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Abstract. Microtearing modes have been widely reported as a tearing parity electron

temperature gradient driven plasma instability, which leads to fine scale tearing of

the magnetic flux surfaces thereby resulting in reconnection of magnetic field lines

and formation of magnetic islands. In slab geometry it has previously been shown

that the drive mechanism requires a finite collision frequency. However, we find in

linear gyrokinetic simulations that a collisionless fine-scale tearing parity instability

exists even at low and zero collision frequency. Detailed studies reveal that these slab

modes are also driven by electron temperature gradient but are sensitive to electron

finite Larmor radius effects, and have a radial wavenumber much smaller than the

binormal wavenumber, which is comparable to the ion Larmor radius. Furthermore,

they exist even in the electrostatic limit and electromagnetic effects actually have

a stabilising influence on this collisionless tearing mode. An analytic model shows

that this collisionless small scale tearing mode is consistent with a tearing parity slab

electron temperature gradient (ETG) mode, which can be more unstable than the

twisting parity ETG mode that is often studied. This small-scale tearing parity mode

can lead to magnetic islands, which, in turn, can influence turbulent transport in

magnetised plasmas.

1. Introduction

In general, electromagnetic micro-instabilities in magnetised plasmas can be categorised

as tearing or twisting parity modes. Tearing parity modes, in which the fluctuating

parallel component of the magnetic potential is an even function about the rational

surface, perturb the magnetic field to form magnetic islands. Twisting parity modes

have a parallel component of the magnetic potential which is odd about the rational

surface, and cause a rippling of the flux surface. Microtearing modes (MTMs) are a

type of tearing parity micro-instability.

MTMs are a candidate for anomalous electron heat transport in tokamak plasmas

[1, 2, 3]. They have been studied extensively since the 1960s. They are characterised

by large toroidal and poloidal wavenumbers, comparable to the reciprocal of the ion
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Larmor radius. An early analytic linear model for MTMs was developed by J. F. Drake

et. al [4]. In that work, the main drive mechanism is shown to come from the free energy

in the electron temperature gradient, contributing to electromagnetic fluctuations. The

collision frequency was shown to be a key factor in this drive mechanism. In the simple

two dimensional sheared slab geometry, they studied the impact of collision frequency by

dividing it into high-collisional, semi-collisional and collisionless regimes, and predicted

MTMs to be stable at both low and high collision frequency. Numerical calculations

by N. T. Gladd et. al [5] confirmed these slab results, demonstrating that a velocity

dependent collision operator is essential for instability.

More recent studies [6, 7] have observed MTMs in simulations neglecting the

velocity dependence of the collision operator and even in the limit that the collision

frequency tends to zero. Furthermore, gyrokinetic simulations have found microtearing

modes can exist towards the edge of MAST tokamak plasmas and that these modes can

be unstable at low collision frequency in toroidal geometry [7]. Gyrokinetic simulations

[8, 9, 10] have also demonstrated unstable MTMs in the complete collisionless limit

in a range of scenarios. These are at odds with the slab results presented in [5, 4]

but the mechanism is not yet fully understood. Understanding the collisionless drive

mechanism is vital for clarifying the impact for transport in tokamak plasmas, especially

those operating at higher temperature such as ITER.

In this article, we show that a fine scale collisionless tearing parity mode can, in fact,

be unstable even in slab geometry. To identify the key physics, we develop an analytic

model of this collisionless microtearing instability in slab geometry and conclude that

the drive mechanism persists even in the electrostatic limit, with finite electron Larmor

radius effects playing an important role. Probing the model in more detail, we show

that the instability is the tearing parity branch of the electron temperature gradient

(ETG) mode, which can be more unstable than the usual twisting parity ETG mode.

The paper is laid out as follows. In the next section we describe the magnetic

geometry. In Section 3 we employ the GS2 code to demonstrate the existence of a

microtearing instability in a collisionless slab. In Section 4 we discuss details of our

analytic model, which we use to identify the main physics mechanisms in Section 5. We

close in Section 6 with conclusions.

