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Abstract
Microtearing modes have been widely reported as a tearing parity electron temperature gradient
driven plasma instability, which leads to fine scale tearing of the magnetic flux surfaces thereby
resulting in reconnection of magnetic field lines and formation of magnetic islands. In slab
geometry it has previously been shown that the drive mechanism requires a finite collision
frequency. However, we find in linear gyrokinetic simulations that a collisionless fine-scale
tearing parity instability exists even at low and zero collision frequency. Detailed studies reveal
that these slab modes are also driven by electron temperature gradient but are sensitive to
electron finite Larmor radius effects, and have a radial wavenumber much smaller than the
binormal wavenumber, which is comparable to the ion Larmor radius. Furthermore, they exist
even in the electrostatic limit and electromagnetic effects actually have a stabilising influence on
this collisionless tearing mode. An analytic model shows that this collisionless small scale
tearing mode is consistent with a tearing parity slab electron temperature gradient (ETG) mode,
which can be more unstable than the twisting parity ETG mode that is often studied. This
small-scale tearing parity mode can lead to magnetic islands, which, in turn, can influence
turbulent transport in magnetised plasmas.

Keywords: micro-instability, micro-tearing mode, electron temperature gradient mode

(Some figures may appear in colour only in the online journal)

1. Introduction

In general, electromagnetic micro-instabilities in magnetised
plasmas can be categorised as tearing or twisting parity modes.
Tearing parity modes, in which the fluctuating parallel com-
ponent of the magnetic potential is an even function about the
rational surface, perturb the magnetic field to form magnetic
islands. Twisting parity modes have a parallel component of
the magnetic potential which is odd about the rational surface,
and cause a rippling of the flux surface. Microtearing modes
(MTMs) are a type of tearing parity micro-instability.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

MTMs are a candidate for anomalous electron heat trans-
port in tokamak plasmas [1–3]. They have been studied extens-
ively since the 1960s. They are characterised by large toroidal
and poloidal wavenumbers, comparable to the reciprocal of the
ion Larmor radius. An early analytic linear model for MTMs
was developed by J F Drake et al [4]. In that work, the main
drive mechanism is shown to come from the free energy in the
electron temperature gradient, contributing to electromagnetic
fluctuations. The collision frequency was shown to be a key
factor in this drive mechanism. In the simple two dimensional
sheared slab geometry, they studied the impact of collision
frequency by dividing it into high-collisional, semi-collisional
and collisionless regimes, and predicted MTMs to be stable
at both low and high collision frequency. Numerical calcu-
lations by N T Gladd et al [5] confirmed these slab results,
demonstrating that a velocity dependent collision operator is
essential for instability.
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More recent studies [6, 7] have observed MTMs in simula-
tions neglecting the velocity dependence of the collision oper-
ator and even in the limit that the collision frequency tends to
zero. Furthermore, gyrokinetic simulations have found micro-
tearing modes can exist towards the edge of MAST tokamak
plasmas and that these modes can be unstable at low collision
frequency in toroidal geometry [7]. Gyrokinetic simulations
[8–10] have also demonstrated unstable MTMs in the com-
plete collisionless limit in a range of scenarios. These are at
oddswith the slab results presented in [4, 5] but themechanism
is not yet fully understood. Understanding the collisionless
drive mechanism is vital for clarifying the impact for trans-
port in tokamak plasmas, especially those operating at higher
temperature such as ITER.

In this article, we show that a fine scale collisionless tear-
ing parity mode can, in fact, be unstable even in slab geometry.
To identify the key physics, we develop an analytic model of
this collisionless microtearing instability in slab geometry and
conclude that the drive mechanism persists even in the elec-
trostatic limit, with finite electron Larmor radius effects play-
ing an important role. Probing the model in more detail, we
show that the instability is the tearing parity branch of the elec-
tron temperature gradient (ETG) mode, which can be more
unstable than the usual twisting parity ETG mode.

The paper is laid out as follows. In the next section we
describe the magnetic geometry. In section 3 we employ the
GS2 code to demonstrate the existence of a microtearing
instability in a collisionless slab. In section 4we discuss details
of our analytic model, which we use to identify the main phys-
ics mechanisms in section 5. We close in section 6 with con-
clusions.

2. Slab geometry

It is convenient to define the slab geometry before our discus-
sion of the physical plasma instability. We consider a simple
infinite slab of plasma with magnetic field lines in the y− z
plane and with density and temperature gradients in the x
direction. The scale lengths are L−1

n =−dlnn/dx and L−1
T =

−dlnT/dx, respectively. Using LT as the reference length, the
normalised temperature gradient is defined as η = Ln/LT. An
external magnetic field B and a current density J are applied
along the z direction, resulting in B= B0(̂z+(x/Ls)̂y), where
Ls represents the scale length of the magnetic field shear-
ing. We assume that |By| ≪ |Bz|, so restrict consideration to
x≪ Ls.

