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We present details of an image analysis algorithm designed specifically to determine the velocity
of material in the melt plume during high-pressure, close-coupled gas atomization. Following
high-speed filming (16,000 fps) pairs of images are used to identify and track dominant features
within the plume. Due to the complexity of the atomization plume, relatively few features are
tracked between any given pair of images, but by averaging over the many thousands of frames
obtained during high-speed filming a spatially resolved map of the average velocity of material
in the plume can be built up. Velocities in the plume are typically very low compared to that of
the supersonic gas, being around 30 m s�1 on the margins of the plume where the melt interacts
strongly with the gas and dropping to< 10 m s�1 in the center of the melt plume. Consequently,
the efficiency of the atomizer in transferring kinetic energy from the gas to the melt is
correspondingly very low, with this being estimated as being no more than 0.1 pct.
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I. INTRODUCTION

GAS atomization of molten metal is an important
industrial process used to produce highly spherical metal
powders for a range of industrial uses. The applications
for such powders are diverse and include use as a
feedstock for additive manufacturing, the production of
catalysts for chemical processing, and formulation of
brazing pastes for joining materials. Additive manufac-
turing in particular is creating both a massively
increased demand for metal powders and a drive for
improved powder quality (see, e.g., the recent review of
powders for ALM feedstock by Anderson et al.).[1] For
each application, the metal powder must meet a defined
specification with one of the principal metrics employed
being the particle size distribution (PSD) of the powder.
Precise control of the gas atomization process is
desirable in order to constrain the PSD produced,
maximizing the usable fraction of powder and thereby
minimizing scrappage or recycling of powder that is
outside of the required specification. However, as noted
by Anderson and Terpstra,[2] the PSD of powders
produced by gas atomization tends to be quite broad,
typically spanning an order of magnitude or more,

leading to re-melt rates in commercial production that
may be as high as 65 pct. Consequently, even modest
improvements in control of the PSD could result in
significant cost saving.
In the gas atomization process, the PSD of the

powder produced is influenced by various physical
processes. One of the most significant factors controlling
the PSD is the way in which the jet or film of molten
metal interacts with, and is broken up by, the gas stream
during primary atomization. This in turn affects the way
in which the molten metal droplets formed during
primary atomization interact downstream with the gas
during secondary atomization. Both primary and sec-
ondary break-ups are strongly influenced by gas and
particle velocities and the resultant shear forces gener-
ated. Duke and Honnery[3] have studied the position
and velocity of the liquid-gas interface at the point
where a liquid sheet becomes unstable prior to break-up
into ligaments and droplets, finding that the Reynolds
number, Weber number, and the gas/liquid momentum
ratio were key parameters. Zandian et al.[4] used the
level sets method to investigate primary break-up of a
liquid sheet by a high-pressure gas jet, demonstrating
that both the Reynolds and Weber numbers* are key

parameters in determining the mode by which such
break-up occurs. Similarly, Li and Fritsching[5]
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demonstrated that the drag force between the fast
moving gas and the slower moving droplets was a key
parameter in determining secondary break-up.

The break-up modes operating in turn determine the
atomization efficiency, which is generally accepted as
being very low. In a recent evaluation of greenhouse
emissions related to powder metallurgy by Azevedo
et al.,[6] a figure of ~11 pct is quoted, this being based
upon the ratio of the actual energy used by the process
to that used in some ideal theoretical process with
minimum energy consumption. However, while such a
basis may be useful in comparing the impact of different
metallurgical processes, it is perhaps of less use when
comparing detailed modifications within a process such
as gas atomization. An alternative way of quantifying
the efficiency of the atomization process is to consider
the theoretical efficiency for the conversion of kinetic
energy into the embodied surface energy of the powder.
As shown by Yule and Dunkley,[7] this usually results in
very small values, typically < 0.01 pct, although such
considerations were utilized by Strauss and Miller[8] to
develop, with some success, a physically based model for
estimating the particle size during gas atomization.

Improving the efficiency of the gas atomization
process has been an area of active research: the
replacement of the conventional annular slit gas delivery
system with discrete jet nozzles was suggested by
Anderson and Terpstra,[2] and the inclusion of resonant
cavities to produce ultrasonic frequencies to aid liga-
ment disintegration was patented by Grant.[9] However,
modifications have not been limited to the gas delivery
manifold. A slotted melt delivery nozzle was proposed
by Anderson et al.,[10] in order to direct the melt towards
the atomizing gas jets, while a CFD study of various
melt nozzle designs by Motaman et al.[11] demonstrated
that the wake-closure pressure could be dramatically
reduced by adding a curved concave profile to the inside
of the melt nozzle. The nature of the atomizing gas and
its temperature have also been the subject of investiga-
tion, with Dunkley et al.[12] demonstrating significantly
finer median particle size with reduced gas consumption
if the gas feed is pre-heated to around 250 �C.

However, much of the research into gas atomization
has been conducted on a trial and error basis, examining
the change in the PSD resulting from various design
changes. This is, at least in part, because very few tools
exist to monitor the gas atomization process in situ. The
lack of such tools both limits the rate at which progress
towards more efficient atomization can be realized and
means that, even where progress is made, the underlying
physical mechanisms operating may not be appreciated.
In this research, we contend that, given the important
role of shear forces in liquid break-up, obtaining spatial
mapping of the velocity distribution within an atomiza-
tion melt plume could help to understand the reasons
for this low efficiency and could potentially be a useful
tool to drive efficiency improvements within the indus-
try. Moreover, such a spatial mapping of the velocity
within the melt plume can be used to arrive at much
more direct measures of the efficiency for a particular
atomizer design. Once the velocity distribution is

known, it is a relatively straightforward matter to
calculate the kinetic energy (or momentum) embodied
within the melt plume by virtue of its motion. This may
in turn be compared to the kinetic energy (or momen-
tum) embodied within the gas stream, which may be
calculated via isentropic flow theory. Consequently, a
very direct measure of efficiency may be defined and
evaluated for a given atomizer design, namely the
efficiency of transferring kinetic energy (or momentum)
from the supersonic gas stream to the melt plume.
One method that can be used to obtain velocity

metrics from the gas atomization process is to employ
high-speed photography to record images of the gas
atomization plume. One such estimate, based on a single
feature and at a single instant in time, is given by Mullis
et al.,[13] wherein they estimated the velocity (or more
specifically the component of the velocity in the plane of
the image) of a group of co-moving particles within a
plume as being around 30 m s�1. However, most
high-speed imaging applied to gas atomization has been
used either to study instabilities within the process, as
has been done by Mullis et al.,[14] or to infer properties
of the gas dynamics, such as Mates and Settles’s[15] study
of wake-closure.
Object tracking is widely used in other fields to