2. Slab geometry

It is convenient to define the slab geometry before our discussion of the physical plasma

instability. We consider a simple infinite slab of plasma with magnetic field lines in

the y − z plane and with density and temperature gradients in the x direction. The

scale lengths are L−1
n = −dlnn/dx and L−1

T = −dlnT/dx, respectively. Using LT as

the reference length, the normalised temperature gradient is defined as η = Ln/LT . An

external magnetic field B and a current density J are applied along the z direction,

resulting in B = B0(ẑ+(x/Ls)ŷ), where Ls represents the scale length of the magnetic

field shearing. We assume that |By| ≪ |Bz|, so restrict consideration to x≪ Ls.
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Figure 1. Illustration of the slab geometry.

3. GS2 simulation

GS2 is an initial value simulation code solving the gyrokinetic Vlasov-Maxwell equations

using an implicit algorithm [11]. It employs local flux tubes and is designed to operate in

a range of magnetic geometries including general tokamak, cylindrical and slab plasmas.

We first employ GS2 (version v8.0.1 [12]) to benchmark the numerical results

obtained by Gladd et al [5] in the slab geometry. Ion and electron temperatures are

equal at the centre of the slab; however, the ion temperature gradient is zero while

the electron temperature gradient is finite. There is also a finite density gradient and

sheared magnetic field applied as described in Section 2. The scale lengths for the

sheared magnetic field and for each species’ temperature gradient and density gradient

are Ls, LT and Ln, respectively. The mode frequency and growth rate in this paper

are normalised to the electron diamagnetic frequency ω∗e = kyveρe/2Ln. Here, the

wavenumber ky and spatial coordinate x will be normalised to the ion gyro radius,

ρi = vi/ωci, where vj =
√

2Tj/mj is the thermal speed of species j.

As shown in figure (2) the linear GS2 results match well with Gladd’s model [5] in

the collisional regime, and both demonstrate the drive from the electron temperature

gradient. However, in the very low collision frequency regime, GS2 reveals an unexpected

tearing parity instability in this slab geometry. The frequency is not continuous between

the collisional and collisionless regions, indicating that they are different instability

branches. The real and imaginary parts of the normalised electrostatic potential φ̄ and

normalised parallel magnetic potential Ā‖ are shown in figure (3). Ā‖ has an even

symmetry while φ̄ is odd, which is a defining feature of tearing parity modes. The

collisionless one has a narrower structure, thus the characteristic radial wavenumber

kxρi is much larger for the collisionless branch than for the collisional one (see figure

(4)). In fact, in these GS2 simulations we note that capturing the collisionless instability
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Figure 2. The growth rate (top) and mode frequency (bottom) for microtearing

modes as a function of collision frequency. The triangle and circular symbols are

GS2 simulation results, while the solid and dashed lines are numerical solutions of

eigenmode equations provided in reference [5]. Two electron temperature gradients,

ηe = 5.0 and ηe = 7.0 are shown. Other physical parameters include kyρi = 0.3,

β = 8πn0T/B
2 = 0.005, mi/me = 1836 and Ti = Te. The numerical parameters in

GS2 simulations are set as nperiod = 128 and ntheta = 8 for collision frequencies

smaller than 10ω∗e, while nperiod = 32 and ntheta = 8 are used for the other cases.

requires challenging numerical settings. The parallel grid extent and resolution needs

to be sufficiently high to capture the unstable mode accurately. In GS2, the parallel

flux tube extent is controlled by nperiod, while ntheta defines the grid resolution within

each 2π period. In our simulations, the collisionless branch requires nperiod = 128

and ntheta = 8, while the collisional branch is well converged for nperiod = 32 and

ntheta = 8.

Note that the condition kxρi ≪ 1 is assumed in the derivation of references [4, 5].

This enables a Gamma function expansion in the quasi-neutrality equation, ignoring

the finite Larmor radius effects from electrons. Figure (4) tests the validity of this

assumption for the range of collision frequencies, with ηe = 5.0 and ηe = 7.0. It shows

that electron temperature gradient ηe has very little influence on the value of kxρi but

collision frequency ν/ω∗e has a big impact. In the collisional regime, kxρi remains small

and the approximation is valid; however, this is not the case for the collisionless regime.

Specifically, in the collisionless regime, kxρi is about 40 times larger, which leads to

kxρe approaching 1. This gives the first clue that the finite Larmor radius effects from

electrons might be an important factor for the collisionless mode seen here. This finding

informs a new reduced gyrokinetic model, to be derived in Section 4.

