

isFeasible(t,v) returns true if appending v to t would lead to

a valid partial strong trace. This routine is the same in

all the used variants of the algorithm.

isCanonical(t,v) returns true if appending v to t might lead

to a canonical strong trace.

isCanonical(t) returns true if t is the canonical representa-

tive of its equivalence class.

We now describe two specifications of isCanonical(t,v)
and isCanonical(t), giving our version of the AEST algo-

rithm from [4] and our algorithm GapEST based on canonical

gap representations, respectively. We will use t ≺ t ′ to denote

that a trace t is lexicographically smaller than t ′.

We start with the description of isCanonical(t,v) in

the AEST algorithm. The algorithm assumes that v0v1 is

always an edge of G and that all strong traces start with this

edge. From each set of pairwise isomorphic strong traces, the

algorithm chooses the canonical strong trace defined as the

strong trace that is lexicographically minimum. To this end,

the algorithm keeps a set SA of automorphisms of the graph,

which is used to cut branches of the search tree that cannot

lead to a lexicographically minimum strong trace. At each

step, all automorphisms in SA fix the current partial trace t.



Algorithm 1 Recursively extend a partial strong trace

Require: t is a partial strong trace

1: function EXTENDTRACE(t)

2: if |t|< 2m then ⊲ t is not a complete trace

3: u← the last vertex of t

4: for all v ∈ N(u) do

5: if isFeasible(t,v) and isCanonical(t,v)
then

6: Update()

7: ExtendTrace(t⊙ v)

8: else ⊲ |t|= 2m and t is a complete strong trace

9: if isCanonical(t) then

10: Add t to the list of solutions

The set SA is then used to determine which traces can

lead to a canonical trace in three rounds. Each of these

phases takes during the verification whether a partial strong

trace can be extended by a vertex v. In the first round, when t

is being extended, SA is used to cut the branching extending t

by vertices which are equivalent under some automorphism

in SA by choosing a minimal representative v among these

vertices. Furthermore, all the elements of SA that do not fix

v are removed from SA at this step. The description of the

remaining two rounds is based solely on our own implemen-

tation of AEST algorithm; the original paper [4] does not pro-

vide sufficient details to fully reconstruct the approach. We

divide SA into three independently maintained subsets SA,S
S
A,

and SSR
A used in the respective phases. Initially, all three sets

equal Aut(G). From a high-level point of view, these sets

represent automorphisms which can lead to a canonical trace

in different ways. The automorphisms in SA are candidates

for producing a canonical trace directly. For the remaining

two sets, after applying an automorphism a canonical trace

could be obtained after a shift (SS
A), resp. after a shift and

reversal (SSR
A ). Therefore, the set SA takes the role of SA as

described above and is used and maintained in the same way.

For each automorphism σ in SS
A ∪ SSR

A , a trace r is produced

to verify whether the current partial trace t ′ can be canonical.

If σ is in SS
A, then r = σ(t ′) and if σ is in SSR

A , then r is the

reverse of σ(t ′). Since each canonical trace starts with v0v1,

the split into SS
A and SSR

A implies that it is sufficient to focus

on the case when r contain v0v1. Indeed, if v0v1 is not in r,

then we do not know how much the trace will be shifted and

thus we cannot decide whether t ′ can be canonical. Conse-

quently, if an automorphism in SS
A or SSR

A does not map any

edge to v0v1 (resp. v1v0), then the current branch cannot be

pruned and we cannot remove any automorphism from SS
A,

resp. SSR
A . On the other hand, if v0v1 is contained in r, then

the shift is given uniquely. Once the shift is determined, the

algorithm compares the current partial trace t ′ with s, the

unique shift (resp. shift and reversal) as follows. If s ≺ t ′,

then t ′ cannot be canonical (since t ′ is equivalent to σ
−1(s)

and s≺ t ′). Therefore, if s≺ t ′, then this branch of the search

tree can be pruned. On the other hand, if t ′ ≺ s, then s cannot

be canonical. Since SS
A and SSR

A should contain only candi-

date automorphisms for producing a canonical trace, in this

case we can remove σ from SS
A, resp. from SSR

A . If we cannot

assert neither s ≺ t ′ nor t ′ ≺ s, then we proceed by further

extending t ′ and not changing SS
A and SSR

A . If a partial trace

t ′ is not pruned from the search tree, this process continues

until a full-length trace t with |t| = 2m is produced. The

fact whether the full-length trace t is canonical is decided

by isCanonical(t) using the unique shifted trace s and the

same rules that are used to decide whether the partial traces

can be canonical.