determine the velocity of objects as they cross the field of
view of a camera, with an extensive literature available
on both Fourier (see, e.g., Ejiri and Hamada[16]) and
non-Fourier (see, e.g., Malavika and Poorn-
ima[17])-based techniques. For example, pre-recorded
or real-time images can be used to track the movement
of objects, such as vehicles on a highway. In the case of
vehicle tracking, it is considered that the objects being
tracked present a relatively regularly shaped object,
albeit slowly changing due to perspective as the cam-
era-to-vehicle distance and viewing angle changes.
Conversely, in a gas atomization plume, the features
being observed are highly fluid in that particles can be
seen forming dense clouds which are then observed to
move, rapidly change shape, and disperse. The highly
fluid nature of the gas atomization process means that
the observable features may have either hard edges or
relatively diffuse borders. Moreover, as gas atomization
is typically filmed using the radiant light from the hot
molten metal, cooling of the atomized droplets in flight
means that the illumination of the features changes
rapidly. Furthermore, using a two-dimensional record-
ing system to analyze a three-dimensional process also
adds to the complexity. In a vehicle tracking application,
it is considered that using a suitably elevated camera
position for capturing images mitigates against prob-
lems caused by using a two-dimensional image capture
system to analyze a three-dimensional situation. How-
ever, in a gas atomization plume it is inevitable that
some features will be obscured and that the images
recorded will include instances where two or more
features located at different distances from the camera
appear as a single feature, and so cannot be differenti-
ated from each other. Consequently, when conventional
object tracking routines are applied to an atomization
plume, they tend to perform very poorly.
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Although there are clearly challenges involved in
using images from high-speed photography to obtain
quantitative information about the gas atomization
process, when viewing such high-speed camera images,
it is possible to readily discern features that persist in a
recognizable form from one image to the next. As would
be expected, the motion of these features usually
indicates a direction of travel away from the melt
ejection nozzle. However, close to the nozzle an area of
recirculation exists and features are sometimes observed
traveling towards the nozzle. The failure of conventional
object tracking routines appears to arise from (i) there
being no clear distinction between the object to be
tracked and the background and (ii) the variability of
the objects being tracked.

A number of researchers (e.g., Mullis et al.,[18] Kirmse
and Chaves[19] Planche et al.,[20] and Pham et al.[21]) have
used particle image velocimetry (PIV) to try and
estimate the velocity of particulate material in an
atomization process. This technique uses two short
pulses from a laser to illuminate a thin sheet or slice of
the atomization plume a short time duration apart. The
velocity estimation is obtained by using PIV evaluation
software to determine the displacement of particles over
the time interval between the two laser pulses. However,
the flow of the second fluid (melt or tracer particles) has
to be very low in such experiments, wherein the atomizer
is close to operating in gas-only flow. Consequently, the
measured flow field is not representative of coupled flow
at a realistic gas-to-metal ratio. Duke and Honnery[3]

have reported an experimental method for investigating
the break-up of a two-phase flow, using a cross-corre-
lation technique, although this was applied to a liquid
sheet and may therefore be unsuitable to the chaotic
motion within a gas atomization plume. Outside of the
field of gas atomization, Tokumaru and Dimotakis[22]

have estimated flow velocities in single-phase liquid
flows and single-phase gaseous flows using a method for
transforming images of flows. By using Taylor series
expansions of the Langrangian displacement field, they
have demonstrated that it is possible to correlate two
successive images for a range of transformations, and
from this obtain vector fields indicating flow velocity
and direction.

In this paper, we present the development of a
specially designed computer vision algorithm designed
to build up a two-dimensional spatial map of particle
velocities in the atomization plume. Rather than the
deterministic approach used in conventional object
tracking in which well-delineated objects move from
frame to frame with little variation in form, we use a
statistical approach. We first search for the most
distinctive features within a frame and then attempt to
find a match for them in the next, accepting that in
many, and possibly the majority, of cases such a match
between frames will not exist. In fact, most image pairs
contain only a relatively small number of trackable
features and consequently many thousands of image
pairs are required in order to build up the complete
two-dimensional spatial map of the velocity profile
within the gas atomization plume. The result is a
time-averaged, spatially resolved map of the velocity

of the second fluid (i.e., the metal) during gas atomiza-
tion. Such a map can help us to elucidate the physical
processes by which melt disintegration occurs, under-
stand the low efficiency encountered in gas atomization
processes, and act as a quantitative data set for the
validation of CFD models of the atomization process.

II. METHOD OF IMAGE CAPTURE

Images of the gas atomization plume were captured
during atomization of 316L stainless steel. The melt was
subject to a 200 K superheat, wherein the pour temper-
ature was ~1900 K. Atomization was via an annular slit
type atomizer operating at 2.6 MPa. The melt nozzle is
of the conventional truncated cone type, with a 30 deg
apex angle, a 9-mm-diameter flat tip, and a central melt
feed tube of 5 mm in diameter. The melt and gas flow
rates were 0.25 and 0.35 kg s�1, respectively.
A Photron FastCamMini UX100 High Speed Camera

operating at 16,000 frames per second was used to image
the melt plume, with a total of 28,665 frames being
captured giving a total recording time of 1.7916 seconds.
At this frame rate, the standard UX100 frame size is
1280 9 312 (width 9 height) and in order to accommo-
date the geometry of the atomization plume during
vertical atomization the camera was mounted on its side.
The subsequent images have been rotated so that they
depict atomization in the direction in which it occurred
(vertically downwards) and cropped to 312 9 800 to
remove extraneous material. Each pixel is recorded in an
8-bit format, giving a 0 to 255 grayscale. The camera was
equipped with high magnification micro-Nikkor optics
which allowed full frame images to be obtained at a
working distance of ~30 cm. The effective resolution
with this setup is ~0.0866 mm pixel�1.

III. UNDERLYING ASSUMPTIONS
OF THE COMPUTER VISION ALGORITHM

To carry out this type of image analysis and derive
quantitative information about the atomization process,
it was necessary to make some assumptions. Firstly, it
was assumed that the atomizing gas and atomized
material moves in only one dimension. The assumption
is that the atomizing gas and atomized material moves
only away from or towards the melt nozzle, i.e.,
vertically downwards or vertically upwards in the
high-speed camera images presented herein. A small
recirculation zone may exist close to the melt nozzle,
which can be theorized to be a region consisting of a ring
vortex (toroidal vortex), and so this assumption is not
strictly correct, as in order for recirculation to occur a
flow of atomizing gas and atomized material must exist
in more than one dimension. However, with the excep-
tion of the small recirculation zone close to the nozzle,
we consider that the flow of atomizing gas and atomized
material is mainly one dimensional, and so this is not an
unreasonable assumption to make. By making this
assumption, the computer vision algorithm is greatly
simplified.
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Secondly, it was assumed that a two-dimensional
monitoring technique (high-speed camera) can be used
to obtain quantitative information from a three-dimen-
sional process. As has already been mentioned in the
introduction, using a monitoring technique that records
in two dimensions to investigate a process that operates
in three dimensions is sub-optimal, as the presence of
atomized material may be obscured by atomized mate-
rial that is closer to the high-speed camera. In the
recirculation zone close to the nozzle, the existence of a
ring vortex here would mean that the flow vectors at this
location are likely to be significantly more three-dimen-
sional than at other locations further downstream.
However, inspection of high-speed camera images of
the atomization process suggests that the process is
somewhat chaotic, and that the kind of stable flow
pattern seen in gas-only CFD models of the atomization
process does not form. The chaotic nature of the process
means that it is possible to observe and track discrete
clouds of atomized material, despite the limitations of
using a two-dimensional recording process to investigate
a three-dimensional process.

Thirdly, when estimating the total amount of kinetic
energy contained within the plume of atomized material,
it is assumed that the mass of atomized material present
within each pixel of the image is proportional to the
brightness (grayscale value) of that pixel. As the sole
source of illumination for the high-speed photography is
the incandescence of the atomized material, and the
atomized material is on average cooler, and therefore
less bright, further away from the melt nozzle, a
correction is applied to the grayscale values. The
correction that was made is contained within the
description of the experimental method.