3. GS2 simulation

GS2 is an initial value simulation code solving the gyrokinetic
Vlasov-Maxwell equations using an implicit algorithm [11]. It
employs local flux tubes and is designed to operate in a range
ofmagnetic geometries including general tokamak, cylindrical
and slab plasmas.

We first employGS2 (version v8.0.1 [12]) to benchmark the
numerical results obtained by Gladd et al [5] in the slab geo-
metry. Ion and electron temperatures are equal at the centre

Figure 1. Illustration of the slab geometry.

of the slab; however, the ion temperature gradient is zero
while the electron temperature gradient is finite. There is also
a finite density gradient and sheared magnetic field applied
as described in section 2. The scale lengths for the sheared
magnetic field and for each species’ temperature gradient and
density gradient are Ls, LT and Ln, respectively. The mode fre-
quency and growth rate in this paper are normalised to the
electron diamagnetic frequency ω∗e = kyveρe/2Ln. Here, the
wavenumber ky and spatial coordinate x will be normalised to
the ion gyro radius, ρi = vi/ωci, where vj =

√

2Tj/mj is the
thermal speed of species j.

As shown in figure (2) the linear GS2 results match well
with Gladd’s model [5] in the collisional regime, and both
demonstrate the drive from the electron temperature gradient.
However, in the very low collision frequency regime, GS2
reveals an unexpected tearing parity instability in this slab
geometry. The frequency is not continuous between the col-
lisional and collisionless regions, indicating that they are dif-
ferent instability branches. The real and imaginary parts of the
normalised electrostatic potential ϕ̄ and normalised parallel
magnetic potential Ā∥ are shown in figure (3). Ā∥ has an even
symmetry while ϕ̄ is odd, which is a defining feature of tearing
parity modes. The collisionless one has a narrower structure,
thus the characteristic radial wavenumber kxρi is much larger
for the collisionless branch than for the collisional one (see fig-
ure (4)). In fact, in these GS2 simulations we note that captur-
ing the collisionless instability requires challenging numerical
settings. The parallel grid extent and resolution needs to be suf-
ficiently high to capture the unstable mode accurately. In GS2,
the parallel flux tube extent is controlled by nperiod, while
ntheta defines the grid resolution within each 2π period. In our
simulations, the collisionless branch requires nperiod= 128
and ntheta= 8, while the collisional branch is well converged
for nperiod= 32 and ntheta= 8.

Note that the condition kxρi ≪ 1 is assumed in the
derivation of references [4, 5]. This enables a Gamma

2



Plasma Phys. Control. Fusion 62 (2020) 085009 C Geng et al

Figure 2. The growth rate (top) and mode frequency (bottom) for microtearing modes as a function of collision frequency. The triangle and
circular symbols are GS2 simulation results, while the solid and dashed lines are numerical solutions of eigenmode equations provided in
reference [5]. Two electron temperature gradients, ηe= 5.0 and ηe= 7.0 are shown. Other physical parameters include kyρi = 0.3,
β = 8πn0T/B2 = 0.005, mi/me = 1836 and Ti = Te. The numerical parameters in GS2 simulations are set as nperiod= 128 and ntheta= 8
for collision frequencies smaller than 10ω*e, while nperiod= 32 and ntheta= 8 are used for the other cases.

Figure 3. The mode structures for collisional (top) and collisionless (bottom) microtearing instabilities in GS2 simulations. Note the
difference in the abscissa scale. The left two panels are normalised parallel magnetic potential and the right two are normalised electrostatic
potential. The real and imaginary parts are shown with solid and dashed lines respectively. The eigenmodes are normalised such that
Â∥(x= 0) = 1. Here ηe= 5.0; other parameters are kept the same as for figure (2).

function expansion in the quasi-neutrality equation, ignor-
ing the finite Larmor radius effects from electrons. Figure
(4) tests the validity of this assumption for the range of

collision frequencies, with ηe= 5.0 and ηe= 7.0. It shows
that electron temperature gradient ηe has very little influ-
ence on the value of kxρi but collision frequency ν/ω*e has

3
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Figure 4. The values of kxρi (left axis) and kxρe (right axis) as a function of collision frequency in the GS2 simulations. Parameters are kept
the same as for figure (2).

a big impact. In the collisional regime, kxρi remains small
and the approximation is valid; however, this is not the case
for the collisionless regime. Specifically, in the collision-
less regime, kxρi is about 40 times larger, which leads to
kxρe approaching 1. This gives the first clue that the finite
Larmor radius effects from electrons might be an import-
ant factor for the collisionless mode seen here. This finding
informs a new reduced gyrokinetic model, to be derived in
section 4.