To design a basic enumeration algorithm GapEST based

on Algorithm 1, we can set isCanonical(t,v) to always re-

turn true, and isCanonical(t) to return true if CanonGAP(t)
is different from CanonGAP(t ′) of all previously found solu-

tions t ′. (We use a hash table to store the gaps.) However,

in practice it is beneficial to include a pruning strategy sim-

ilar to SA, as described above, into isCanonical(t,v), but

it is not necessary for SA at the start to contain the all au-

tomorphisms of G. Indeed, when the sole number of auto-

morphisms is an obstacle in computing the non-isomorphic

embeddings, SA can still contain an arbitrary subset of auto-

morphisms and be used for pruning. This is illustrated in the

next section on trees, where SA equal to a generating set of

Aut(G) is used.

Note that a naı̈ve exhaustive search version of Algo-

rithm 1 could be obtained by using an isCanonical(t,v)
function that always returns true and isCanonical(t) which

compares t to all solutions found so far using every automor-

phism σ of G, comparing all shifts of σ(t) and all shifts of

the reversal of σ(t) to all previous solutions.

To implement the pruning, the condition on Line 5

of Algorithm 1 is extended to contain also a verification

isOptimal(t,v), which returns true if t⊙ v does not violate

the required condition on gaps. For vertex gap, clearly the

gap vector can be computed online, that is, in such a way

that only the gap for v and the last vertex in t needs to

be computed. Such an incremental computation of the gap

vector can be done in constant time for all variants of gaps.

5 Experiments.

The source code was written in C++ and compiled with

gcc ver. 5.2.1 (Ubuntu 5.2.1-22ubuntu2). External libraries

Boost Graph Library [21] and the bliss library [23] were

used for basic manipulation of graphs and identification of

the generators of the automorphism group of graphs.

All computations were performed on a cluster consisting

of 20 Dell c8220 servers each with two 2.8Ghz Intel Ivy-

bridge 10-core CPUs (E5-2680v2) (i.e. 400 cores), each

pair of CPUs shared at least 128 GB Ram and a 200 GB

SSD harddisk. Alls CPU were used exclusively in order to



minimize side-effect when testing computation times.

5.1 Data Sets. We evaluate the performance of our algo-

rithms on all simple graphs with at most 9 vertices, on all

cubic graphs with at most 22 vertices, and all trees with 15 –

20 vertices. Most of these data sets contain from thousands

to hundreds of thousands graphs, see below.

By Euler formula Eq. (2.1), only graphs with |E| − |V |
odd might have a 1-face embedding; such graphs are called

feasible instances. In particular, a cubic graph is feasible if

and only if it has 2 (mod 4) vertices. We denote the class of

all feasible connected with graphs 9 vertices by G9, trees on i

vertices by Ti, and all cubic graphs on 18 and 22 vertices by

C18 and C22, respectively (the trees and the latter two classes

are all feasible).

The set G9 contain 130 553 graphs; their distribution

according to connectivity is stated in Table 3. There are

in total 41 301, resp. 7 319 447 graphs in C18 and C22. In

C18, graphs having connectivity 1–3 constitute 3.5, 22.8,

and 73.8 percent of the total, while in C22 it is 1.8, 17.5,

and 80.7 percent, respectively. (No cubic graph can have

connectivity 4 or more.) In both of these sets, graphs with

girth 3–6 constitute approximately 81, 18, 1, resp. less than

0.1 percent of the total. There are in total less than 1000

feasible cubic graphs on at most 14 vertices and in total less

than 1000 connected graphs on at most 7 vertices, we omit

the analysis for these small sets. All graphs were obtained

from https://hog.grinvin.org/.

We have chosen the set of all connected graphs as a

baseline. Cubic graphs and trees were chosen due to their

suitable size and because both sets have interesting prop-

erties from a topological graph theory perspective. As any

other graph, every tree has Πv(degv − 1)! distinct combi-

natorial embeddings. However, all these embeddings have

one face and are in the sphere. Thus enumerating all 1-face

embeddings of trees, regardless of automorphisms, is trivial.