Fourthly, to assist in the estimation of kinetic energy
within the plume of atomized material, it is assumed that
when averaged over a sufficiently large number of
frames, the mass flow rate of atomized material,
although seemingly somewhat chaotic and highly vari-
able over the timescales that are resolved by 16,000
frames per second imaging, can be assumed to be in a
relatively steady state when averaged over the full 28,665
frames (1.7916 s) that are analyzed.

Lastly, it is assumed that when averaged over the full
28,665 frames (1.7916 s), horizontal slices of the
atomization plume contain an equal mass of atomized
material, irrespective of the displacement of the hori-
zontal slice relative to the melt nozzle. This assumption
builds on the fourth assumption by applying conserva-
tion of mass considerations and assuming that atomized
material is, on average, steadily proceeding vertically
downwards away from the melt nozzle.

IV. METHOD OF ESTIMATING VELOCITY
FROM SEQUENTIAL PAIRS OF IMAGES

A computer vision algorithm was created within
MATLAB to perform analysis on sequential pairs of
images, which for simplicity we will refer to as image 1
and image 2. Here we give a generic overview of the
algorithm, with a more technical description of the

process including all the computational parameters used
and the values they are assigned being given in Appen-
dices A to F.
The process begins in the top left-hand corner of

image 1. We scan downwards through the first column
of pixels (this will correspond to the dominant flow
direction) looking for a grayscale density gradient (dark
to bright) which exceeds some preset threshold. Once
such a threshold is detected the search continues
downwards to find the location of the maximum
gradient. This location is marked as being the leading
edge of a feature which may potentially be trackable in
image 2. The process then continues in image 1 moving
downwards through each column and left-to-right
across the columns until all columns have been scanned.
The output at this stage is a set of marked locations
within image 1 that correspond to the most prominent
dark-to-light transitions when scanning downwards
through the image. By viewing a large sample of images,
we judge that this process is reasonably robust and a
good approximation to how a human viewer would
manually identify dominant features within the atomiza-
tion plume. The set of features identified in a particular
frame 1 is shown in Figure 1(a).
The next stage in the process is to attempt to find

these features in image 2. For each feature, the search in
image 2 begins at the same location as that at which the
feature was identified in image 1. We search upwards
and downwards (upwards to allow for recirculation
effects near the nozzle, and downwards as this is the
dominant flow direction) to see if the same feature can
be identified. Initially we search in an upwards direction,
and if a density gradient is identified we perform a check
to try to establish if this is the same feature. This check is
based either on the magnitude of the two density

Fig. 1—An example of the analysis of an image pair (a) with
locations of all the local maxima in the grayscale density gradient
identified by the computer vision algorithm highlighted in green in
image 1 and (b) with the new locations of density gradients
previously identified highlighted in red in image 2 (Color
figure online).
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gradients being similar, to within some tolerance, or by
calculation of the correlation coefficient between the two
local regions in images 1 and 2, which is again compared
to some tolerance. If the match is accepted, we mark the
feature as having been tracked from image 1 to image 2,
noting the negative displacement such that a negative
velocity can be determined. If the match is not accepted,
we continue to scan, although a maximum extent on the
upwards search is set as features which have a very large
displacement between frames are likely to result in a
false match. After scanning in the upwards direction, a
downwards search is instigated, using essentially the
same criteria. Again, a maximum search extent is set,
which may be different to the maximum extent in the
upwards direction. If a match is found, a positive
displacement for the feature is recorded, if no match is
found within the upwards and downwards search
ranges, then the feature has been ‘lost’ and it is assumed
it is not trackable between frames 1 and 2. If more than
one location meets the defined tolerance criteria, then we
accept the match for the location in image 2 that has the
closest density gradient or highest correlation coefficient
to the feature found in image 1. The set of trackable
features between two consecutive images is shown in
Figure 1(b).

The final stage in the process performs a set of sanity
checks to increase the robustness of the identification
and tracking of features. There are two distinct criteria
that we apply, the first relates to the length of the
identified feature, the second the size of any vertical
jumps while traversing the length of a feature. Consider
the latter of these first and say for the sake of argument
that a maximum density gradient has been identified in
column 1 that is located in row 20. If in column 2 a

maximum density gradient is also identified in row 20, it
is very likely these belong to the same feature, whereas if
the nearest maximum density gradient is in say row 50, it
is quite unlikely that this belongs to the same feature.
This of course is an extreme example and it is much
more likely that the vertical offset between columns is
only a few pixels. Consequently, some tolerance has to
be set on this maximum vertical offset to allow us to
distinguish between a single feature that might be
inclined to the horizontal (or curved) and two nearby
features. If this tolerance is exceeded, the feature is split
into two, if it is not it is considered to be all the same
feature. The other condition relates to the length of the
resulting features. A feature that is only 1 or 2 pixels
long is much more likely to be an artifact than one that
can be traced across say 20 consecutive columns in the
image. Consequently, any feature that does not meet a
minimum length requirement is discarded. The result at
the end of this final identification stage is a set of
features which have been tracked between image pairs
and in which we have reasonable confidence that the
feature in image 2 is the same one as identified in
image 1.
At the end of this identification process, the result is a

set of features that have been tracked between images.
As can be seen in Figures 2(a) and (b), this is a relatively
sparse set. We therefore move along the image set, with
image 2 now becoming image 1 and the next in the
sequence becoming image 2, with this process being
repeated until all images in the movie have been
processed. In order to create a fully populated spatial
map, the data from all the image pairs analyzed were
combined, wherein various metrics including average
and RMS displacement, together with 5th percentile and
95th percentile displacement and other statistics, related
to the analysis method, as a function of spatial position
can be calculated. Moreover, as both the time-base
between images and the absolute size in the image plane
per pixel are known, the observed displacement of
tracked features between image pairs may be converted
from a pixel displacement to a velocity estimation.
Graphical outputs were created by overlaying these
maps onto an average image of the atomization plume.
The average image of the atomization plume was
derived by summing the grayscale intensities from all
the images analyzed and dividing by the number of
images analyzed. In this way, a spatially resolved
average velocity for each location in the movie can be
built up, with this essentially being the final output of
the analysis.
In a computer vision algorithm such as this, it is

inevitable that some false matches will occur in image 2.
False matches occur when the computer vision algo-
rithm incorrectly tracks a density gradient to a new
position in image 2. Situations such as this arise because
the algorithm cannot fully account for the complex
nature of the process and because of the limitations of
the recording mechanism used. In particular, as has
already been mentioned, the features being tracked are
highly fluid clouds of particles that can rapidly change
shape, and become more or less dense. Recording
limitations occur because in a two-dimensional

Fig. 2—Examples of images analyzed as image 1 (a) and image 2 (b)
after filtering for minimum density gradient feature width and
maximum allowable vertical step between neighboring density
gradients. Density gradient locations identified in image 1 are
highlighted in green, and new locations in image 2 of density
gradients previously identified in image 1 are highlighted in red
(Color figure online).
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recording of a three-dimensional process, there is no way
of preventing errors that arise when clouds of particles
move in front of, or behind, each other. In addition, the
analysis method assumes that density gradient features
move either towards or away from the nozzle. However,
careful examination from one image to the next shows
that clouds of particles are occasionally observed moving
perpendicular to the main (vertical) direction of particle
movement. Such horizontal motion is possible because
there is an area of recirculation close to the nozzle and
because highly turbulent flow conditions can also occur
on a local level, causing localized horizontal motion.
However, due to the low frequency of such occurrences,
and to keep the complexity of the algorithm manageable,
we have restricted tracking to the vertical direction.
Although some false matches will therefore inevitably
occur, by setting the analysis variables conservatively,
the rate at which false matches occur can be minimized.
Additionally, as a large number of features are identified
and tracked, data arising from a small proportion of
false matches will have only a small effect on the
estimated mean velocities obtained.