To further test this point, we examined the influence of electron finite Larmor
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Figure 3. The mode structures for collisional (top) and collisionless (bottom)

microtearing instabilities in GS2 simulations. Note the difference in the abscissa scale.

The left two panels are normalised parallel magnetic potential and the right two are

normalised electrostatic potential. The real and imaginary parts are shown with solid

and dashed lines respectively. The eigenmodes are normalised such that Â‖(x = 0) = 1.

Here ηe = 5.0; other parameters are kept the same as for figure (2).

radius effects directly by probing a Bessel function parameter in GS2. This parameter,

α, enables a suppression of finite Larmor radius effects in the gyro-averaging Bessel

function J0(αk). α = 1 is the default case capturing full gyrokinetic physics. Turning

α down towards zero is equivalent to turning off the finite Larmor radius effects for the

given species in GS2 simulations. Figure (5) shows the effects of the Bessel factor on the

collisionless and collisional branches in GS2 simulation. Here the electron temperature

gradient is ηe = 5.0 and the collision frequency is set to ν/ω∗e = 0.1 for the collisionless

simulation. Note that the gyro-averaging provides velocity dependent dissipation, which

is in some sense similar to the collision operator. Whilst the collisionality is an important

factor in the collisional slab model, this indicates that for the collisionless instability, the

electron finite Larmor radius effects are required to confine the mode; these are neglected

in the collisional model. On the contrary, the collisional instability is insensitive to the

electron finite Larmor radius effects.

Focusing on the zero collision frequency limit and varying the ratio of plasma

pressure to magnetic pressure, β, we found that this mode persists in the electrostatic

limit, as shown in figure (6). Indeed, it is more unstable at lower β, and still exists when
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Figure 4. The values of kxρi (left axis) and kxρe (right axis) as a function of collision

frequency in the GS2 simulations. Parameters are kept the same as for figure (2).

Figure 5. The effect of the Bessel factor α on the collisionless instability (left panel,

ν/ω∗e = 0.1) and the collisional MTM (right panel, ν/ω∗e = 20). Here ηe = 5.0; other

parameters are kept the same as for figure (2).

β = 0. This means that electromagnetic effects are stabilising for this mode, which is

fundamentally electrostatic in nature. Meanwhile, GS2 simulations with kinetic and

adiabatic ions demonstrate that the ion treatment has little impact on the collisionless

mode. This provides conclusive evidence that the main drive comes from electrostatic
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Figure 6. The effect of plasma beta β on the collisionless instability. Here ν/ω∗e = 0.0,

ηe = 5.0; other parameters are kept the same as for figure (2).

electron physics. To capture the physics of the collisionless mode and provide an

interpretation of the GS2 results, we develop a new model in the following section.

4. Modelling in slab geometry

In order to provide a physics interpretation of the GS2 simulation at low collision

frequency, we derive eigenmode equations valid in this limit. Here we present two models

derived from gyrokinetic theory. Section 4.1 describes a simple case, focusing on zero

collision frequency and zero β, which demonstrates just the essential physics. Section

4.2 considers more complicated factors including finite but small collision frequency and

electromagnetic effects, which can be compared in more detail with GS2 results and

help give a good foundation for future work.

4.1. Electrostatic model at zero collision frequency

Informed by the earlier GS2 results, we adopt an adiabatic ion response but treat

electrons kinetically, retaining finite Larmor radius effects. We first consider the

electrostatic limit, with perturbations only in the electrostatic potential φ. In Fourier

space the gyrokinetic equation for electrons yields:
(

ω − i
ky
Ls

v‖
∂

∂k

)

ĝ(k) = − e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

J0(k⊥ρ⊥)φ̂(k) (1)

in which ĝ(k) is the electron distribution perturbation in Fourier space, ve is the electron

thermal velocity, ρ⊥ = v⊥/ωce is the perpendicular velocity-dependent electron gyro
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radius, Te = Ti = T , ωT
∗e = ω∗e(1 + ηe(

v2

v2
e

− 3
2
)), k2⊥ = k2x + k2y and J0 is the Bessel

function. The quasi-neutrality equation is

n0
eφ̂(k)