To further test this point, we examined the influence of elec-
tron finite Larmor radius effects directly by probing a Bessel
function parameter in GS2. This parameter, α, enables a sup-
pression of finite Larmor radius effects in the gyro-averaging
Bessel function J0(αk). α= 1 is the default case capturing full
gyrokinetic physics. Turning α down towards zero is equival-
ent to turning off the finite Larmor radius effects for the given
species in GS2 simulations. Figure (5) shows the effects of
the Bessel factor on the collisionless and collisional branches
in GS2 simulation. Here the electron temperature gradient
is ηe= 5.0 and the collision frequency is set to ν/ω∗e = 0.1
for the collisionless simulation. Note that the gyro-averaging
provides velocity dependent dissipation, which is in some
sense similar to the collision operator. Whilst the collision-
ality is an important factor in the collisional slab model, this
indicates that for the collisionless instability, the electron finite
Larmor radius effects are required to confine the mode; these
are neglected in the collisional model. On the contrary, the col-
lisional instability is insensitive to the electron finite Larmor
radius effects.

Focusing on the zero collision frequency limit and vary-
ing the ratio of plasma pressure to magnetic pressure, β,
we found that this mode persists in the electrostatic limit,
as shown in figure (6). Indeed, it is more unstable at lower

β, and still exists when β= 0. This means that electromag-
netic effects are stabilising for this mode, which is fun-
damentally electrostatic in nature. Meanwhile, GS2 simula-
tions with kinetic and adiabatic ions demonstrate that the
ion treatment has little impact on the collisionless mode.
This provides conclusive evidence that the main drive comes
from electrostatic electron physics. To capture the physics
of the collisionless mode and provide an interpretation of
the GS2 results, we develop a new model in the following
section.

4. Modelling in slab geometry

In order to provide a physics interpretation of the GS2 simu-
lation at low collision frequency, we derive eigenmode equa-
tions valid in this limit. Here we present two models derived
from gyrokinetic theory. Section 4.1 describes a simple case,
focusing on zero collision frequency and zero β, which
demonstrates just the essential physics. Section 4.2 considers
more complicated factors including finite but small collision
frequency and electromagnetic effects, which can be com-
pared in more detail with GS2 results and help give a good
foundation for future work.

4.1. Electrostatic model at zero collision frequency

Informed by the earlier GS2 results, we adopt an adiabatic ion
response but treat electrons kinetically, retaining finite Larmor
radius effects. We first consider the electrostatic limit, with
perturbations only in the electrostatic potential ϕ. In Fourier
space the gyrokinetic equation for electrons yields:

4
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Figure 5. The effect of the Bessel factor α on the collisionless instability (left panel, ν/ω∗e = 0.1) and the collisional MTM (right panel,
ν/ω∗e = 20). Here ηe= 5.0; other parameters are kept the same as for figure (2).

(

ω− i
ky
Ls
v∥
∂

∂k

)

ĝ(k) =

− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

J0(k⊥ρ⊥)ϕ̂(k) (1)

in which ĝ(k) is the electron distribution perturbation in Four-
ier space, ve is the electron thermal velocity, ρ⊥ = v⊥/ωce
is the perpendicular velocity-dependent electron gyro radius,
Te = Ti = T, ωT∗e = ω∗e(1+ ηe(

v2

v2e
− 3

2 )), k
2
⊥ = k2x + k2y and J0

is the Bessel function. The quasi-neutrality equation is

n0
eϕ̂(k)
T

+

ˆ ∞

−∞

d3v · ĝ(k)J0(k⊥ρ⊥) =−n0
eϕ̂(k)
T

(2)

Assuming small k⊥ρ⊥, expanding Bessel functions to second
order and conducting an inverse Fourier transform to real
space, equations (1) and (2) become:

(

ω− kyx
Ls
v∥

)

g(x) =− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

(

1−
k2yv

2
⊥

4ω2
ce

+
v2⊥
4ω2

ce

∂2

∂x2

)

ϕ(x) (3)

2n0
eϕ(x)
T

=−
ˆ ∞

−∞

d3v ·
(

1−
k2yv

2
⊥

4ω2
ce

+
v2⊥
4ω2

ce

∂2

∂x2

)

g(x) (4)

Substituting (3) into (4) and normalising the variables as
ω̄ = ω/ω∗e, k̄y = kyρe, x̄= x/ρe, ϕ̄= eϕ/T, we have

√
πϕ̄=

ˆ ∞

−∞

ds
ˆ ∞

0
tdt · e−(s2+t2)

(

ω̄− 1− η

(

s2 + t2 − 3
2

))

×





(

1− k̄y
2
t2

4

)





(

1− k̄y
2t2

4

)

ϕ̄+ t2

4
∂2

∂x̄2 ϕ̄

ω̄− 2ϵx̄s





+
t2

4
∂2

∂x̄2





(

1− k̄y
2t2

4

)

ϕ̄+ t2

4
∂2

∂x̄2 ϕ̄

ω̄− 2ϵx̄s







 (5)

in which s= v∥/ve, t= v⊥/ve, ϵ= Ln/Ls and η = Ln/LT.
Please note that we have normalised lengths to the electron
Larmor radius rather than the ion Larmor radius in the pre-
vious sections. We consider k̄y ≪ 1 in which case it can be
neglected. Neglecting third and fourth orders of the expansion
in kxρe, simplification of this equation yields a second order
differential equation for the electrostatic potential of the form
C0ϕ̄+C1ϕ̄