The number of positive (downward) displacement
estimations made at each location in the atomization
plume is shown in Figure 3(a). From this heat map, it
can be seen that the greatest number of displacement
estimations are generated at the boundary between the
nozzle, which is dark and stationary, and clouds of
bright particles below the nozzle. This omnipresent
density gradient typically generates displacement esti-
mations on every pair of images that are analyzed, and
so a very large number of displacement estimations are
created at this location. As these displacement estima-
tions are in part generated by a stationary piece of
hardware (the nozzle), they are not considered to be
genuine estimations of displacement, and so are
removed from statistical analysis of the displacement

frequency distribution. These are excluded by filtering
the data to remove all displacement estimations that
occur within the first 79 rows of pixels.
Having discounted the displacement estimations gen-

erated by the omnipresent density gradient at the nozzle
edge, the greatest concentration of displacement estima-
tions is seen to occur at the atomization plume shoul-
ders, where the atomization plume increases from nozzle
width to a maximum width. Upon viewing a sample of
the individual images, this result is expected, because the
shoulder area of the atomization plume frequently
contains clearly defined density gradient features, with
a high level of contrast existing between bright, highly
dense clouds of particles and the black background
above which is free of any atomized material.
Below the nozzle and between the shoulders is an area

with relatively few displacement estimations. Inspection
of a video compilation of the high-speed camera images
shows that this more sparsely populated area corre-
sponds to a region that often appears very bright, to the
extent that the camera sensor was probably often at, or
near, its saturation point. In an area where the majority
of pixels are at, or near, saturation, it follows that few
density gradient features will be identified. Further
down the atomization plume the saturation of the
camera sensor is reduced due to a greater dispersion of
particles and cooling of the droplets reducing their
brightness. Consequently, downstream conditions favor
a higher number of detections. However, this assistance
is offset somewhat by the more diffuse nature of the
boundaries between areas of high and low particle
density. This is due to particles becoming more evenly
distributed in the gas stream as mixing due to turbulence
begins to disperse the dense clouds of particles.
The number of negative (upward) displacement esti-

mationsmade at each location in the atomization plume is
shown in Figure 3(b). From this heat map, it can be seen
that negative displacement estimations are most concen-
trated in the top third of the atomization plume, which
equates to a distance of around 2 to 3 nozzle diameters
from the melt outlet. This is the area that corresponds to
the approximate extent of the recirculation zone, within
which clouds of particles are sometimes observed moving
towards, rather than away from the nozzle.
Data relating to the identification and tracking stages

of the image analysis process are shown as heat maps in
Figure 4. The average density gradient at each location
(identification stage in image 1) is shown in Figure 4(a),
while the average correlation coefficient at each location
(tracking stage in image 2) is shown in Figure 4(b). The
highest average density gradients are found on the
shoulders of the plume. This is expected as inspection of
the input images shows that the shoulder area of the
plume is frequently occupied by highly dense clouds of
particles, and when contrasted with the black back-
ground above, strong density gradients are produced.
As distance from the nozzle increases, the average
density gradient decreases in value. This reduction is due
to increased dispersion of molten droplets, so that the
boundaries between areas that are densely populated
with particles and those areas that are more sparsely
populated become more diffuse. Furthermore, as the

Fig. 3—Heat maps showing the logarithm (base 10) of (a) the
number of positive and (b) the number of negative displacement
estimations generated by the computer vision algorithm (excluding
displacement estimations equal to zero) (Color figure online).
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droplets cool, their radiance decreases, thereby reducing
the potential for contrast and a strong density gradient
between regions with differing concentrations of molten
droplets. Immediately below the nozzle is an elliptical
area with low average density gradient. This area is
thought to be caused by frequent saturation of the
camera sensor by dense clouds of very hot particles of
molten metal. Some continuation of this effect is visible
below the elliptical area, between the shoulders of the
atomization plume. The average correlation values in
the tracking stage have a similar pattern to that seen for
the density gradient values in the identification stage.
This is thought to be due to similar reasons as have been
described for the average density gradient values (in-
creasingly diffuse distribution of particles, and satura-
tion of the camera sensor by dense, very hot clouds of
molten metal particles).

V. METHOD OF ESTIMATING KINETIC
ENERGY WITHIN THE ATOMIZATION PLUME

Having created spatial maps of the estimated velocity
of atomized material in the plume, it is also possible to
estimate the momentum and kinetic energy present
within the plume of atomized material. This kind of
analysis is useful, as if the momentum and kinetic energy
supplied to the process by the atomizing gas is also
estimated, then it is possible to quantify the efficiency
with which momentum and kinetic energy is being
transferred from the atomizing gas to the molten metal.
The required mean (momentum) and RMS (kinetic
energy) velocities are already known from the analysis.
To make an estimation of the momentum and kinetic
energy present within the plume, it is also necessary to
make an estimate of how the mass is distributed within
the melt plume.

It is assumed that the mass of atomized material
present at each pixel of the image is approximately
proportional to the brightness (grayscale value) of that
pixel. The grayscale value of each pixel was determined
by taking the mean grayscale value for each pixel across
all 28,665 frames. This operation created what can be
described as an average image of the atomization plume,
and the result is shown in Figure 5(a). As illumination
for the high-speed photography comes solely from
incandescence of the atomized material, and the
atomized material is cooler, and therefore less bright,
as displacement from the melt nozzle increases, a
correction was applied to the grayscale values to
account for this downstream cooling of the melt.
The correction was made by first calculating the sum

of grayscale values for each row of the average
atomization plume, and then determining a correction
factor for each individual row so that the sum of
grayscale values for each row was equal to the sum of
grayscale values in every other row. In regions of the
atomization plume where the density of atomized
material was greatest (e.g., directly below the melt
nozzle), application of these correction factors resulted
in some pixels with a grayscale value greater than 100
pct (a value of 255 for 8-bit grayscale values or a value
of 1 for double-precision floating-point grayscale val-
ues). Therefore, following application of the correction
factors on a row-wise basis, the grayscale value of every
pixel was normalized with respect to the maximum
grayscale value in the corrected average atomization
plume so that no pixel had a grayscale value greater than
100 pct. The result, which is shown in Figure 5(b), is an
image in which the grayscale is now proportional to the
relative amount of mass present within that pixel
volume.
We compute the mass weighted mean and mean

square velocity, �V and V2, respectively, as

Fig. 4—(a) Average density gradient at each location for the
identification stage of the computer vision analysis (image 1) and (b)
average correlation coefficient at each location for the tracking stage
of the computer vision analysis (image 2) (Color figure online).

Fig. 5—Estimated distribution of relative mass within the
atomization plume: (a) Average plume before applying correction (b)
Average plume after applying correction.
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where i labels the pixel row and j labels the pixel col-
umn, with mi,j being the relative mass present at pixel
(i, j). The factor ri,j is the distance from the center of
the plume which is introduced to account for the cylin-
drical symmetry of the system, whereby more mass is
contained the further out on the plume a pixel lies. As
the actual, time-averaged mass discharge from the noz-

zle is known (0.25 kg s�1), �V and V2 can then be used
to obtain the actual momentum and kinetic energy
embodied within the plume by virtue of the motion of
the melt.