T
+

∫ ∞

−∞

d3v · ĝ(k)J0(k⊥ρ⊥) = −n0
eφ̂(k)

T
(2)

Assuming small k⊥ρ⊥, expanding Bessel functions to second order and conducting an

inverse Fourier transform to real space, equations (1) and (2) become:
(

ω − kyx

Ls

v‖

)

g(x) = − e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

(

1− k2yv
2
⊥

4ω2
ce

+
v2⊥
4ω2

ce

∂2

∂x2

)

φ(x) (3)

2n0
eφ(x)

T
= −

∫ ∞

−∞

d3v ·
(

1− k2yv
2
⊥

4ω2
ce

+
v2⊥
4ω2

ce

∂2

∂x2

)

g(x) (4)

Substituting (3) into (4) and normalising the variables as ω̄ = ω/ω∗e, k̄y = kyρe,

x̄ = x/ρe, φ̄ = eφ/T , we have

√
πφ̄ =

∫ ∞

−∞

ds

∫ ∞

0

tdt · e−(s2+t2)

(

ω̄ − 1− η

(

s2 + t2 − 3

2

))

×




(

1− k̄y
2
t2

4

)





(

1− k̄y
2
t2

4

)

φ̄+ t2

4
∂2

∂x̄2 φ̄

ω̄ − 2ǫx̄s



+
t2

4

∂2

∂x̄2





(

1− k̄y
2
t2

4

)

φ̄+ t2

4
∂2

∂x̄2 φ̄

ω̄ − 2ǫx̄s









(5)

in which s = v‖/ve, t = v⊥/ve, ǫ = Ln/Ls and η = Ln/LT . Please note that we have

normalised lengths to the electron Larmor radius rather than the ion Larmor radius

in the previous sections. We consider k̄y ≪ 1 in which case it can be neglected.

Neglecting third and fourth orders of the expansion in kxρe, simplification of this

equation yields a second order differential equation for the electrostatic potential of

the form C0φ̄+C1φ̄
′ +C2φ̄

′′ = 0, where primes denote the differential with respect to x̄

and the coefficients C0, C1 and C2 are

C0 = −√
π − 1

4ǫx̄

[(

ω̄ − 1 +
1

2
η

)

Z0,0 − ηZ2,0

]

− 1

8ǫx̄3

[(

ω̄ − 1− 1

2
η

)

Z2,2 − ηZ4,2

]

(6)

C1 =
1

8ǫx̄2

[(

ω̄ − 1− 1

2
η

)

Z1,1 − ηZ3,1

]

(7)

C2 = − 1

8ǫx̄

[(

ω̄ − 1− 1

2
η

)

Z0,0 − ηZ2,0

]

− 1

16ǫx̄3

[(

ω̄ − 1− 3

2
η

)

Z2,2 − ηZ4,2

]

(8)

Here, Zm,n = Zm,n(ω̄/2ǫx̄) is a generalised plasma dispersion function

Zm,n(α) =

∫ ∞

−∞

e−s2sm

(s− α)n+1
ds , α ∈ C , s ∈ R and m,n ∈ N (9)
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It can be shown that Z0,0(α) = iπW(α) where W(α) is the Faddeeva function. When

mn 6= 0, there is a pair of recurrence relations which can be used to relate Zm,n(α) to

Z0,0(α):

Zm,n(α) =
m

n
Zm−1,n−1(α)−

2

n
Zm+1,n−1(α) , n ≥ 1 (10)

Zm+1,0(α) = αZm,0(α) +
(−1)m + 1

2
Γ(
m+ 1

2
) (11)

When near the centre of the slab, where x̄ = 0, the above coefficients are well-

defined with the limit of

C0(x̄ = 0) =
√
π

[

−1 +
ω̄ − 1

2ω
+
ǫ2 (ω̄ − 1− 2η)

2ω̄3

]

(12)

C1(x̄ = 0) = 0 (13)

C2(x̄ = 0) =
√
π

[

ω̄ − 1− η

4ω
+
ǫ2 (ω̄ − 1− 3η)

4ω̄3

]

(14)

The forms of these coefficients show that, when normalising to the diamagnetic

frequency ω∗e, the mode frequency and growth rate are mostly sensitive to magnetic

shear scale length and electron temperature gradient. Numerical solutions of this second

order differential equation for φ̄ are presented in Section 5.