Cubic graphs are sparse and have a relatively small number

of embeddings and automorphisms for their size. Large sub-

classes of cubic graphs are also central to the intersection

of colorings and topology through results such as the Four-

color Theorem or (the disproving of) the Grunbaum conjec-

ture [26], and thus their embeddings are intensively studied,

see for example [5, 17, 27, 29].

Even for general graphs as small as seven vertices and

sparse graphs with around 10 vertices, enumerating topologi-

cal invariants might require running time in the order of mag-

nitude in hundreds of hours, see [6, 9, 14, 33]. Therefore, our

data sets are both challenging and large enough to evaluate

the efficiency of the algorithms. Furthermore, the finer par-

titionings of the data sets according to the number of edges,

the size of the automorphism group, or the connectivity, yield

data sets which still contain sufficiently-many graphs and are

difficult enough to gain meaningful insights into the perfor-

mance of the algorithms. We consider our choices of param-

eters to further partition the data sets natural, and in partic-

ular we focus on girth and connectivity due to their known

relationships with the maximum genus [7, 8, 20, 38].

5.2 Results. We start with the performance of AEST and

GapEST on trees. The method GapEST was able to compute

all 1-face embedding for any tree with at most 20 vertices

in less than half a second. In contrast, there are instances

where AEST was not able to compute all 1-face embeddings

within a time-limit of 30 seconds, see Fig. 2. In particular,

AEST could not solve 2 273 of the trees with 20 vertices.

Among the instances intractable in 30 seconds for AEST

are graphs with stars K1,n as subgraphs for large n (see

Fig. 8d, Appendix). The latter indicates that the GapEST

algorithm is more suitable for graphs with a large number of

automorphisms.

On the other hand, if the number of embeddings in-

creases, the performance of GapEST degrades due to memory

issues, since it needs to store each solution. This, in par-

ticular, makes running-time comparisons difficult, see Sec-

tion 5.4 for further discussion of the issue. For the remaining

data sets, a significant fraction of the graphs has a very large

number of embeddings (see Fig. 3b). Moreover, the num-

ber of automorphisms of the graphs in the remainining con-

sidered classes is relatively modest and AEST outperforms

GapEST on our hardware. Therefore, in the following we fo-

cus on the enumeration properties of the datasets and report

results only for AEST.

For 56,4% of the graphs in G9 all pairwise non-

isomorphic 1-face embeddings could be computed within a

time-limit of 30 seconds with our implementation of AEST,

see Fig. 3a for the running times. For all the instances in

G9 that were not solved, we stored the number of pairwise

non-isomorphic 1-face embeddings computed in 30 seconds

and the number of computed 1-face embeddings for these in-

stances is always larger than 106, see Fig. 3b. Fig. 4a shows

the number of 1-face embeddings as a function of all com-

binatorial embeddings of the solved G9 instances. The num-

ber of pairwise non-isomorphic 1-face embeddings scales al-

most linearly with the number of all embeddings for a fixed

|Aut(G)|, with the slope depending on |Aut(G)|. The latter is

also reflected in Fig. 4b that shows the percentage of 1-face

embeddings as a function of the number of rotation systems

for all solved G9 instances that have more than 1000 1-face

embeddings

In the set G9, all instances with at most 16 edges and

83.4% of the instances with 18 edges can be solved in 30

seconds, while none of the instances with at least 20 edges

can be solved. The violin plot in Fig. 5a indicates that

the number of 1-face embedding increases exponentially

with the number of edges for instances in G9 with 8–18

edges. The mean number of 1-face embeddings among the
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Figure 2: (a) The relative number of completed instances for the classes of trees on 15 up to 20 vertices as a function of the runtime.

AEST-i denotes AEST on Ti and GapEST-20 refers to the method GapEST applied to T20. For simplicity, we only present runtimes for

GapEST-20, as the runtime on trees with less than 20 vertices is smaller. (b) Different pruning strategies for G9 instances. “None” means

that no pruning strategy is applied.