We assume that the velocity, and hence momentum
and kinetic energy, embodied within the supersonic gas
stream can be estimated using isentropic flow theory
with (near) ideal expansion. For a De Laval nozzle
profile with outlet diameter A and constriction (throat)
area A*, the Mach number, M, at ideal expansion is
given by

A

A� ¼
1

M

cþ 1

2

� ��j

1þ c� 1

2
M2

� �j

; ½3�

where c is the ratio of specific heats (cp/cv) and
j ¼ 1

2 cþ 1ð Þ c� 1ð Þ. This in turn may be related to the
pressure requirement for ideal expansion, wherein

P

P0
¼ 1þ c� 1

2
M2

� � c
c�1

; ½4�

where P is the pressure of the gas on the inlet side of
the manifold and P0 is the plenum pressure on the out-
let side. For an inlet pressure of 2.60 MPa and an out-
let maintained at (or close to) atmospheric pressure,
we have a Mach number upon exit of 2.778, corre-
sponding to a design criterion of A/A* = 2.896 (for
N2 gas as used in the atomizer used here, c = 1.4 for
a diatomic species). The corresponding drop in temper-
ature upon expansion is given by

T0

T
¼ 1þ c� 1

2
M2

� ��1

; ½5�

where T0 is the temperature of the expanded gas in the
plenum and T that of the unexpanded gas in the mani-
fold. Equation [5] gives T0/T as 0.4712, wherein for an
inlet temperature of 473 K, as used in the atomizer
here, we obtain an outlet temperature of 223 K. The
corresponding velocity of sound is 299 m s�1. Conse-
quently, the linear velocity of the gas at exit is esti-
mated at 831 m s�1.

VI. RESULTS

Heat maps of the estimated average, RMS, 95th
percentile, and 5th percentile velocity at each spatial
location are shown in Figures 6(a) through (d), respec-
tively. With respect to the average velocity (Figure 6(a)),
the center of the atomization plume is seen to contain
the lowest velocity estimations, surrounded by a skin of
higher velocity material. This result agrees with video
compilations of the high-speed camera images, in which
clouds of particles can clearly be seen streaming away
from the nozzle rapidly at the periphery of the atomiza-
tion plume, while the interior appears, on average, to
contain slower clouds of material. The skin of faster

Fig. 6—(a) Average, (b) RMS, (c) 95th percentile, and (d) 5th
percentile estimated velocity at each location in the atomization
plume (Color figure online).
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moving particles is observed to thicken slightly as
distance from the nozzle increases. This is as expected,
as viscous shear forces in the gas will gradually transfer
energy from the higher velocity periphery of the
atomization plume to the lower velocity inner region.
Of particular interest is the interior region in the
topmost 25 to 33 pct of the atomization plume (~2 to
3 nozzle diameters downstream from the melt outlet), in
which it is observed that the plume contains the lowest
velocity material, with the average velocity being close
to, or less than, zero. This region corresponds to the
widely discussed recirculation zone, whereby the nega-
tive (upward) velocity of the recirculating material
reduces the average velocity of material in the plume
to (close to) zero. Manual inspection of the movie from
high-speed filming shows that there is indeed evidence of
recirculation occurring in this area of the plume, in the
form of clouds of particles observed moving towards the
nozzle, giving us confidence in this result. The RMS
velocity distribution (Figure 6(b)) is broadly similar, but
with the low velocity region below the nozzle being less
well defined. This is to be expected as the RMS process
eliminates any negative (upwards) velocities present in
the recirculation zone.

The 95th percentile estimated velocity heat map
(Figure 6(c)) is similar to the average velocity heat
map in that there is a lower velocity core of material
surrounded by a higher velocity skin, with the lowest
estimated velocities again being in the inner region of the
topmost 25 to 33 pct of the atomization plume. In the
5th percentile estimated velocity heat map (Figure 6(d)),
negative velocity and low positive velocity estimations
are seen to be present over the entire atomization plume
area, although as can be seen from Figure 3(b), the
number of detections of negative velocity is low in the
bottom half of the atomization plume. The highest
magnitude negative flow is found in the two lobes on the
margin of the melt plume in the first 1 to 1.5 nozzle
diameters downstream from the melt outlet. Some
caution should be exercised here as this is the region
in which the plume expands from nozzle width to its full
lateral width, wherein sideways movement of an
obliquely orientated feature will produce a negative
velocity estimation. However, the large number of
negative velocity detections (Figure 3(b)) in this region
together with the high average correlation coefficient
with which the matches are made (Figure 4(b)) led us to
believe that the majority of these negative velocity
matches are genuine. This view is confirmed by careful
observation of the original high-speed video. Lower
down in the atomization plume the flow of the melt is
expected to be directed downwards, i.e., with positive
velocity. Therefore, it is hypothesized that the small
number (Figure 3(b)) of negative velocities seen in the
5th percentile estimated velocity heat map are due to
localized turbulence in the atomization plume.

The recirculation zone is often depicted as a region of
stable recirculation below the melt nozzle, with counter
rotating cells that move downwards with the gas at the
margin of the plume and return upwards in line with the
melt nozzle bore. This then spreads radially outwards
across the melt nozzle tip, thus giving rise to the

important melt pre-filming. Such a view of the recircu-
lation zone is supported by modeling studies such as
those performed by Anderson and Ting,[23] albeit in
gas-only flow due to the computational difficulty in
performing two-fluid simulations. However, neither the
velocity data nor direct observation of the high-speed
filming appears to support this view. A well-defined
recirculation pattern would lead to a clear delineation
between materials with a negative velocity below the
central bore of the melt nozzle and material with a
positive (downwards) velocity towards the margins of
the recirculation zone. Instead, we see a region in which
the average velocity is near zero across the recirculation
zone, which in the video appears as a rather chaotic
motion of the melt, sometimes directed with the gas flow
direction, sometimes against it. Moreover, the regions of
maximum negative velocity are the two lobes below and
somewhat to the sides of the melt nozzle as the melt
plume expands to full width.
To explore this further we plot in Figure 7 two

relative frequency histograms. One of these is the
distribution of all the individual velocity determinations
made, while the other is the distribution after spatial
averaging, that is it represents the distribution of the
velocity magnitudes depicted in the heat map given in
Figure 6(a). The spatially averaged curve is thus based
upon 169,036 points, this being the number of unique
locations at which at least one velocity estimation was
made. By way of comparison, the curve for the
non-averaged data is based upon 13,958,823 points,
this being the total number of velocity estimations made,
as given in Table C1 (Appendix C). What is clear from
the figure is that while ~6.5 pct of total number of
velocity estimations are negative, the number of loca-
tions where the average velocity is negative is sufficiently
small (0.16 pct) as to be insignificant. This argues
strongly against there being a stable recirculation pat-
tern as observed in gas-only flow. If such a pattern were
to be present over periods comparable to the filming
interval (1.7916 seconds), the negative velocity of the
upward moving plume would be expected to be
observed in the average velocity map, and this is not

Fig. 7—Estimated velocity relative frequency distribution, with and
without averaging by location (Color figure online).
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the case. However, clouds of particles with a negative
velocity have been observed moving in an upwards
direction (i.e., towards the nozzle) over much shorter
time periods, of the order of 12 frames, which equates to
0.75 milliseconds.

