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Abstract
Automatic recognition of dysarthric speech is a very challeng-

ing research problem where performances still lag far behind

those achieved for typical speech. The main reason is the lack

of suitable training data to accommodate for the large mismatch

seen between dysarthric and typical speech. Only recently has

focus moved from single-word tasks to exploring continuous

speech ASR needed for dictation and most voice-enabled in-

terfaces. This paper investigates improvements to dysarthric

continuous ASR. In particular, we demonstrate the effective-

ness of using unsupervised autoencoder-based bottleneck (AE-

BN) feature extractor trained on out-of-domain (OOD) Lib-

riSpeech data. We further explore multi-task optimisation tech-

niques shown to benefit typical speech ASR. We propose a 5-

fold cross-training setup on the widely used TORGO dysarthric

database. A setup we believe is more suitable for this low-

resource data domain. Results show that adding the proposed

AE-BN features achieves an average absolute (word error rate)

WER improvement of 2.63% compared to the baseline system.

A further reduction of 2.33% and 0.65% absolute WER is seen

when applying monophone regularisation and joint optimisation

techniques, respectively. In general, the ASR system employing

monophone regularisation trained on AE-BN features exhibits

the best performance.

Index Terms: continuous dysarthric speech recognition, au-

toencoder bottleneck features, multi-task optimisation

1. Introduction

Dysarthria is a speech disorder caused by a neuro-motor inter-

face disruption [1]. People with dysarthria have poorer con-

trol of their articulators [2], and have difficulties with planning

when trying to produce long sequences of words. This often

causes heavily slurred speech, abnormal pauses, false starts and

repetitions. As a result, there is a significant mismatch between

dysarthric and typical speech, and a need to research approaches

for automatic speech recognition (ASR) systems dedicated to

dysarthric speech. Until now, most research has focused on the

isolated word task because dysarthric speech datasets are not

large enough to train continuous speech systems using conven-

tional approaches. This paper investigates ways of addressing

this problem by building an ASR system for dysarthria capable

or learning from a large corpus of typical speech.

Previous studies have demonstrated the benefit of employ-

ing effective speech representations such as articulatory [3, 4]

and bottleneck (BN) features [5, 4] to improve acoustic model-

ing of dysarthric speech. In particular, BN features have been

shown to capture complementary information for dysarthric

speech that can be beneficially fused with standard short-time

spectral input features [5, 4]. Recently, there has been grow-

ing interest in autoencoder-based bottleneck features (AE-BNs)

[6, 7]. In contrast to conventional BN features, extracted from

a neural network bottleneck layer using a supervised criterion

such as phoneme prediction accuracy [8], AE-BN features are

learnt by reconstructing the input features in an unsupervised

manner [6]. This makes them attractive for low-resource ASR

tasks [9]. Although AEs have been applied for feature enhance-

ment to improve dysarthric speech recognition by learning non-

linear mappings from the dysarthric speech to the typical speech

[10, 11], this has only been done using isolated-word dysarthric

corpora such as UASpeech [12]. In addition, this approach is

limited to corpora with parallel recordings for both typical and

dysarthric speech. We propose to apply AE-BN features ex-

tracted using the reconstruction objective driven by the same

input and output. This makes the approach applicable to a wider

range of datasets and tasks.

The small amount of dysarthric training data limits the per-

formance achievable using mainstream data-hungry ASR ap-

proaches designed for typical speech, for which training data is

plentiful. However, exploiting out-of-domain (OOD) data has

been shown to be beneficial in sparse data domains [13, 4, 14].

In particular, pretraining with OOD data can be especially cru-

cial for speech feature extraction when little in-domain training

data is available. The OOD typical-data pretraining framework

was first introduced in [13] to boost the dysarthric speech repre-

sentation learning process. Different BN extractor and acoustic

model (AM) training strategies using both typical and dysarthric

data were further investigated in [4]. They concluded that the

best performance is achieved by training the BN feature extrac-

tor on a large amount of OOD typical speech while the AM is

trained on the extracted dysarthric BN features.