solved graphs is indicated in the underlying boxplot. The

violin plot in Fig. 5b shows the number of pairwise non-

isomorphic 1-face embeddings as a function of the edge-

connectivity for the solved G9 instances. The mean increases

from connectivity 1 to 3, and decreases from 3 to 4, and there

is a notable change of shape of the distributions

For each graph in C22, our implementation of AEST

is able to find all pairwise non-isomorphic embeddings in

at most 4.5 seconds, with the average being 1.88 seconds

per instance, with the total runtime on C22 corresponding

to 159.14 days of single-core computations. Out of the

C22 instances, 7 219 968 (98.64%) have at least one 1-

face embedding. The number of 1-face embeddings ranges

between 38 and 464 896 and 80.2% of these instances have

at least 105 1-face embeddings. The number of 1-face

embeddings as a function of connectivity for C22 instances is

shown in Fig. 5d, the number of embeddings increases with

the increasing connectivity. The violin plot in Fig. 5c shows

the number of 1-face embeddings as a function of the girth

that varies between 3 and 6 for the C22 instances. Among

the graphs that have at least one 1-face embedding, for girth

5 no instance has less than 1640 1-face embeddings and for

girth 6 no instance has less than 19 456 1-face embeddings.

Fig. 6a depicts the runtime as a function of the number of all

combinatorial embeddings for all the instances in C22 with at

least one 1-face embedding.

The results of applying different pruning strategies for

the G9 instances are in Fig. 2b. To be more precise, let f ∈
{GAP,EGAP,BioGAP} and for a given trace t let max( f (t)) be

the largest value in f (t). A trace t of a graph G is f -optimal

if max( f (t)) is the smallest among all traces of G. To prune

the search space, we discard any further computation for par-

tially computed (vertex, edge, bio) gap representation when-

ever the largest gap within this partial gap representation is

already larger than the f -optimal strong trace w.r.t. T, where

f ∈ {GAP,EGAP,BioGAP} and T is the set of 1-face embed-

dings found so-far. With our 30 second time limit, the base-

line version of AEST solves 83.4% of all the G9 instances with

18 edges and the version pruning w.r.t. the BioGAP solves all

instances with 18 edges. For instances with more than 24

edges none of the pruning strategies could find all f -optimal

1-face embeddings within the time-limit of 30 seconds for

any of the instances. Altogether, pruning w.r.t. EGAP leads to

the highest speedup on G9.

In Fig. 6b (resp. Fig. 6c) we give the results w.r.t.

optimization of the vertex gap (resp. bio gap). The number

of embeddings depicted refers to the number of f -optimal

embeddings found w.r.t. corresponding optimization criteria.

The average runtime when optimizing the vertex gap (resp.

bio gap) was 0.23sec (resp. 0.52sec). Note that many



Connectivity: 1 2 3 4 ≥ 5

Graphs in G9: 63 638 113 256 68 715 14 306 1 160

♯ vertices n: 15 16 17 18 19 20

Trees on n vertices: 7 741 19 320 48 629 123 867 317 955 823 065

Table 3: Number of graphs in subsets of data sets.

(a)
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Figure 3: (a) The runtime as a function of the number all combinatorial embeddings depending on |Aut(G)| in G9; (b) the number of

pairwise non-isomorphic 1-face embeddings found in 30 seconds in solved and unsolved G9instances, grouped by |Aut(G)|.

(a) Class G9 (b) Class G9

Figure 4: (a) The number of pairwise non-isomorphic 1-face embeddings as a function of all combinatorial embeddings; (b) The number

of pairwise non-isomorphic 1-face embeddings as a percentage of all combinatorial embeddings.



(a) Class G9 (b) Class G9

(c) Class C22 (d) Class C22

Figure 5: Number of 1-face embeddings (log10-scaled) as a function of the number of edges and the edge-connectivity for the solved G9

instances (a), (b) and as function of the edge-connectivity and girth for the class C22 (c), (d) are shown. Note, each C22 instance has 33

edges and thus, instead of drawing the plot w.r.t. the number of edges we used the girth.
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Figure 6: Heatmap plots for the class C22: depicted are runtimes in seconds (vertical axis) and number of all possible embeddings

(horizontal axis) for all solved instances (left), runtimes and number of all possible f -optimal embeddings for all solved C22 instances

with f = GAP (middle) and f = BioGAP (right); the number of (optimal) embeddings is given in log10 scale.



of the instances have only very few optimal embeddings,

i.e. 3 581 198 graphs (49.6%) have 4 or less optimal 1-

face embeddings w.r.t. the vertex gap, and 5 518 929 graphs

(76.4%) have 4 or less optimal 1-face embeddings w.r.t. the

bio gap. The results for optimization w.r.t. the edge gap

are not depicted, but they are very similar to the result for

computing all embeddings, as most of the instances have

girth equal to 3 and it can be shown that max(EGAP(t)) = 3

for any trace t of a cubic graph with girth 3.