Consequently, we conclude that while recirculation
certainly does occur during two-fluid atomization, this
does not occur in the steady, well-defined manner
observed in gas-only flow, being instead chaotic in
nature. However, the size of the recirculation zone is
broadly in line with estimates from computational
modeling reported by Anderson and Ting,[23] and
Schlieren imaging studies under conditions of gas-only
flow published by Mates and Settles.[15] Expansion of
the atomizing gas followed by recompression results in a
high-pressure stagnation point, which is normally con-
sidered to be the termination of the recirculation zone.
Typically this feature is placed around two nozzle
diameters downstream from the melt outlet, a location
which is consistent with the termination of very low
average velocity in the Figure 6(a).

The other feature that is most striking in the velocity
maps presented here is the relatively low velocity of the
atomized particles, which even on the periphery of the
melt spray cone is only of the order of 30 m s�1, andmuch
less in the center of the spray cone. This result is consistent
with the point estimate published by Mullis et al.[13] for
material within a high-pressure gas atomization plume,
which was also of order 30 m s�1. In contrast, the gas
used to break up the molten metal into droplets will be
supersonic. For an inlet gas pressure of 2.6 MPa, isen-
tropic flow theory would predict that the exit velocity of a
diatomic gas at the jet will be Mach 2.78. At room
temperature, this would equate to ~930 m s�1, although
under adiabatic expansion the gas would cool to around
0.48 of its pre-expansion absolute temperature, lowering
the velocity of the gas, which has been pre-heated to
473 Kprior to expansion, to around 831 m s�1. The large
difference between gas velocity at the point of discharge
and the velocity of molten metal droplets or clouds of
molten metal droplets means that very little of the
momentum and kinetic energy in the gas is transferred
to the molten metal. With a gas mass flow of 0.35 kg s�1,
the power and momentum flux in the gas stream are
120.8 kW and 290 kg m s�2. The mass flow rate for the
melt is 0.25 kg s�1 and, with an RMS and mean velocity
of 12.77 and 9.96 m s�1, respectively, the corresponding
power and momentum flux in the melt are 20.4 W and
2.49 kg m s�2. Consequently, the efficiency of the atomi-
zer in transferring momentum from the gas to the melt is
estimated at 0.86 pct, while the corresponding efficiency
in transferring kinetic energy from the gas to the melt is
0.017 pct. Interestingly, this latter value is of the same
order as the theoretical efficiency for converting kinetic
energy into embodied surface energy within the powder.

The results presented here shed considerable new light
on the gas atomization process, and particularly on its
low efficiency and wide particle size distribution. Even at
the margin of the melt plume, where the melt is in direct
contact with the supersonic gas, the velocity at which the
melt is observed to stream away from the nozzle is only

around 4 pct of that of the gas velocity. This in turn leads
to a very low calculated efficiency for the transfer of
kinetic energy from the gas to the melt, determined in
this case as 0.017 pct. Moreover, given the distribution of
velocities within the atomization plume, the wide spread
in the PSD of powders produced by gas atomization can
also be rationalized. In particular, much of the melt
plume appears to be relatively well shielded from the gas,
wherein we speculate that primary atomization on the
margins of the plume leads to relatively fine ligaments
being produced to feed into the secondary atomization
zone. Conversely, much coarser ligaments would be
produced in the interior of the plume, with these size
differences persisting through secondary atomization.

VII. CONCLUSIONS

A computer vision algorithm has been developed to
process high-speed photography images of the gas
atomization process for the purpose of estimating local
velocities within the melt plume. The analysis method
produces comparable velocity estimations for a wide
range of tracking settings, thereby being demonstrably
insensitive to the precise settings chosen for tracking.
The velocity estimates thus obtained are consistent with
the very limited such data obtained in previous studies.
However, relative to the gas velocity, � 831 m s�1,
maximum velocities in the melt plume are very low
(< 35 m s�1). Consequently, the efficiency of kinetic
energy transfer between gas and melt is estimated to be
< 0.02 pct. Moreover, the distribution of velocities
within the plume is extremely heterogeneous, with the
interior of the plume effectively being shielded from the
gas by the melt on the plume margins, potentially
accounting for the wide spread in the PSD of powders
produced by gas atomization. In summary, we believe
that the ability to produce spatially resolved velocity
maps for the second fluid in a high-pressure gas
atomization plume opens up a new avenue of research
in gas atomization. Not only can such maps help explain
common features of the powder size distribution of gas
atomized powders, they give a direct means of quanti-
fying the efficiency of the energy and momentum
transfer in situ. In regard to this latter point, velocity
mapping could also be used to assess the effect of design
modifications in improving the efficiency of energy
transfer between the gas and the melt.
As an aside we also note that the velocity determi-

nation routines developed here could have wider
application to other types of atomization processes in
which dense clouds of particles are formed. One such
application would be to spray drying. As far as we can
envisage, depending upon the illumination used, the
only potential change is that we would need to search
for dark clouds of particles against a lighter back-
ground, wherein we would be searching for a light-
to-dark density gradient to detect the leading edge of a
cluster of particles, rather than a dark-to-light density
gradient.
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APPENDIX A: DETAILED, TECHNICAL
DESCRIPTION OF THE COMPUTER VISION

ALGORITHM

The images from the high-speed camera are consid-
ered to consist of a matrix of grayscale values with a
width of i_width and a height of i_height. The location of
each pixel is denoted by a row index of j1 and a column
index of j2, using the standard matrix notation of
labeling rows first (from top downwards) followed by
columns (from left to right). Starting from the first
frame in the sequence, pairs of images, which in general
we will denote as frames N and N+1, are analyzed to
identify dominant features in frame N and track these to
frame N+1, in order to determine the displacement
between frames. Starting in the top left corner of image

N, at pixel j1 = 1 and j2 = 1, a one pixel wide vertical
window of height win_size is assessed. The maximum
and minimum grayscale values of the pixels within this
window are identified and, if the difference between the
maximum and minimum is greater than min_dens_diff,
the grayscale density gradient within the window is
computed using a linear regression function. If the
grayscale density gradient within this vertical window
exceeds a threshold value, slope_thresh, then a search is
initiated, advancing the vertical window down the
image, one pixel at a time, a distance of peak_search_-
win, to find the location at which the grayscale density
gradient is at a local maximum. Once this search has
been completed, the (j1, j2) coordinate of the location of
that maximum is stored.
The entire column is processed in this manner,

advancing downwards (to a maximum of j1 = i_height
� (peak_search_win + win_size), searching for grayscale
density gradients. When a density gradient that meets
the min_dens_diff and slope_thresh requirements is
found, we then search for and store the location of its
local maximum value. The next column is then pro-
cessed, and the process of searching for these local
maxima repeated until the column i_width is reached. In
Figure 1(a), all of the local maxima in the grayscale
density gradient identified by the computer vision
algorithm in the image are highlighted (the highlighting
width in this and following figures has been tripled from
one pixel to three pixels wide, this is for illustrative
purposes only).
For all the locations in image N where a grayscale

density gradient meets the search criteria, a search is
initiated in image N+1 for a grayscale density gradient
similar to that found in image N. The search starts in the
same location as the local maximum found in image N,
and extends upwards in the same column for a distance
of upwa_search_win and downwards in the same column
for a distance of down_search_win. If a negative density
gradient (i.e., light to dark) is encountered that is less
than neg_slope_thresh, then it is assumed that a better
match will not be found. In that case, if the search is
currently proceeding in an upwards direction, the
direction is switched to downwards, and if the search
direction is currently downwards, the search will end.
During the search for the best match in image N+1,