In this work, we develop a benchmark for continuous

dysarthric ASR system on TORGO [15], which has been proven

to be the best database available for exploring continuous

dysarthric ASR [16]. We firstly explore the effectiveness of

employing an AE-BN feature extractor pretrained on OOD Lib-

riSpeech [17] data to continuous dysarthric ASR. We then ex-

pand on this work by using two multi-task optimisation tech-

niques (described in Section 2.3): i) joint optimisation [18] of

the AE-BN feature extractor and the speech recogniser to learn

better AE-BN features for dysarthric ASR, and ii) monophone

regularisation [19] as an approach to strengthen the acoustic

modeling (and hence the feature extractor, via joint optimisa-

tion). We evaluate our proposed models on the sentence subset

of TORGO using an independent trigram language model (LM)

trained on LibriSpeech. To the best of our knowledge, this is

the first paper to demonstrate the effectiveness of multi-task op-

timisation techniques in the dysarthric speech domain.
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2. Background

2.1. Autoencoder-based bottleneck feature extractor

An AE is an unsupervised way to learn a compact data represen-

tation [20], consisting of an encoder and a decoder. The encoder

encodes the high dimensional input feature vector into a lower-

dimensional latent variable (in the following called an AN-BN

feature). The decoder reconstructs the input using the generated

latent variable. The AE-BN feature is driven by two opposing

constraints: i) the reconstruction objective which forces the AE-

BN feature to capture as much of the input data characteristics

as possible, and ii) the bottleneck (i.e., the dimension reduction)

which forces the network to discard the redundant information

that is not needed for the inversion.

Note, whereas an autoencoder trained on a small amount

of dysarthric speech data would be prone to overfitting, an au-

toencoder trained on typical speech may not be optimal for rep-

resenting dysarthric signals. Further, without suitable regular-

isation the encoder may form an inefficient representation by

capturing information relevant for signal reconstruction but not

important for phoneme classification (e.g., speaker variability,

pitch). We attempt to address these potential deficiencies using

a multi-task learning optimisation described in Section 2.3.

2.2. Acoustic model architecture

Dysarthric ASR performance improvements have been made

by exploring various deep neural network (DNN) architectures

such as CNNs, TDNNs and LSTMs [21, 22, 23, 24] in the past

few years. Recently, Light Gated Recurrent Units (LiGRU) [25]

have been shown to outperform existing architecture on large

typical speech datasets such as LibriSpeech and TIMIT [26]. It

is widely used in Pytorch-Kaldi’s ASR framework [27]. As an

advanced Recurrent Neural Network (RNN), the LiGRU model

has the capability to exploit large time contexts and to capture

long-term speech modulations. Compared with the commonly-

used LSTMs [28], LiGRUs have a simpler cell design that al-

lows for faster training. The design also avoids the numeri-

cal issue of learning long-term dependencies and mitigates the

vanishing gradient problem by employing Rectified Linear Unit

(ReLU) activation with batch normalisation.

As the LiGRU model has not been used for continuous

dysarthric ASR, we tested it on the sentence subset of TORGO

by keeping the same experimental settings as in [22, 16] except

for replacing the AM with the LiGRU model. We found that the

performance achieved by the LiGRU AM in Pytorch-Kaldi is

comparable to other AMs trained in Kaldi presented in previous

papers. For instance, the TDNN model achieves 70.72% WER

averaged across all speakers, while LiGRU achieves 71.08%.

For speakers with severe dysarthria, the LiGRU model performs

even better (83.90% VS. 86.40%). These comparable results are

achieved in Pytorch-Kaldi without the benefits of the (compu-

tationally expensive) lattice-free maximum mutual information

training used in the Kaldi systems. We therefore employ the

LiGRU acoustic model in the remainder of this work.

2.3. Multi-task optimisation

Two optimisation techniques are introduced: i) a joint optimi-

sation strategy for training the integrated network (feature ex-

tractor and AM) with a multi-task training criterion, and ii) a

monophone regularisation applied to the AM.

2.3.1. Joint optimisation

The feature extractor and speech recogniser are often designed

independently. This means that the feature extractor is tuned

according to a criteria which is not directly related to ASR per-

formance. Recently, DNNs have made the integration of var-

ious components of a typical ASR system possible. In [18] a

DNN-based integrated network for distant speech recognition

was proposed that combined speech enhancement and speech

recognition modules are allowed for the joint updating of pa-

rameters. It was shown that this yields better results than train-

ing each part separately. They also demonstrated that a pretrain-

ing strategy with a fine-tuning phase improves performance. In

this paper, we explore a similar approach and evaluate the ef-

fect of jointly optimising the AE-BN feature extractor and the

speech recogniser where the feature extractor is pretrained on

LibriSpeech data and fine-tuned using TORGO dysarthric data.