5.3 Implications. The main consequences of our experi-

ments are the following. First, there is a very fast linear-

time algorithm to decide whether two 1-face embeddings

are isomorphic. Considering how time-consuming are the

computations in topological graph theory, our experiments

suggest that the studied enumeration algorithms are fast and

scale well. Our results enable one to choose whether to use

AEST or GapEST to compute the number of pairwise non-

isomorphic 1-face embeddings based on the number of au-

tomorphisms of the graphs in the class of interest, and to

understand the limitations of the approaches when applied

on scale.

5.3.1 Ratio of 1-face embeddings and pairwise non-

isomorphic 1-face embeddings to all combinatorial em-

beddings. As stated before, these ratios were not known be-

fore, even up to an order of magnitude, in nontrivial datasets.

Currently, there is no evidence suggesting even that 1-face

embeddings constitute a significant proportion of all embed-

dings. Our results show that as many as 10% of all embed-

dings of graphs in C22 without a nontrivial automorphism are

pairwise non-isomorphic 1-face embeddings (see Fig. 4b).

Furthermore, there seems to be a linear dependence of the

number of non-isomorphic 1-face embeddings on the num-

ber of automorphisms and the total number of embeddings.

Consequently, a use of this dependence might provide a good

estimate of the number of pairwise non-isomorphic 1-face

embeddings of the graph. Since the number of pairwise non-

isomorphic embeddings is a rather large constant fraction of

all embeddings, random sampling in the space of all embed-

ding in conjunction with our linear-time isomorphism test

might yield a viable method of obtaining very large sets of

pairwise non-isomorphic 1-face embeddings. A somewhat

surprising observations are the decrease of the number of

pairwise non-isomorphic 1-face embeddings in 4-connected

graphs and the multimodal shape of the density of the num-

ber of pairwise non-isomorphic 1-face embeddings for con-

nectivity 1 and 2. At present, we have no explanation for

these phenomena.

5.3.2 Gap vectors. Although the gap vectors seem very

natural and interesting on their own, to the best of our knowl-

edge they were not studied before. Our results show that the

number of optimal 1-face embeddings is very small for the

majority of graphs, which leads to a significant speedup in

the enumeration of 1-face embeddings. Both these results

further indicate that gap vectors deserve additional investi-

gation.

5.4 Limitations. The main drawback of our work is that

we are able to compare the running times of AEST and

GapEST on large datasets only to a limited extent. Roughly

speaking, this is caused by the fact that the two algorithms

use exponential amount of resources in a different way. On

one hand, AEST needs to compute explicitly all elements (not

just the generators) of the full automorphism group to find

even a single pair of non-isomorphic 1-face embeddings,

and this computation rapidly gets lengthy. On the other

hand, to find the number of all pairwise non-isomorphic 1-

face embeddings, GapEST needs to store all solutions in the

memory. Since each embedding is represented by roughly

2|E(G)| integers, and the number of solutions easily grows

to over 107 even in our datasets, the physical cores quickly

start to compete for the shared memory. This skews the

measurements and, since even one difficult instance can

influence the running times on all the other cores with

shared memory, makes the measurements unpredictable.

Consequently, this problem limits the extent to which we

can use parallelization in the experiments and thus, due to the

sizes of the data sets, also our ability to perform comparisons

at such a large scale. On the other hand, restricting the size

of the data sets would significantly limit the insight gained

from the results.

6 Conclusion.

In this work we have introduced three novel invariants called

gap representations. We proved that the canonical form of

the vertex gap representation is an isomorphism invariant

of 1-face embeddings. We provided a linear-time algorithm

to compute the canonical form and consequently, we have

obtained a new method GapEST for enumerating pairwise

non-isomorphic 1-face embeddings of an arbitrary graph.

To evaluate our GapEST algorithm and a previous ap-

proach AEST, we have performed first large-scale compu-

tational survey of embeddings. Our experiments indicate

that GapEST algorithm is more suitable for graphs with large

number of automorphisms, while AEST is more suitable for

graphs with large number of pairwise non-isomorphic 1-face

embeddings. In particular, GapEST algorithm clearly out-

performs AEST on trees. Since the computation of all auto-

morphisms is a bottleneck for AEST, GapEST is also more

suitable when either a large set of 1-face embeddings (as op-

posed to their full census), or lower bounds on their number

are sought. Further advantage of GapEST is that it is eas-

ily modified to take into account gap (distance) properties of

embeddings to achieve speed-up by pruning, or when only a



subset of 1-face embeddings is sought.