the quality of the match to the grayscale density gradient
found in image N is evaluated at each search location.
Two methods have been evaluated to do this. For the
first option, a correlation coefficient between the win-
dow of pixels in image N and the potentially matching
window of pixels in image N+1 is computed. A match
is not considered to have been made unless the corre-
lation coefficient exceeds the threshold value of corr_-
coeff_thresh. Subject to exceeding this threshold, and the
search being within the bounds of upwa_search_win and
down_search_win, the location of the window in image
N+1 with the highest correlation coefficient to the
corresponding window in image N is stored as the best
match. For the second option, the process of finding the
best match is similar, but with slightly different criteria.
Instead of assessing the quality of match by calculating a
correlation coefficient, the grayscale density gradient at
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each location is calculated exactly as was done in image
N. A match in image N+1 is not considered to have
been made unless the grayscale density gradient found in
image N+1 is within a defined tolerance, max_diff, of
the grayscale density gradient found in image N. Results
using both methods are very similar, which gives us
confidence that features within the atomization plume
are being correctly identified and tracked. By manually
checking a large number of images and the associated
matches made by the computer vision algorithm, it
appears that the correlation method generates signifi-
cantly more matches without adversely impacting
robustness of the tracking process. Therefore, the
correlation method has been adopted for all of the
results presented here. Figure 1(b) shows an image
N+1, with highlighting to indicate the tracked loca-
tions of the grayscale density gradients previously found
in image N, and shown in Figure 1(a).

Grayscale density gradient features used to estimate
velocity should preferably be prominent, so as to have a
high probability of persisting from image N to image
N+1, thereby improving the robustness of the results
obtained and reducing false matches in image N+1.
However, the method described above sometimes iden-
tifies grayscale density gradient features that are only a
single pixel wide or a few pixels in width. Using data
from density gradient features that are only a few pixels

wide is considered likely to reduce the robustness of the
analysis. Therefore, once the identification and tracking
processes have been completed on an image pair, we
include a filtering process that removes identified fea-
tures that are below a minimum length, min_len. More-
over, identified features are also sometimes found to
contain significant vertical steps along the length of the
feature. To ensure that features used for velocity
estimation are reasonably continuous, filtering is
employed to restrict the maximum vertical step, max_-
vert_step, between any given pixel and the neighboring
pixel in the next column of the same feature. Figure A1
shows an example of the parameters min_len and
max_vert_step being applied to density gradients. For
features that are sufficiently long, this type of filtering
means that where there are vertical steps that exceed
max_vert_step, the feature will be broken up into two or
more sections, and any sections below min_len will then
be discarded. In Figures 2(a) and (b), the filtered data
from Figures 1(a) and (b) are shown, from which it can
be seen that some of the features that were identified and
tracked have been excluded. Figure 2(a) shows image N,
while Figure 2(b) shows image N+1. In both images,
the locations of density gradient features identified in
image N are highlighted in green, while the locations of
density gradient features tracked in image N+1 are
highlighted in red. When the computer vision algorithm
has analyzed a pair of images, N and N+1, the process
is iterated, with imageN+1 becoming imageN, until all
of the images available have been analyzed.

APPENDIX B: DESCRIPTION
OF THE COMPUTER VISION ALGORITHM

PARAMETERS

i_height and i_width – These parameters are the height
and width, in units of pixels, of the images to be
processed by the computer vision algorithm.
win_size – This is the height, in units of pixels, of the

vertical window over which the computer vision algo-
rithm assesses the grayscale density gradient to deter-
mine if a potentially trackable density gradient exists at
location j1, j2 within image N. The vertical window is
always one pixel wide, and so there is no setting for
window width.
min_dens_diff – This is the minimum grayscale density

difference between the brightest pixel and the darkest
pixel in the vertical window when searching for track-
able grayscale density gradients in image N. If this
difference is exceeded and the minimum value for
grayscale density gradient (slope_thresh) is also
exceeded, then a search is initiated for a local grayscale
density gradient maximum.
slope_thresh – This is the minimum value for grayscale

density gradient when searching for trackable grayscale
density gradients in image N. If the setting for this
parameter is exceeded and the minimum value for
grayscale density difference (min_dens_diff) is also
exceeded, then a search is initiated for a local grayscale
density gradient maximum.

Fig. A1—An example of the max_vert_step (a) and min_len (b)
parameters being applied to a density gradient feature. The location of
the density gradient feature in frame N is highlighted in green, while
the new tracked location in frame N+1 is highlighted in red. The
max_vert_step parameter is shown being applied to the two right-hand
most density gradients from frame N+1 (Color figure online).
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peak_search_win – Once the existence of a grayscale
density gradient in image N has been determined (via
min_dens_diff and slope_thresh), this parameter is the
distance, in units of pixels, to search for the local
maximum of that grayscale density gradient. As the
search for trackable grayscale density gradients proceeds
from the top to the bottom of each column in image N,
the maximum distance to search, peak_search_win, is
applied in a downwards direction from the location
where the min_dens_diff and slope_thresh parameters
were first satisfied.

upwa_search_win – This parameter is the distance, in
units of pixels, to search upwards (towards the melt
nozzle) for a matching grayscale density gradient in
image N+1. The search for a matching grayscale
density gradient in image N+1 commences at the j1, j2
location where the grayscale density gradient was
recorded to be at a local maximum in image N.
Allowing the computer vision algorithm to search
upwards as well as downwards allows for the fact that
a small recirculation zone exists close to the melt nozzle,
where clouds of atomized material are sometimes
observed moving towards, rather than away from the
melt nozzle.

down_search_win – This parameter is the distance, in
units of pixels, to search downwards (away from the
melt nozzle) for a matching grayscale density gradient in
image N+1. This parameter is similar to parameter
upwa_search_win, in that it constrains the distance that
the computer vision algorithm can search for a matching
grayscale density gradient in image N+1.

neg_slope_thresh – When searching for trackable
grayscale density gradients in image N, the computer
vision algorithm searches for positive gradients (dark to
light). Therefore, if a negative density gradient (light to
dark) is encountered when searching for a matching
grayscale density gradient in image N+1, it is assumed
that continuing with the search will not yield a match, or
if a match has already been encountered, a better match
will not be found. Therefore, in the case that the search
direction is proceeding in an upwards direction towards
the limit specified by upwa_search_win, the search
direction is switched to downwards. If the search
direction is proceeding in a downwards direction when
a negative grayscale density gradient is encountered,
then the search for a matching grayscale density
gradient is terminated.

corr_coeff_thresh – When the computer vision algo-
rithm is set to find matches in image N+1 using
correlation coefficient as the matching method, this
parameter is used to set the minimum correlation
coefficient between the grayscale density gradient found
in image N and the grayscale density gradient found in
image N+1. If the correlation coefficient between the
grayscale density gradients found in image N and N+1
does not exceed the value of corr_coeff_thresh, then the
grayscale density gradient found in image N+1 is not
recorded as a match.

max_diff - When the computer vision algorithm is set
to find matches in image N+1 using grayscale density
gradient as the matching criteria, max_diff is the
maximum permissible difference between the grayscale

density gradient found in image N and the grayscale
density gradient found in image N+1. For example,
when max_diff is set to a value of 0.25, if the grayscale
density gradient found in image N+1 is not within ±25
pct of the grayscale density gradient found in image N,
then a match is not recorded. Note that the use of
max_diff is an alternative method for finding matches in
image N+1, and the results presented herein were
derived from matches found using corr_coeff_thresh.
max_vert_step - This parameter is used in the filtering

stage of the computer vision algorithm to improve the
robustness of the results by identifying grayscale density
gradient features that are discontinuous. Discontinuous
density gradient features are eliminated by searching in
the column to the right of each density gradient match
found in image N+1 to ascertain if another density
gradient has been recorded in close proximity. The
max_vert_step parameter is used to set the vertical
distance, in pixels, that the computer vision algorithm
checks upwards and downwards in the next column to
determine if another density gradient has been recorded
in close proximity. The computer vision algorithm keeps
a log of those density gradients that are part of a
continuous density gradient feature.
min_len – Once the computer vision algorithm has

determined which density gradients are part of a
continuous density gradient feature (see description of
the max_vert_step parameter), and the horizontal width,
in pixels, that each continuous density gradient feature
spans, the parameter min_len is used to filter the density
gradients. All density gradients that are not part of a
density gradient feature that is at least min_len pixels
wide are discarded. This improves the robustness of the
computer vision algorithm by removing small density
gradient features that are only a single pixel wide or
span only a few pixels in width.