4.2. Electromagnetic model with finite Lorentz collision operator

The above electrostatic model is valid only when the collision frequency is zero. To

compare with the GS2 results along the low collision frequency range, we consider a

classic Lorentz collision operator consisting of pitch-angle scattering C(ν) = − iν
2

∂
∂ξ
(1−

ξ2) ∂
∂ξ
, where ν is the collision frequency and ξ = v‖/v is the pitch angle. Furthermore,

it is useful to explore the influence of electromagnetic effects including β, which will

show the tendency of this mode to form magnetic islands. Before we address this, we

first update the above model. When including the parallel magnetic potential and the

Lorentz collision operator, the gyrokinetic equation can be rewritten as

(

ω − i
ky
Ls

vξ
∂

∂k
− iν

2

∂

∂ξ

(

1− ξ2
) ∂

∂ξ

)

ĝ(k) = − e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

J0(k⊥ρ⊥)
(

φ̂(k)− vξÂ‖(k)
)

(15)

Again, expanding the Bessel function and conducting an inverse Fourier transform
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results in
(

ω − kyx

Ls

vξ − iν

2

∂

∂ξ

(

1− ξ2
) ∂

∂ξ

)

g(x) =− e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

×
(

1− k2yv
2(1− ξ2)

4ω2
ce

+
v2(1− ξ2)

4ω2
ce

∂2

∂x2

)

(

φ(x)− vξA‖(x)
)

(16)

Note that the perturbation of the electron distribution function depends on both

space and velocity g(x) = g(x, v, ξ). Expanding the distribution function in an

orthogonal polynomial series, g(x, v, ξ) =
∑∞

n=0 hn(x, v)Pn(ξ) in which Pn is the

Legendre polynomial of order n, we have

∞
∑

n=0

hn

[(

ω +
iν

2
n(n+ 1)

)

Pn(ξ)−
kyx

Ls

v
(n+ 1)Pn(ξ) + nPn+1(ξ)

2n+ 1

]

=

− e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

(

1− k2yv
2(1− ξ2)

4ω2
ce

+
v2(1− ξ2)

4ω2
ce

∂2

∂x2

)

(

φ(x)− vξA‖(x)
)

(17)

Applying the orthogonality relations for Legendre polynomials and integrating over

pitch angle ξ from −1 to 1 on both sides yields a set of equations

2

n+ 1

[(

ω +
iν

2
n(n+ 1)

)

hn − k‖v

(

n

2n− 1
hn−1 +

n+ 1

2n+ 3
hn+1

)]

=

− e

T

n0

π3/2v3e
e−v2/v2

e

(

ω − ωT
∗e

)

×







































[(

2− k2
y
v2

3ω2
ce

)

φ+ v2

3ω2
ce

d2

dx2φ
]

if n = 0
[

−
(

2
3
v − 4k2

y
v3

15ω2
ce

)

A‖ − 4v3

15ω2
ce

d2

dx2A‖

]

if n = 1
[

k2
y
v2

15ω2
ce

φ− v2

15ω2
ce

d2

dx2φ
]

if n = 2
[

− k2
y
v3

35ω2
ce

A‖ +
v3

35ω2
ce

d2

dx2A‖

]

if n = 3

0 if n ≥ 4

(18)

To derive a tractable model from the above, we adopt a matrix approach. The

equation (18) can be written in the matrix form as M · h = D. The two dimensional

matrix M is an infinite tridiagonal matrix, of which the n-th row (n starts from 1) is
{

· · · − (n−1)kyxv

(2n−3)(2n−1)Ls

1
2n−1

(

ω + n(n−1)
2

iν
)

− nkyxv

(2n−1)(2n+1)Ls

· · ·
}

n-th row

The column vector h starts from the h0 term and the column vector D represents the

driving terms in the right hand side of equation (18). Note that the main difference

between this model and collisional model in reference [5] lays in D. Without finite