The core idea of joint training is that the feature extractor should

provide more discriminative representations for the ASR task as

it is in part guided by the speech recognition cost function [18].

In this case, the speech recognition gradient is also backpropa-

gated through the feature extraction module.

2.3.2. Monophone regularisation

To train a better AM, the multi-task learning (MLT) technique

has been applied to hybrid DNN systems in [19]. They added

a secondary task of predicting alternative context-dependent

(CD) (i.e., triphone) or context-independent (CI) (i.e., mono-

phone) targets. Consistent improvements have been shown over

the standard single target training approach on large-vocabulary

typical speech recognition tasks. In our case, the two tasks are

jointly estimated by using a weighted sum cost function be-

tween the two predictions from the two softmax classifiers. Im-

portantly, this strategy does not require additional data making

it suitable for our low-resource data domain. This MTL scheme

can be regarded as a technique to regularise the AM, preventing

it from over-fitting to a single senone target classification by

learning additional CI or CD labels. This encourages a better

presentation of the data to be learnt by the AM (and by exten-

sion, by the auto-encoder when joint optimisation is engaged).

3. Experiments

3.1. Data description and training setup

TORGO is one of the few available dysarthric speech datasets

and has been widely used. It contains aligned acoustic and ar-

ticulatory recordings collected from 15 speakers. Eight of the

speakers (5 males, 3 females) have different dysarthric severity,

while the other seven are typical speakers (4 males, 3 females).

The acoustic data is recorded by a head-mounted as well as a

single directional microphone, simultaneously. TORGO com-

prises both word and sentence prompts: 615 unique words and

354 unique sentences with a total vocabulary size of 1573.

Since TORGO does not come with a pre-defined training

and test partition, we applied an N -fold cross-training setup,

with the total dataset (including all speakers) being divided into

five folds (i.e., one fifth of each speaker in every fold)1. This

maximises the available training and test data while maintaining

the need for disjoint training and test sets. Table 1 summarises

the duration of the recordings in each fold (after excluding the

recordings that are shorter than 25 ms and any wrongly anno-

1The pre-defined training and test partition set is available at
https://github.com/zhengjunyue/bntg.

4582



tated audio). The ratio of the duration of the two utterance type

subsets (isolated word vs sentence) is about 1.5:1.1.

We have noticed that most of the previous TORGO-based

work used the leave-one-speaker-out (LOSO) approach to train

speaker-independent (SI) models [21, 22, 24]. With only 8

speakers, there are insufficient speakers in TORGO to cap-

ture the wide inter-speaker variability observed in dysarthria.

In a LOSO SI setting, speaker performances will be more de-

termined by the chance degree of matched-ness of the target

speaker to the few others in the training set, i.e., rather than

to any intrinsic difficulty of the speech itself. Our 5-fold ap-

proach ensures a good trade-off between having a reasonably

large training set, while providing some matched speaker train-

ing data to allow for more meaningful comparison of recogni-

tion performance across speakers.

Table 1: Duration (hours) of the training and test data in each

fold using the 5-fold cross-training setup

subset fold 1 fold 2 fold 3 fold 4 fold 5

train all 10.71 10.69 10.71 10.83 10.57

train sentence 4.63 4.54 4.60 4.71 4.59

train word 6.10 6.15 6.11 6.12 6.16

test all 2.71 2.73 2.72 2.59 2.67

test sentence 1.14 1.22 1.17 1.06 1.18

test word 1.57 1.51 1.55 1.53 1.49

3.2. Architecture

Figure 1: Architecture of the proposed models.

Figure 1 depicts the architecture of the proposed AE-BN

with multi-task optimisation dysarthric ASR system. The red

box on the left shows the feature extractor and the blue box

on the right represents the acoustic model. First, the AE-

BN feature extractor is trained on the 100-hour subset of Lib-

riSpeech corpus, which is a large typical read speech dataset.