′ +C2ϕ̄
′′ = 0, where primes denote the differential

with respect to x̄ and the coefficients C0, C1 and C2 are

C0 =−√
π− 1

4ϵx̄

[(

ω̄− 1+
1
2
η

)

Z0,0 − ηZ2,0

]

− 1
8ϵx̄3

[(

ω̄− 1− 1
2
η

)

Z2,2 − ηZ4,2

]

(6)

C1 =
1

8ϵx̄2

[(

ω̄− 1− 1
2
η

)

Z1,1 − ηZ3,1

]

(7)
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Figure 6. The effect of plasma beta β on the collisionless instability. Here ν/ω∗e = 0.0, ηe= 5.0; other parameters are kept the same as for
figure (2).

C2 =− 1
8ϵx̄

[(

ω̄− 1− 1
2
η

)

Z0,0 − ηZ2,0

]

− 1
16ϵx̄3

[(

ω̄− 1− 3
2
η

)

Z2,2 − ηZ4,2

]

(8)

Here, Zm,n = Zm,n(ω̄/2ϵx̄) is a generalised plasma dispersion
function

Zm,n(α) =

ˆ ∞

−∞

e−s2sm

(s−α)n+1
ds, α ∈ C , s ∈R and m,n ∈N

(9)
It can be shown that Z0,0(α) = iπW(α) where W(α) is the
Faddeeva function. Whenmn ̸= 0, there is a pair of recurrence
relations which can be used to relate Zm,n(α) to Z0,0(α):

Zm,n(α) =
m
n
Zm−1,n−1(α)−

2
n
Zm+1,n−1(α), n≥ 1

(10)

Zm+1,0(α) = αZm,0(α)+
(−1)m+ 1

2
Γ

(

m+ 1
2

)

(11)

When near the centre of the slab, where x̄= 0, the above coef-
ficients are well-defined with the limit of

C0(x̄= 0) =
√
π

[

−1+
ω̄− 1
2ω

+
ϵ2 (ω̄− 1− 2η)

2ω̄3

]

(12)

C1(x̄= 0) = 0 (13)

C2(x̄= 0) =
√
π

[

ω̄− 1− η

4ω
+
ϵ2 (ω̄− 1− 3η)

4ω̄3

]

(14)

The forms of these coefficients show that, when normalising
to the diamagnetic frequency ω*e, the mode frequency and
growth rate are mostly sensitive to magnetic shear scale length
and electron temperature gradient. Numerical solutions of this
second order differential equation for ϕ̄ are presented in sec-
tion 5.

4.2. Electromagnetic model with finite Lorentz collision
operator

The above electrostatic model is valid only when the col-
lision frequency is zero. To compare with the GS2 results
along the low collision frequency range, we consider a clas-
sic Lorentz collision operator consisting of pitch-angle scat-
tering C(ν) =− iν

2
∂
∂ξ (1− ξ2) ∂

∂ξ , where ν is the collision fre-
quency and ξ = v∥/v is the pitch angle. Furthermore, it is use-
ful to explore the influence of electromagnetic effects includ-
ing β, which will show the tendency of this mode to form
magnetic islands. Before we address this, we first update the
above model. When including the parallel magnetic potential

6
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and the Lorentz collision operator, the gyrokinetic equation
can be rewritten as

(

ω− i
ky
Ls
vξ
∂

∂k
− iν

2
∂

∂ξ

(

1− ξ2
) ∂

∂ξ

)

ĝ(k) =

− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

J0(k⊥ρ⊥)
(

ϕ̂(k)− vξÂ∥(k)
)

(15)

Again, expanding the Bessel function and conducting an
inverse Fourier transform results in

(

ω− kyx
Ls
vξ− iν

2
∂

∂ξ

(

1− ξ2
) ∂

∂ξ

)

g(x) =

− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

×
(

1−
k2yv

2(1− ξ2)

4ω2
ce

+
v2(1− ξ2)

4ω2
ce

∂2

∂x2

)

(

ϕ(x)− vξA∥(x)
)

(16)

Note that the perturbation of the electron distribution func-
tion depends on both space and velocity g(x)= g(x, v, ξ).
Expanding the distribution function in an orthogonal polyno-
mial series, g(x,v, ξ) =

∑∞
n=0 hn(x,v)Pn(ξ) in which Pn is the

Legendre polynomial of order n, we have

∞
∑

n=0

hn

[(

ω+
iν
2
n(n+ 1)

)

Pn(ξ)

−kyx
Ls
v
(n+ 1)Pn(ξ)+ nPn+1(ξ)

2n+ 1

]

=

− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

(

1−
k2yv

2(1− ξ2)

4ω2
ce

+
v2(1− ξ2)

4ω2
ce

∂2

∂x2

)

(

ϕ(x)− vξA∥(x)
)

(17)

Applying the orthogonality relations for Legendre
polynomials and integrating over pitch angle ξ from
−1 to 1 on both sides yields a set of equations