Larmor radius effects, D becomes a scalar thus it is possible to present h terms in a

continued fraction as in their model. In our model, re-writing as

h = M−1 ·D (19)
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and noting that d2M/dx2 = 0, we have

d2h

dx2
= M−1 · d

2D

dx2
−2M−1 · dM

dx
·M−1 · dD

dx
+2M−1 · dM

dx
·M−1 · dM

dx
·M−1 ·D (20)

Substituting the Legendre series of g(x, v, ξ) into the quasi-neutrality equation (2)

and expanding the Bessel function as before, we have

n0
eφ(x)

T
= −2π

∫ ∞

0

v2dv ·
[(

1− k2yv
2

6ω2
ce

)

h0 +
k2yv

2

30ω2
ce

h2 +
v2

6ω2
ce

d2

dx2
h0 −

v2

30ω2
ce

d2

dx2
h2

]

(21)

We define two row vectors as

Rφ =
(

1− k2
y
v2

6ω2
ce

0
k2
y
v2

30ω2
ce

0 0 · · ·
)

(22)

Qφ =
(

v2

6ω2
ce

0 − v2

30ω2
ce

0 0 · · ·
)

(23)

Therefore the quasi-neutrality equation (21) becomes

n0
eφ(x)

T
= −2π

∫ ∞

0

v2dv ·
(

Rφ · h+Qφ · d2

dx2
h

)

(24)

To complete the set of electromagnetic equations, Ampere’s Law is also needed.

The parallel perturbed current density in Fourier space is

ĵe‖ = −
∫ ∞

−∞

d3v · ĝ(k)J0(k⊥ρ⊥)v‖e (25)

Similarly, we expand the Bessel function, define another two row vectors as

RA =
(

0 2
3
− k2

y
v2

15ω2
ce

0
k2
y
v2

35ω2
ce

0 0 · · ·
)

(26)

QA =
(

0 v2

6ω2
ce

0 − v2

35ω2
ce

0 0 · · ·
)

(27)

and follow the same procedure above. The parallel perturbed current density in real

space becomes

je‖ = −
∫ ∞

0

v3dv ·
(

RA · h+QA · d2

dx2
h

)

(28)

Therefore,

(

k2y −
∂2

∂x2

)

A‖(x) = −µ0

∫ ∞

0

v3dv ·
(

RA · h+QA · d2

dx2
h

)

(29)

Substituting the expressions for h in equation (19) and d2h/dx2 in equation

(20) into equations (24) and (29), yields the final expressions incorporating both

electromagnetic effects and a Lorentz collision operator.



The physics of a small-scale tearing mode in collisionless slab plasmas 12

Simplifying the parameters in the drive term D and normalising the results using

the same parameters as in the electrostatic model above, as well as u = v/ve and

Ā‖ = A‖/ρeB. The normalised matrix equations become

φ̄− 2√
π

∫ ∞

0

du · u2e−u2

(

ω̄ − 1− η

(

u2 − 3

2

))

·
(

R̄n · h̄+ Q̄n · d2

dx̄2
h̄

)

= 0

(30)
(

k̄y
2 − ∂2

∂x̄2

)

Ā‖ −
2√
π
β

∫ ∞

0

du · u3e−u2

(

ω̄ − 1− η

(

u2 − 3

2

))

·
(

R̄j · h̄+ Q̄j ·
d2

dx̄2
h̄

)

= 0

(31)

in which

R̄n =
(

1− k̄y
2
u2

6
0 k̄y

2
u2

30
0 0 0 · · ·

)

(32)

Q̄n =
(

u2

6
0 −u2

30
0 0 0 · · ·

)

(33)

R̄j =
(

0 2
3
− k̄y

2
u2

15
0 k̄y

2
u2

35
0 0 · · ·

)

(34)

Q̄j =
(

0 v2

6ω2
ce

0 − v2

35ω2
ce

0 0 · · ·
)

(35)

h̄ =M̄−1 · D̄ (36)

d2

dx̄2
h̄ =M̄−1 · d2

dx̄2
D̄ − 2M̄−1 · d

dx̄
M̄ · M̄−1 · d

dx̄
D̄

+ 2M̄−1 · d

dx̄
M̄ · M̄−1 · d

dx̄
M̄ · M̄−1 · D̄

(37)

with

M̄ =





















ω̄ −2
3
ǫx̄u 0 0 0 · · ·

−2
3
ǫx̄u 1

3
(ω̄ + iν̄) − 4

15
ǫx̄u 0 0 · · ·

0 − 4
15
ǫx̄u 1

5
(ω̄ + 3iν̄) − 6

35
ǫx̄u 0 · · ·

...
. . . . . . . . . . . .