The dysarthric AE-BN features extracted from the encoder out-

put are then concatenated with the input acoustic features and

fed into the acoustic model. The parameters of AE are updated

by minimising the mean square error (the reconstruction error)

calculated between the reconstructed input data yi and the true

input data xi:

LossAE = (
1

n
)

n∑

i=1

(yi − xi)
2

(1)

The acoustic model includes LiGRU-based layers followed

by a softmax layer as a classifier. The classifier estimates

the standard CD states and calculates the cost function (cross-

entropy loss (LossCD) between the CD labels and the predic-

tions.

In addition to training the AE-BN feature extractor and the

speech recogniser separately, we explore an integrated network

where these two parts are jointly optimised. The recently pro-

posed PyTorch-Kaldi framework provides a platform to imple-

ment the joint optimisation which would be difficult to perform

in the Kaldi [29] toolkit. The parameters are updated by back-

propogating a weighted sum of the AE reconstruction loss and

the cross-entropy loss,

LossJoint = λ1 ∗ LossAE + LossASR (2)

where λ1 controls the trade-off between the reconstruction qual-

ity of the feature extractor and the effectiveness of the speech

recogniser.

We also applied multi-task regularisation to the AM, using

monophone classification as a secondary task by adding another

softmax classifier to estimate the CI states. The joint optimi-

sation cost function becomes the sum of the LossCD and the

cross-entropy loss LossCI between the true CI labels and the

predictions:

LossASR = LossCD + λ2 ∗ LossCI (3)

where λ2 indicates the weighting between each task’s loss.

3.3. Experimental Setup

The training data was augmented using speed perturbation (us-

ing factors 0.9, 1.0 and 1.1). We used 40-dimensional feature-

space maximum likelihood linear regression (fMLLR) trans-

formed features [30] with splicing of 11 contextual frames (i.e.,

a total dimensionality of 440) as the inputs of the AE-BN fea-

ture extractor. The encoder consists of four layers. The first two

layers are convolution layers with filter length 3 and ReLU ac-

tivation to allow rich local representations. The last two layers

are feed-forward ReLU layers with 768 units and 20 units to

encode the input features into a 20-dimensional representation.

The decoder comprises two ReLU layers fed by the learned AE-

BN features and aims to produce an output matching the 440

dimensional input.

The LiGRU-based acoustic model follows the design from

[25], containing five stacked bidirectional LSTM layers [31]

and a final softmax classifier. Recurrent dropout (0.15) is used

as a regularisation technique. The minibatch sizes are 128 and

16 for the AE-BN feature extractor and the acoustic model, re-

spectively. Stochastic gradient descent (SGD) optimisation is

used in the feature extractor and RMSProp [32] in the LiGRU

model. Learning-rate annealing is applied with a factor of 0.5.

When setting up the evaluation framework, we employed a 200k

vocabulary size LibriSpeech trigram LM as in [16]. To reflect

the diversity of the data as best as possible, we compute and

report results on individual speakers.

4. Results and Discussion

Results are shown in Table 2. The first row displays the baseline

system using just the LiGRU AM trained on 39-dimensional

MFCC feature and without using the AE-BN feature extrac-

tor. The MFCC features were then substituted with the 40-

dimensional fMLLR features (second row). It is seen that

the speaker adapted fMLLR features outperform the baseline

MFCCs reducing WER by 3% for moderately and severely

4583



Table 2: ASR performance [WER] using different speech representations and AMs for per (F)emale or (M)ale speaker with different

dysarthria severity, and the averaged result of all speakers ‘M/S’: moderate to severe level of dysarthria.

Severe M/S Moderate Mild

Features used in the models F01 M01 M02 M04 M05 F03 F04 M03 Average

MFCC 77.93 77.91 76.17 91.66 85.46 51.47 22.27 22.04 59.22

fMLLR 73.86 76.36 73.12 88.66 83.74 49.18 21.71 21.69 57.33

fMLLR+BN20 69.84 71.55 72.26 85.97 78.9 47.06 19.75 19.86 54.70

fMLLR+BN20 + mono 71.47 69.3 70.88 79.91 77.18 44.21 18.26 18.23 52.37

fMLLR+BN20 + joint 69.29 70.54 71.65 83.37 80.4 47.74 19.5 19.65 54.05

fMLLR+BN20 + mono + joint 70.65 69.07 70.81 81.82 78.4 45.18 18.42 19.15 52.99

dysarthric speakers. Therefore, we continued to use fMLLR

features as the input in the following experiments.