2
n+ 1

[(

ω+
iν
2
n(n+ 1)

)

hn− k∥v

(

n
2n− 1

hn−1 +
n+ 1
2n+ 3

hn+1

)]

=

− e
T

n0
π3/2v3e

e−v2/v2e
(

ω−ωT∗e
)

×























































[(

2− k2yv
2

3ω2
ce

)

ϕ+ v2

3ω2
ce

d2

dx2ϕ

]

if n= 0
[

−
(

2
3v−

4k2yv
3

15ω2
ce

)

A∥ − 4v3

15ω2
ce

d2

dx2A∥

]

if n= 1
[

k2yv
2

15ω2
ce
ϕ− v2

15ω2
ce

d2

dx2ϕ

]

if n= 2
[

− k2yv
3

35ω2
ce
A∥ +

v3

35ω2
ce

d2

dx2A∥

]

if n= 3

0 if n ≥ 4

(18)

To derive a tractable model from the above, we adopt a mat-
rix approach. The equation (18) can be written in the matrix
form asM · h= D. The two dimensional matrixM is an infin-
ite tridiagonal matrix, of which the nth row (n starts from 1) is

{

· · · − (n− 1)kyxv
(2n− 3)(2n− 1)Ls

1
2n− 1

(

ω+
n(n− 1)

2
iν

)

− nkyxv
(2n− 1)(2n+ 1)Ls

· · ·
}

nth row

The column vector h starts from the h0 term and the column
vector D represents the driving terms in the right hand side
of equation (18). Note that the main difference between this
model and collisionalmodel in reference [5] lays inD.Without
finite Larmor radius effects, D becomes a scalar thus it is pos-
sible to present h terms in a continued fraction as in their
model. In our model, re-writing as

h=M−1 ·D (19)

and noting that d2M/dx2 = 0, we have

d2h
dx2

=M−1 · d
2D
dx2

− 2M−1 · dM
dx

·M−1 · dD
dx

+ 2M−1 · dM
dx

·M−1 · dM
dx

·M−1 ·D (20)

Substituting the Legendre series of g(x, v, ξ) into the quasi-
neutrality equation (2) and expanding the Bessel function as
before, we have

n0
eϕ(x)
T

=−2π
ˆ ∞

0
v2dv

×
[(

1−
k2yv

2

6ω2
ce

)

h0 +
k2yv

2

30ω2
ce
h2 +

v2

6ω2
ce

d2

dx2
h0 −

v2

30ω2
ce

d2

dx2
h2

]

(21)

We define two row vectors as

Rφ =
(

1− k2yv
2

6ω2
ce

0
k2yv

2

30ω2
ce

0 0 · · ·
)

(22)
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Figure 7. Comparison of harmonics of eigenmode solution for GS2 and for solutions of equations (6), (7) and (8). Here ν/ω∗e = 0.0 and
ηe= 5.0; other parameters are kept the same as in figure (2).

Qφ =
(

v2

6ω2
ce

0 − v2

30ω2
ce

0 0 · · ·
)

(23)

Therefore the quasi-neutrality equation (21) becomes

n0
eϕ(x)
T

=−2π
ˆ ∞

0
v2dv ·

(

Rφ · h+Qφ · d2

dx2
h
)

(24)

To complete the set of electromagnetic equations, Ampere’s
Law is also needed. The parallel perturbed current density in
Fourier space is

ĵe∥ =−
ˆ ∞

−∞

d3v · ĝ(k)J0(k⊥ρ⊥)v∥e (25)

Similarly, we expand the Bessel function, define another two
row vectors as

RA =
(

0 2
3 −

k2yv
2

15ω2
ce

0
k2yv

2

35ω2
ce

0 0 · · ·
)

(26)

QA =
(

0 v2

6ω2
ce

0 − v2

35ω2
ce

0 0 · · ·
)

(27)

and follow the same procedure above. The parallel perturbed
current density in real space becomes

je∥ =−
ˆ ∞

0
v3dv ·

(

RA · h+QA ·
d2

dx2
h
)

(28)

Therefore,
(

k2y −
∂2

∂x2

)

A∥(x) =−µ0

ˆ ∞

0
v3dv ·

(

RA · h+QA ·
d2

dx2
h
)

(29)

Substituting the expressions for h in equation (19) and
d2h/dx2 in equation (20) into equations (24) and (29),

yields the final expressions incorporating both electromag-
netic effects and a Lorentz collision operator.