...

0 · · · − 2(n−1)
(2n−3)(2n−1)

ǫx̄u 1
2n−1

(ω̄ + n(n−1)
2

iν̄) − 2n
(2n−1)(2n+1)

ǫx̄u · · ·
...

. . . . . . . . . . . . . . .





















(38)

and

D̄ =

























φ̄+ 1
6
u2 d2

dx̄2 φ̄

−2
3
uĀ‖ − 4

15
u3 d2

dx̄2 Ā‖

− 1
30
u2 d2

dx̄2 φ̄
1
35
u3 d2

dx̄2 Ā‖

0

0
...

























(39)

These represent an infinite tridiagonal matrix and a column vector, respectively. In

practice, they will be truncated, albeit at a large size during the calculation. Equations



The physics of a small-scale tearing mode in collisionless slab plasmas 13

(30) and (31) will eventually lead to a system of two simultaneous second order

differential equations for both electrostatic potential φ and parallel magnetic potential

A‖. Generally, however, the coefficients for each of the terms are not easy to simplify and

reveal the insight of physics, except in some special cases. For the collisional microtearing

theory where the finite Larmor radius effects are not considered, the drive term D has

non-zero elements only in the first two terms; thus only the left top four elements in the

inverse matrix of M will contribute to the results. In this case, the matrix products

can be simplified to produce the continued fraction and electron parallel conductivity

in reference [5]. In another simple case, when collision frequency ν = 0, at the centre

plane of the slab x = 0, the tridiagonal matrix M becomes diagonal, and the calculation

will be significantly simplified. Dropping electromagnetic terms, the equation becomes

equivalent to the electrostatic model discussed in the previous section.

5. Numerical results and discussion

We have established two reduced models for the collisionless micro-scale tearing

instability considering finite Larmor radius effects from electrons. Based on the

electrostatic eigenmode equations (6), (7) and (8), and electromagnetic eigenmode

equations (30) and (31), we have developed two codes to calculate the complex

eigenmode frequency ω for each of these models. The algorithm of the codes is an

eigensolver based on an iteration method described in Chapter 5.4 of reference [13]. Here,

for our electromagnetic equations with our chosen parameters, the complex frequency

ω is typically converged to a relative tolerance of 10−6 when the matrices are of size 30

by 30. The boundary conditions for the tearing instability for both models are spatially

localised tearing parity requirements

|φ|, |A‖| → 0 as |x| → ∞ , φ(0) = 0 ,
dA‖

dx

∣

∣

∣

∣

x=0

= 0 (40)

Please note that we did not assume any parity in the derivation; thus our model is also

capable of looking for twisting parity solutions, whose boundary conditions are

|φ|, |A‖| → 0 as |x| → ∞ , A‖(0) = 0 ,
dφ

dx

∣

∣

∣

∣

x=0

= 0 (41)

For the collisionless limit ν = 0, solving either electrostatic or electromagnetic

eigenmode equations gives results close to those of GS2 (see figure (8) for the point

at ν = 0). We know that the electrostatic model describes the electron temperature

gradient (ETG) mode. However, the ETG mode is usually considered to be a twisting

parity mode. Nevertheless, as with any eigenmode problem, there is a family of solutions

(harmonics) with alternating parity, in which the twisting parity is the fundamental

harmonic. In fact, eigenmodes of different harmonics can co-exist and there is no

physical reason why the fundamental one should be the most unstable. Indeed, such

phenomena, where the higher harmonics are more unstable, were found previously in
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both ion temperature gradient (ITG) mode [14, 15] and ETG mode calculations [16, 17];

studies [18, 19] reported the existence of unstable high order ballooning (twisting parity)

modes and that parity transition can happen under certain parameters; studies [20, 21]

demonstrated the excitation of higher harmonics and the parity mixture under certain

scenarios. For our electrostatic model, figure (7) shows different eigenvalues of which

the even and odd harmonics are twisting and tearing modes, respectively, solved with

corresponding boundary conditions. Our results show that the most unstable mode

in this case is the third order harmonic, which corresponds to the collisionless tearing

parity instability we have found.