The obtained data sets provide the first insight into the

behavior of embeddings on large scale. Among the most

interesting results are the large portion of all combinatorial

embeddings being pairwise non-isomorphic 1-face embed-

dings, and, for fixed |AUT(G)|, the seemingly linear depen-

dence between the number of 1-face embeddings number

and the number of all embeddings. For cubic graphs, our

results show that (i) almost all (98.64%) of 22-vertex graphs

are upper-embeddable, (ii) the lower bound on the number

1-face embeddings significantly increases with the girth; and

(iii) majority of the graphs have at least 105 pairwise non-

isomorphic embeddings. In all these cases, the order of the

magnitude of the values of the parameters was previously not

known.
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Appendix

In Section A we give proofs and in Section B additional

figures and results are given (please refer to the main article

text for details).

A Proofs.

Proof. [Proof of Theorem 3.1] The gap vectors g =
(g0, . . . ,g2m−1) can be computed in linear time for example

by the following two-pass algorithm. For simplicity, we give

the algorithm only for the vertex gap, the other cases are sim-

ilar. First, initialize a set of empty lists Lv, one for each ver-

tex of G. In the first pass over t, starting with position 1 add

to the list Lv all positions of v in t in the order as encountered

in the pass over t. Finally, for each Lv, put the last item of

Lv also on the position 0. In the second step, pass simulta-

neously over t, the resulting vector g, and lists Lv, starting at

the beginning of all of these vectors. Suppose a vertex v is is

encountered at the position i of t, and this is j-th occurrence

of v in t. If j equals 1, set gi to Lv[0] + Lv[1] (mod 2m),
otherwise set gi to Lv[ j]−Lv[ j−1].

To prove that CanonGAP is an isomorphism invariant of

connected graphs, we first observe the following property of

vertex gaps.

LEMMA A.1. Let Π
1 and Π

2 be 1-face embeddings of a

graph G and let W i = wi
1wi

2 . . .w
i
2m be their vertex gap

vectors. If w1
i = w2

i for all i, then Π
1 and Π

2 are isomorphic.

Proof. Let t i = vi
1vi

2 . . .v
i
2m be the fixed facial walk giving W i

for i= 1,2. We show that the mapping σ given by σ(v1
i )= v2

i

for all i is the desired automorphism. Since w1
i = w2

i for all

i, the map σ is a well-defined bijection. Let Π
′ = σ(Π).

We argue that that σ is an automorphism of G as follows:

The vertices u and v are adjacent if and only if they are

consecutive in t1. Since the vertex gap vectors W 1 and W 2

are identical, u and v are adjacent if and only if σ(u) and

σ(v) are consecutive in σ(t1), which in turn is if and only

if σ(u) and σ(v) are adjacent in Π
′. It is well known that

vertices u, v, and w form subwalk uvw of a face F of an

embedding Π if and only if w follows u in the local rotation

Πv. Similarly as above, we get that uvw is a subwalk of t1

if and only if σ(u)σ(v)σ(w) is a subwalk of t2 and thus w

follows u in the local rotation Π
1
v if and only if σ(w) follows

σ(u) in the local rotation Π
′, which concludes the proof.

COROLLARY A.1. If W = GAP(t) for the trace correspond-

ing to the unique face of some 1-face embedding Π, then, up

to isomorphism, all strong traces t ′ with W = GAP(t ′) corre-

spond to an embedding isomorphic to Π.

The embedding from Corollary A.1 is called the associ-

ated embedding of W.

In the following lemma, which is easy to see, by Π
R

we denote the embedding obtained by reversing all the local

rotations of Π.

LEMMA A.2. Let t be a trace corresponding to the face of

a 1-face embedding Π, Then Π
R is a 1-face embedding and

tR is the trace corresponding to the face of Π
R.

The final ingredients of the proof of Theorem 3.2 is the

following fact.

LEMMA A.3. Let W = GAP(t) for some antiparallel strong

trace t corresponding to an embedding Π. Then Π is the

associated embedding of all shifts of W.

Proof. Let W ′ be the shift of W by one position to the left.

Let t = v1 . . .v2m and let t ′ = v2 . . .v2mv1. The definition

of the vertex gap representation implies that W ′ = GAP(t ′).
Since t and t ′ are just a shifts of the same unique face of

Π, we get that Π is the associated embedding of W ′ and the

result follows by induction.