When introducing the AE-BN feature extractor, we first ex-

plored the optimal dimensionality of the AE-BN features since

the recognition loss depends on the width of the bottleneck. It

was found that the best recognition performance arose using a

dimensionality of 20, with results reported in the third row of

Table 2. Introducing the AE-BN features reduced WER by a

further 1.77% to 4.84% absolute.

Further improvements are made by applying multi-task op-

timisation techniques. Comparing rows 3 and 4 in Table 2,

the AM regulariser successfully reduces WER by an absolute

2.33% across speakers. For speakers with severe dysarthria, the

WERs are decreased by 1.83% to 6.06% with the exception of

speaker F01. For speakers with moderate dysarthria, there is

also a 2.85% recognition performance improvement. This indi-

cates that a single set of triphone targets is not optimal for the

discriminative clustering process. The additional CI label learn-

ing step strengthens the dysarthric acoustic model. When tuning

the jointly optimised model, different values of λ1 (Eq. 2) rang-

ing from 0.1 to 1 were tested with 0.2 producing the best ASR

performance. Comparing the third and the fifth rows in Table 2,

the joint optimisation technique achieves a WER reduction of

0.65% absolute compared to the model that trains the feature

extractor and acoustic model separately.

The ”BN20+fMLLR + mono + joint” in the last row in Ta-

ble 2 is a model that applies the joint optimisation technique

to the AM with monophone regularisation. Comparing the last

three rows shows that the monophone regularisation technique

provides a further improvement on the joint optimisation model

and vice versa except for some speakers with severe dysarthria.

Almost all the benefits seen in the last row are coming from

monophone regularisation, therefore it appears that the joint op-

timisation provides no significant benefit when coupled with

a sufficiently strong AM. The possible reason is that the joint

training was actually performed as a fine-tuning procedure, and

the hyperparameters such as learning rate need to be selected

properly to take advantage of the pretraining. Although the joint

optimisation did not provide the benefits expected, it remains an

under-explored research direction deserving of further investi-

gation. The overall best result (52.37% WER) is obtained when

employing monophone regularisation alone.

The results show that achieving an acceptable performance

for a continuous dysarthric speech recogniser remains challeng-

ing. This is exacerbated by the fact that some speakers with

dysarthria produce many repetitions and false starts when hav-

ing to speak in full sentences. Figure 2 illustrates this. It

shows WERs for not just the TORGO sentence task, but also

for the isolated word task and the full, combined test set across

all speakers. In general, and as expected, the sentence task is

F01 M01 M02 M04 M05 F03 F04 M03
Spk (Severe: F01,M01,M02, Moderate-to-Severe: M04 M05,Moderate: F03, Mild: F04 M03)

10

20

30

40

50

60

70

80

W
ER

test_all
test_word
test_sentence

Figure 2: The ASR performance [WER] for different utterance

subsets using the proposed fMLLR+BN20+mono model

harder for everyone, however, for some speakers (e.g., M04 and

M05) the sentence performances are much worse. Inspection of

the audio confirmed that the ASR transcription had many inser-

tions caused by disfluencies typical for speakers with dysarthria.

5. Conclusions

We investigated how autoencoder-based bottleneck features

(AE-BN) trained on typical speech can be used to improve the

performance of a continuous dysarthric ASR system. Using the

TORGO dysarthric speech database, we demonstrated that aug-

menting conventional acoustic features with features extracted

by an AE-BN extractor pretrained on typical speech reduces

WERs by 2.63% absolute on average. A further 2.33% and

0.65% absolute recognition improvements were achieved by

exploiting two multi-task optimisation techniques: monophone

regularisation and joint optimisation. However, the joint optimi-

sation technique provided no consistent additional benefit when

applied in conjunction with monophone regularisation. The best

performance is achieved by the AE-BN feature model applying

monophone regularisation with an average absolute WER im-

provement of 4.96% over the baseline system. Future work will

focus on exploring more advanced AEs to produce better AE-

BN features, and fine-tuning the joint optimisation technique.

In addition, we will investigate how to incorporate the real ar-

ticulatory dysarthric data available in the TORGO dataset in the

pretrained AE-BN extractor.
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