Figure 7. Comparison of harmonics of eigenmode solution for GS2 and for solutions

of equations (6), (7) and (8). Here ν/ω∗e = 0.0 and ηe = 5.0; other parameters are

kept the same as in figure (2).

When including the collision frequency, the results from our electromagnetic model

are similar to those obtained from GS2, as shown in figure (8). Both models show

that the this mode is driven by electron temperature gradient, consistent with the

identification as an ETG. The mode growth rate decreases as the collision frequency

rises, but the growth rate in GS2 has a stronger variation and switches to a different

harmonic at ν = 1.0 for ηe = 5.0 and ν = 0.7 for ηe = 7.0, as indicated by the jump

in frequency. Note that our electromagnetic model results are consistent with the third

order harmonic in figure (7). One reason for the difference between our model and GS2

might be that the collision operator in GS2 differs from our model [22, 23]. Though

quantitatively slightly different, both our model and GS2 show that this collisionless

tearing parity instability tends to be stabilised by collisions. To summarise, we conclude

that the collisionless tearing parity instability found here in slab geometry is a form of

ETG instability, with a different drive mechanism to the standard collisional slab MTM.
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Figure 8. Comparison of our electromagnetic model (solid lines) with GS2 results

(triangle symbols) as a function of collision frequency in the collisionless regime.

Parameters are kept the same as in figure (2).

Figure 9. The structure of magnetic islands at ν/ω∗e = 0.0 growing from small

amplitude (left) to large amplitude (right) calculated from our electromagnetic model.

Here ηe = 5.0; other related parameters are kept the same as in figure (2).
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Although the underlying mechanism behind the collisionless tearing parity

instability studied here is different from the collisional MTM, it still leads to magnetic

reconnection and the formation of magnetic islands. Both GS2 and our electromagnetic

model provide the mode structure for the collisionless instability as shown in figure (3).

We can calculate the flux surfaces of the magnetic field from the magnetic potential A‖.

The structure of magnetic field lines is given by contours of the flux

ψ(x, y) =
B0x

2

2Ls

+ Re(A‖ · eikyy) (42)

The contour plot of constant levels of ψ(x, y) gives the flux surfaces and hence the

magnetic structure. Figure (9) shows the island structure for the collisionless mode

when ν = 0. However, note that the amplitude of A‖ is arbitrary in our linear model,

so the width of the island is not determined. From left to right, the three panels of

figure (9) are examples to show that under the same parameters the island shape can

become more contorted as its size grows from the order of electron Larmor radius ρe to

ion Larmor radius ρi. It can also be found that as the island width grows, a secondary

island arises in the vicinity of the X-point. We believe that the inflection points of

A‖ will finally provide a limit for the maximum island width. How this will affect the

particle and heat transport is to be answered in future work.

6. Conclusion

We have shown that there is a collisionless micro-scale tearing parity instability that can

drive reconnection even in the absence of collisions. We have established two models

considering electron finite Larmor radius effects to interpret the physics of this mode,

which is shown to be stabilised when the collision frequency increases. We identify

the collisionless mode as a tearing parity harmonic of the conventional slab ETG

mode, which is the most unstable harmonic for our parameters. The electromagnetic

component results in magnetic islands.

Our result stands as an example to show that tearing parity modes can arise from

a whole range of different drives, and there may be other possible ways to get small

scale tearing parity modes. These can have an impact on the transport and can be

very challenging to resolve numerically, posing problems for attempts to simulate them.

On the other hand, even if the tearing parity eigenmodes are not the most unstable

harmonic linearly, it still may be possible that tearing harmonics can play a role non-

linearly, leading to a background degradation to the confining magnetic field everywhere

that such instabilities exist.

The remaining questions in our research include why and in what parameter range

does the tearing harmonic become the most unstable ETG mode in the electrostatic

model, and how does this collisionless mode behave in toroidal geometry. The

electromagnetic model (30) and (31) we obtain is a rather complicated expression.

Further simplification may reveal more physical insight.
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