Simplifying the parameters in the drive term D and norm-
alising the results using the same parameters as in the electro-
static model above, as well as u= v/ve and Ā∥ = A∥/ρeB. The
normalised matrix equations become

ϕ̄− 2√
π

ˆ ∞

0
du · u2e−u2

(

ω̄− 1− η

(

u2 − 3
2

))

×
(

R̄n · h̄+ Q̄n ·
d2

dx̄2
h̄
)

= 0 (30)

(

k̄y
2 − ∂2

∂x̄2

)

Ā∥ −
2√
π
β

ˆ ∞

0
du · u3e−u2

(

ω̄− 1− η

(

u2 − 3
2

))

·
(

R̄j · h̄+ Q̄j ·
d2

dx̄2
h̄
)

= 0 (31)

in which

R̄n =
(

1− k̄y
2 u2

6 0 k̄y
2 u2

30 0 0 0 · · ·
)

(32)

Q̄n =
(

u2

6 0 − u2

30 0 0 0 · · ·
)

(33)

R̄j =
(

0 2
3 −

k̄y
2 u2

15 0 k̄y
2 u2

35 0 0 · · ·
)

(34)

Q̄j =
(

0 v2

6ω2
ce

0 − v2

35ω2
ce

0 0 · · ·
)

(35)

h̄= M̄
−1 · D̄ (36)

8
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Figure 8. Comparison of our electromagnetic model (solid lines) with GS2 results (triangle symbols) as a function of collision frequency in
the collisionless regime. Parameters are kept the same as in figure (2).

d2

dx̄2
h̄= M̄

−1 · d2

dx̄2
D̄− 2M̄

−1 · d
dx̄
M̄ · M̄−1 · d

dx̄
D̄+ 2M̄

−1 · d
dx̄
M̄ · M̄−1 · d

dx̄
M̄ · M̄−1 · D̄ (37)

with

M̄=























ω̄ − 2
3ϵx̄u 0 0 0 · · ·

− 2
3ϵx̄u

1
3 (ω̄+ iν̄) − 4

15ϵx̄u 0 0 · · ·
0 − 4

15ϵx̄u
1
5 (ω̄+ 3iν̄) − 6

35ϵx̄u 0 · · ·
...

. . .
. . .

. . .
. . .

...
0 · · · − 2(n−1)

(2n−3)(2n−1)ϵx̄u
1

2n−1 (ω̄+ n(n−1)
2 iν̄) − 2n

(2n−1)(2n+1)ϵx̄u · · ·
...

. . .
. . .

. . .
. . .

. . .























(38)

and

D̄=

























ϕ̄+ 1
6u

2 d2

dx̄2 ϕ̄

− 2
3uĀ∥ − 4

15u
3 d2

dx̄2 Ā∥

− 1
30u

2 d2

dx̄2 ϕ̄
1
35u

3 d2

dx̄2 Ā∥

0
0
...

























(39)

These represent an infinite tridiagonal matrix and a column
vector, respectively. In practice, they will be truncated, albeit
at a large size during the calculation. Equations (30) and (31)
will eventually lead to a system of two simultaneous second
order differential equations for both electrostatic potential
ϕ and parallel magnetic potential A∥. Generally, however,
the coefficients for each of the terms are not easy to sim-
plify and reveal the insight of physics, except in some spe-
cial cases. For the collisional microtearing theory where the

finite Larmor radius effects are not considered, the drive
term D has non-zero elements only in the first two terms;
thus only the left top four elements in the inverse matrix
of M will contribute to the results. In this case, the matrix
products can be simplified to produce the continued fraction
and electron parallel conductivity in reference [5]. In another
simple case, when collision frequency ν= 0, at the centre
plane of the slab x= 0, the tridiagonal matrix M becomes
diagonal, and the calculation will be significantly simplified.
Dropping electromagnetic terms, the equation becomes equi-
valent to the electrostatic model discussed in the previous
section.

5. Numerical results and discussion

We have established two reduced models for the collision-
less micro-scale tearing instability considering finite Lar-
mor radius effects from electrons. Based on the electrostatic
eigenmode equations (6), (7) and (8), and electromagnetic

9
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Figure 9. The structure of magnetic islands at ν/ω∗e = 0.0 growing from small amplitude (left) to large amplitude (right) calculated from
our electromagnetic model. Here ηe= 5.0; other related parameters are kept the same as in figure (2).

eigenmode equations (30) and (31), we have developed two
codes to calculate the complex eigenmode frequency ω for
each of these models. The algorithm of the codes is an eigen-
solver based on an iteration method described in Chapter 5.4
of reference [13]. Here, for our electromagnetic equations with
our chosen parameters, the complex frequency ω is typically
converged to a relative tolerance of 10−6 when the matrices
are of size 30 by 30. The boundary conditions for the tearing
instability for both models are spatially localised tearing parity
requirements

|ϕ|, |A∥| → 0 as |x| →∞, ϕ(0) = 0,
dA∥

dx

∣

∣

∣

∣

x=0

= 0 (40)

Please note that we did not assume any parity in the derivation;
thus our model is also capable of looking for twisting parity
solutions, whose boundary conditions are

|ϕ|, |A∥| → 0 as |x| →∞, A∥(0) = 0,
dϕ
dx

∣

∣

∣

∣

x=0

= 0 (41)