In the proof of Theorem 3.2 by t � t ′ we indicate that

either t ≺ t ′, or t = t ′.



Proof. [Proof of Theorem 3.2] First we show that if Π1

and Π2 are isomorphic, then CanonGAP(t1) = CanonGAP(t2).
Since we consider Π and Π

R isomorphic and there is not nec-

essarily an automorphism of G taking Π to Π
R, we distin-

guish two cases: either there is an isomorphism σ taking Π1

to Π2, or there is an isomorphism σ taking Π1 to Π
R
2 . In both

cases we clearly have GAP(t)= GAP(σ(t)) for any trace t. Let

W be a vector obtained by any shift of GAP(t1). The proof

of Lemma A.3 implies that there is a shift t ′ of t1 such that

W = GAP(t ′). Therefore, for any such W we get that σ(t ′),
which is a shift of σ(t1) = t2, also satisfies GAP(σ(t1)) =W .

Since an analogous property holds in the case when W is

the reversal of a shift of GAP(t1), we get that all gaps rep-

resentations realized by shifts and reversals of t1 can be

realized also by shift and reversals of t2. Consequently,

lex min(GAP(t2)) � lex min(GAP(t1)). Since σ
−1 is an iso-

morphism taking Π2 to Π1 if and only if σ is an isomorphism

taking Π1 to Π2, we as well get that lex min(GAP(t1)) �
lex min(GAP(t2)), which implies that lex min(GAP(t1)) =
lex min(GAP(t2)). Clearly, there is an isomorphism taking

Π1 to Π2 if and only if there is an isomorphism taking Π
R
1

to Π
R
2 . Therefore, by the same argument as above we can

show that lex min(GAP(tR
1 )) = lex min(GAP(tR

2 )), yielding

CanonGAP(t1) = CanonGAP(t2), as desired. If there is an

isomorphism taking Π1 to Π
R
2 , then analogously as above

we can show that lex min(GAP(t1)) = lex min(GAP(tR
2 )) and

that lex min(GAP(tR
1 )) = lex min(GAP(t2)), again yielding

CanonGAP(t1) = CanonGAP(t2).
To prove that if CanonGAP(t1) = CanonGAP(t2), then

Π1 and Π2 are isomorphic, consider CanonGAP(t1)
and CanonGAP(t2). Lemma A.3 implies that if both

CanonGAP(t1) and CanonGAP(t2) are shifts of GAP(t1),
resp. GAP(t2), then Π1 and Π2 are isomorphic. If both

CanonGAP(t1) and CanonGAP(t2) are reverses of shifts of

GAP(t1), resp. GAP(t2), then Lemma A.3 and Corollary A.1

imply that Π
R
1 and Π

R
2 are isomorphic, and thus also Π1

and Π2 are isomorphic. Assume that exactly one of

CanonGAP(t1) and CanonGAP(t2) is the reverse of a shift of

the corresponding gap, say CanonGAP(t1). Then Lemma A.3

and Corollary A.1 imply that Π
R
1 is isomorphic with Π2.

However, by our definition Π1 and Π
R
1 are isomorphic, which

yields the result.

B Additional Figures and Results.

Figure 7: Cubic 22: depicted is a heatplot for the optimal bio-gap

(horizontal axis) vs the optimal vertex-gap (vertical axis). The 4

cells surrounded with a bold border cover 50.4% of all graphs, the

9 cells surrounded with a dashed edge cover 74.8% of all graphs

(a) Class C22 (b) Class c6g

(c) Class c7g (d) Class T15

Figure 8: a) Of all cubic graphs with 22 nodes the depicted graph

has 38 1-face embeddings, no other cubic graph with 22 nodes has

fewer; b) depicted is the only graph with 6 nodes (class c6g), edge

connectivity larger or equal to 3, and a bio gap 6. No other graph

with 6 nodes and an edge connectivity larger or equal to 3 has a

smaller bio gap; c) depicted is the only graph with 7 nodes (class

c7g), edge connectivity larger or equal to 3, and a bio gap 6, no

other graph with 7 nodes and an edge connectivity larger or equal to

3 has a smaller bio gap; d) depicted is an example graph (a tree with

15 nodes) with 8! · 4! = 967680 automorphisms, on graph classes

with an exponentially growing number of automorphisms algorithm

GapEST outperforms AEST



ID comment
1 vertex strong trace t 0 2 1 3 0 4 1 2 4 3 1 4 2 0 3 4

edge strong trace tE 02 21 13 30 04 41 12 24 43 31 14 42 20 03 34 40
vertex gap repr. GAP(t) 4 6 4 6 9 3 4 5 3 5 8 4 5 3 5 6