For the collisionless limit ν= 0, solving either electrostatic
or electromagnetic eigenmode equations gives results close to
those of GS2 (see figure (8) for the point at ν= 0). We know
that the electrostatic model describes the electron temperat-
ure gradient (ETG) mode. However, the ETG mode is usu-
ally considered to be a twisting parity mode. Nevertheless,
as with any eigenmode problem, there is a family of solu-
tions (harmonics) with alternating parity, in which the twist-
ing parity is the fundamental harmonic. In fact, eigenmodes

of different harmonics can co-exist and there is no phys-
ical reason why the fundamental one should be the most
unstable. Indeed, such phenomena, where the higher harmon-
ics are more unstable, were found previously in both ion tem-
perature gradient (ITG) mode [14, 15] and ETG mode cal-
culations [16, 17]; studies [18, 19] reported the existence
of unstable high order ballooning (twisting parity) modes
and that parity transition can happen under certain paramet-
ers; studies [20, 21] demonstrated the excitation of higher
harmonics and the parity mixture under certain scenarios.
For our electrostatic model, figure (7) shows different eigen-
values of which the even and odd harmonics are twisting
and tearing modes, respectively, solved with corresponding
boundary conditions. Our results show that the most unstable
mode in this case is the third order harmonic, which corres-
ponds to the collisionless tearing parity instability we have
found.

When including the collision frequency, the results from
our electromagnetic model are similar to those obtained from
GS2, as shown in figure (8). Both models show that the this
mode is driven by electron temperature gradient, consistent
with the identification as an ETG. The mode growth rate
decreases as the collision frequency rises, but the growth rate
in GS2 has a stronger variation and switches to a different har-
monic at ν= 1.0 for ηe= 5.0 and ν= 0.7 for ηe= 7.0, as indic-
ated by the jump in frequency. Note that our electromagnetic
model results are consistent with the third order harmonic in
figure (7). One reason for the difference between our model
and GS2 might be that the collision operator in GS2 differs

10
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from our model [22, 23]. Though quantitatively slightly dif-
ferent, both our model and GS2 show that this collisionless
tearing parity instability tends to be stabilised by collisions.
To summarise, we conclude that the collisionless tearing par-
ity instability found here in slab geometry is a form of ETG
instability, with a different drive mechanism to the standard
collisional slab MTM.

Although the underlying mechanism behind the collision-
less tearing parity instability studied here is different from the
collisional MTM, it still leads to magnetic reconnection and
the formation of magnetic islands. Both GS2 and our electro-
magnetic model provide the mode structure for the collision-
less instability as shown in figure (3). We can calculate the flux
surfaces of the magnetic field from the magnetic potential A∥.
The structure of magnetic field lines is given by contours of
the flux

ψ(x,y) =
B0x2

2Ls
+Re(A∥ · eikyy) (42)

The contour plot of constant levels ofψ(x, y) gives the flux sur-
faces and hence the magnetic structure. Figure (9) shows the
island structure for the collisionless mode when ν= 0. How-
ever, note that the amplitude of A∥ is arbitrary in our linear
model, so the width of the island is not determined. From left
to right, the three panels of figure (9) are examples to show that
under the same parameters the island shape can become more
contorted as its size grows from the order of electron Larmor
radius ρe to ion Larmor radius ρi. It can also be found that as
the island width grows, a secondary island arises in the vicinity
of the X-point. We believe that the inflection points of A∥ will
finally provide a limit for the maximum island width. How this
will affect the particle and heat transport is to be answered in
future work.

6. Conclusion

We have shown that there is a collisionless micro-scale tear-
ing parity instability that can drive reconnection even in the
absence of collisions. We have established two models con-
sidering electron finite Larmor radius effects to interpret the
physics of this mode, which is shown to be stabilised when
the collision frequency increases. We identify the collision-
less mode as a tearing parity harmonic of the conventional slab
ETG mode, which is the most unstable harmonic for our para-
meters. The electromagnetic component results in magnetic
islands.

Our result stands as an example to show that tearing parity
modes can arise from a whole range of different drives, and
there may be other possible ways to get small scale tearing par-
ity modes. These can have an impact on the transport and can
be very challenging to resolve numerically, posing problems
for attempts to simulate them. On the other hand, even if the
tearing parity eigenmodes are not the most unstable harmonic
linearly, it still may be possible that tearing harmonics can
play a role non-linearly, leading to a background degradation
to the confining magnetic field everywhere that such instabil-
ities exist.

The remaining questions in our research include why and
in what parameter range does the tearing harmonic become the
most unstable ETG mode in the electrostatic model, and how
does this collisionless mode behave in toroidal geometry. The
electromagnetic model (30) and (31) we obtain is a rather com-
plicated expression. Further simplification may reveal more
physical insight.

Acknowledgment

This work is funded by China Scholarship Council and the
University of York. It is also part of TDoTP project funded by
EPSRC (EP/R034 737/1).

ORCID iDs

Chen Geng https://orcid.org/0000-0002-5887-673X
David Dickinson https://orcid.org/0000-0002-0868-211X
Howard Wilson https://orcid.org/0000-0003-3333-7470

References

[1] Wong K L, Kaye S, Mikkelsen D R, Krommes J A, Hill K,
Bell R and LeBlanc B 2007 Microtearing instabilities and
electron transport in the nstx spherical tokamak Phys. Rev.
Lett. 99 135003

[2] Guttenfelder W et al 2011 Electromagnetic transport from
microtearing mode turbulence Phys. Rev. Lett. 106 155004

[3] Doerk H, Jenko F, Pueschel M J and Hatch D R 2011
Gyrokinetic microtearing turbulence Phys. Rev. Lett. 106
155003

[4] Drake J F and Lee Y C 1977 Kinetic theory of tearing
instabilities Phys. Fluids 20 1341

[5] Gladd N T, Drake J F, Chang C L and Liu C S 1980 Electron
temperature gradient driven microtearing mode Phys.
Fluids 23 1182

[6] Applegate D J, Roach C M, Connor J W, Cowley S C, Dorland
W, Hastie R J and Joiner N 2007 Micro-tearing modes in
the mega ampere spherical tokamak Plasma Phys. Control.
Fusion 49 1113–28

[7] Dickinson D, Roach C M, Saarelma S, Scannell R, Kirk A and
Wilson H R 2013 Microtearing modes at the top of the
pedestal Plasma Phys. Control. Fusion 55 074006

[8] Swamy A K, Ganesh R, Chowdhury J, Brunner S, Vaclavik J
and Villard L 2014 Global gyrokinetic stability of
collisionless microtearing modes in large aspect ratio
tokamaks Phys. Plasmas 21 082513

[9] Swamy A K, Ganesh R, Brunner S, Vaclavik J and Villard L
2015 Collisionless microtearing modes in hot tokamaks:
Effect of trapped electrons Phys. Plasmas 22 072512

[10] Predebon I and Sattin F 2013 On the linear stability of
collisionless microtearing modes Phys. Plasmas 20 040701

[11] Kotschenreuther M, Rewoldt G and Tang W M 1995
Comparison of initial value and eigenvalue codes for kinetic
toroidal plasma instabilities Comput. Phys. Commun. 88
128

[12] Barnes M et al 2019 GS2 (v8.0.1)
[13] Dickinson D 2012 Effects of profiles on microinstabilities in

tokamaks PhD thesis University of York
[14] Gao Z, Dong J Q, Liu G J and Ying C T 2002 Electromagnetic

ion temperature gradient modes of tearing mode parity in
high β sheared slab plasmas Phys. Plasmas 9 1692–7

11



Plasma Phys. Control. Fusion 62 (2020) 085009 C Geng et al

[15] Plunk G G, Helander P, Xanthopoulos P and Connor J W 2014
Collisionless microinstabilities in stellarators. iii. the
ion-temperature-gradient mode Phys. Plasmas 21 032112

[16] Lee Y C, Dong J Q, Guzdar P N and Liu C S 1987
Collisionless electron temperature gradient instability Phys.
Fluids 30 1331

[17] Zocco A, Loureiro N F, Dickinson D, Numata R and Roach C
M 2015 Kinetic microtearing modes and reconnecting
modes in strongly magnetised slab plasmas Plasma Phys.
Control. Fusion 57 065008

[18] Xie H-S and Xiao Y 2015 Unconventional ballooning
structures for toroidal drift waves Phys. Plasmas
22 090703

[19] Xie H-S, Zhi-Xin L and Bo Li 2018 Kinetic ballooning mode
under steep gradient: High order eigenstates and mode
structure parity transition Phys. Plasmas
25 072106

[20] Pueschel M J, Hatch D R, Ernst D R, Guttenfelder W, Terry P
W, Citrin J and Connor J W 2019 On microinstabilities and
turbulence in steep-gradient regions of fusion devices
Plasma Phys. Control. Fusion 61 034002

[21] Ishizawa A, Kishimoto Y and Nakamura Y 2019 Multi-scale
interactions between turbulence and magnetic islands and
parity mixture - a review Plasma Phys. Control. Fusion 61
054006

[22] Abel I G, Barnes M, Cowley S C, Dorland W and
Schekochihin A A 2008 Linearized model Fokker–Planck
collision operators for gyrokinetic simulations. i. theory
Phys. Plasmas 15 122509

[23] Barnes M, Abel I G, Dorland W, Ernst D R, Hammett G W,
Ricci P, Rogers B N, Schekochihin A A and Tatsuno T 2009
Linearized model Fokker–Planck collision operators for
gyrokinetic simulations. ii. numerical implementation and
tests Phys. Plasmas 16 072107

12


	The physics of a small-scale tearing mode in collisionless slab plasmas
	1. Introduction
	2. Slab geometry
	3. GS2 simulation
	4. Modelling in slab geometry
	4.1. Electrostatic model at zero collision frequency
	4.2. Electromagnetic model with finite Lorentz collision operator

	5. Numerical results and discussion
	6. Conclusion
	Acknowledgment
	References