GAP(t−1) 4 5 9 5 3 4 6 3 6 4 6 4 5 8 5 3
canonical repr. CanonGAP(t) 3 4 5 3 5 8 4 5 3 5 6 4 6 4 6 9 5-shift of GAP(t)
edge gap repr. EGAP(tE) 12 5 7 10 11 5 11 4 6 9 11 12 4 6 10 5

EGAP(t−1
E ) 6 10 12 4 5 7 10 12 5 11 5 6 9 11 4 11

biological gap repr. BioGAP(tE) 4 5 7 6 5 5 5 4 6 7 5 4 4 6 6 5
2 vertex strong trace t 0 2 1 3 0 4 3 1 4 2 0 3 4 1 2 4

edge strong trace tE 02 21 13 30 04 43 31 14 42 20 03 34 41 12 24 40
vertex gap repr. GAP(t) 4 8 5 3 6 3 5 6 4 5 6 8 3 5 3 6

GAP(t−1) 3 5 6 4 5 6 8 3 5 3 6 4 8 5 3 6

canonical repr. CanonGAP(t) 3 5 3 6 4 8 5 3 6 3 5 6 4 5 6 8 7-shift of GAP(t−1)
edge gap repr. EGAP(tE) 9 12 4 7 11 6 12 5 6 7 9 10 11 4 10 5

EGAP(t−1
E ) 6 12 5 6 7 9 10 11 4 10 5 9 12 4 7 11

biological gap repr. BioGAP(tE) 7 4 4 7 5 6 4 5 6 7 7 6 5 4 6 5
3 vertex strong trace t 0 2 1 3 4 1 2 4 3 0 4 2 0 3 1 4

edge strong trace tE 02 21 13 34 41 12 24 43 30 04 42 20 03 31 14 40
vertex gap repr. GAP(t) 9 5 3 5 3 9 5 3 5 3 5 6 4 6 4 5

GAP(t−1) 5 9 5 3 5 3 9 5 3 5 3 5 6 4 6 4
canonical repr. CanonGAP(t) 3 5 3 5 6 4 6 4 5 9 5 3 5 3 9 5 7-shift of GAP(t)
edge gap repr. EGAP(tE) 11 4 11 4 10 12 4 12 4 6 12 5 12 5 6 10

EGAP(t−1
E ) 10 11 4 11 4 10 12 4 12 4 6 12 5 12 5 6

biological gap repr. BioGAP(tE) 5 4 5 4 6 4 4 4 4 6 4 5 4 5 6 6

4 vertex strong trace t 0 2 1 4 2 0 3 4 1 3 0 4 3 1 2 4
edge strong trace tE 02 21 14 42 20 03 34 41 13 30 04 43 31 12 24 40
vertex gap repr. GAP(t) 5 3 6 4 10 5 3 4 5 3 6 4 10 5 3 4

GAP(t−1) 4 10 5 3 4 5 3 6 4 10 5 3 4 5 3 6
canonical repr. CanonGAP(t) 3 4 5 3 6 4 10 5 3 4 5 3 6 4 10 5 6-shift of GAP(t)
edge gap repr. EGAP(tE) 4 12 5 11 12 4 5 11 4 12 5 11 12 4 5 11

EGAP(t−1
E ) 11 12 4 5 11 4 12 5 11 12 4 5 11 4 12 5

biological gap repr. BioGAP(tE) 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5

Table 4: Given are the four possible 1-face embeddings of the square pyramid and their corresponding strong traces, the biological-, vertex-, and edge gap representations, and

the canonical representations. For edge representations we use the notation i j or ji to indicate the edge {i, j}. Numbers in bold are the maximum value of the corresponding

representation. For the first (resp. second, third and forth) 1-face embedding it holds maxBioGAP(t) = 7 (resp. 7,6,5), therefore the fourth 1-face embedding is the only

BioGAP-optimal. Similarly, the second 1-face embedding is (vertex-)GAP-optimal with a gap value of 8, all four 1-face embeddings are EGAP-optimal with a gap value of 12.
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