APPENDIX C: METHODOLOGY FOR SETTING
THE UPWA_SEARCH_WIN

AND DOWN_SEARCH_WIN PARAMETERS

One of the key parameters is the search range used to
track features. Changing the settings for upwa_search_-
win and down_search_win has the effect of varying the
range over which the computer vision algorithm is able
to search for matching density gradients in image N+1.
In Figure C1(a), the relative frequency distribution of
the displacement estimations is presented for different
search range settings in image N+1. The datasets have
been filtered to remove any displacement estimations
generated in the first 79 rows of pixels. Filtering was
necessary to exclude displacement estimations resulting
from the omnipresent density gradient generated by the
edge of the nozzle. From these datasets, it can be seen
that the relative frequency distributions obtained are
very similar, even when the settings used for the tracking
stage of the image analysis process are significantly
different. The lack of sensitivity to the settings used in
the tracking stage of the analysis process gives confi-
dence that the computer vision algorithm produces
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comparable results when these settings are varied and is
therefore able to track density gradients in a way that is
reasonably independent of the precise tracking settings
used.

At the maximum and minimum estimated displace-
ments, the relative frequency distributions show a slight
increase. This result is seen in all of the relative
frequency distributions, although in some cases the
extremely low frequencies at the maximum and mini-
mum estimated displacements conceal its presence. The
slight increase in detection frequency at the limits of the
search window consists of two types of match. Firstly,
there are instances where the match criteria are met
(minimum correlation coefficient or within the allowed
tolerance for gradient matching), but the genuine best
match is located outside the range of displacements
where the computer vision algorithm is permitted to
search. Secondly, if the density gradient found in image
N dissipates or disperses, and so is not present in image
N+1, a false match may be found that meets the
criteria (minimum correlation coefficient or within the
allowed tolerance for gradient matching). However, if
the best false match is located outside the search range,
the observed spike in detections at the limit of the search
window will be generated.

In either of these situations, a small spike in matches
would be expected at the maximum and minimum
estimated displacements. When the allowable search
range is set with relatively narrow limits, the first
scenario would best explain the spike in matches at the
maximum and minimum estimated displacements.
When the allowable search range is set with relatively
wide limits, the second scenario would best explain the
spike in matches at the maximum and minimum
estimated displacements. As it is necessary to set an
allowable search range for the tracking stage, it is
considered that this type of response can never be totally
eliminated when using a computer vision algorithm of
this design to extract displacement estimations from
high-speed camera images. It is important that the
allowable search range is set correctly, so that genuine
matches are not missed entirely or mislocated by a few
pixels, and so that false matches to unrelated density
gradients are minimized. This is achieved by manually
inspecting the output images (e.g., Figure 2) and adjust-
ing the computer vision algorithm’s density gradient
identification and tracking settings as appropriate.
In Figure C1(b), the dataset presented in

Figure C1(a) is replotted as an un-normalized frequency
distribution to indicate the numbers of displacement
estimations made for different tracking settings. As
before, displacement estimations generated in the first 79
rows of pixels have been filtered out. When the data are
plotted in this un-normalized form, it can be seen that
by allowing the computer vision algorithm the greatest
freedom (� 50 to + 100 range) in the tracking phase of
the image analysis process, the peak is reduced in height.
In Table C1, the total number of displacement estima-
tions resulting from different tracking settings (different
allowable search ranges) is shown. From the data in
Table C1, it is apparent that allowing the computer
vision algorithm to search a greater range of displace-
ments in the tracking stage of the process does not
necessarily result in a greater number of displacement
estimations. Indeed, generally the trend is for fewer
detections as the search range is extended in image
N+1.
At first it may seem counterintuitive that allowing the

computer vision algorithm a significantly greater degree
of freedom in the tracking stage of image analysis can
lead to fewer displacement estimations. However, when
the analysis process is considered in its entirety, an
explanation becomes apparent. By allowing the

Fig. C1—(a) Relative and (b) absolute frequency distribution of
displacement estimations using different allowable search ranges in
image N+1 (Color figure online).

Table C1. Number of Displacement Estimations Resulting

from Different Allowable Search Ranges (Excluding

Displacement Estimations from the First 79 Rows of Pixels)

Allowable Search Range in
Image N + 1

Total Number of Displace-
ment Estimations

� 5 to + 25 Pixels 13958823
� 10 to + 20 Pixels 12766277
� 15 to + 25 Pixels 14840837
� 15 to + 30 Pixels 14711192
� 50 to + 58 Pixels 12210456
� 50 to + 100 Pixels 11376766
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computer vision algorithm greater freedom, the best
matches to the density gradient may be distributed over a
wider range of displacements (the best matches may also
include false matches). Subsequently, in the filtering stage
of the analysis, the vertical step constraint applies. When
the vertical step constraint is applied, if the matches for
neighboring density gradients in image N+1 are dis-
tributed over a greater vertical range than the step
constraint allows, then the density gradient feature will
be broken up into two or more sections. A minimum
length constraint also applies in the filtering stage of the
analysis. Consequently, if the step constraint results in the
density gradient feature being broken up into two ormore
sections, any section that falls short of the minimum
length constraint will be discarded, thereby reducing the
total number of displacement estimations in the analysis
output.

Inspecting the output images (see Figures 2(a) and (b)
for an example of output images) is an extremely
labor-intensive task, and so it has not been possible to
manually assess all of the image pairs for the presence of
genuine and false matches. However, after checking a
sample of output images, it appears that genuine matches
in image N+1 occur in the approximate displacement
range of � 5 to +25 pixels from the density gradient
feature originally identified in image N. Therefore, in the
results and analysis that are presented, data are shown for
image analysis settings in which the computer vision
algorithmwas constrained to the range of -5 to+25pixels
when searching for matches in image N+1.

APPENDIX D: METHODOLOGY FOR SETTING
THE COMPUTER VISION ALGORITHM

PARAMETERS (EXCLUDING PARAMETERS
UPWA_SEARCH_WIN

AND DOWN_SEARCH_WIN)

i_height and i_width – These parameters are both set
according to the size of the images captured by the
high-speed camera. In order to minimize the time
required for the computer vision algorithm to process
the images, it is advantageous to crop images before-
hand if necessary, so that they do not contain dark areas
with no information relating to the atomization process.

win_size – This parameter was set after inspecting a
sample of the images to determine the approximate
vertical scale and vertical spacing of the clouds of
atomized material from which it was hoped to extract
displacement and velocity information. The parameter
was set so that the size of the window was large enough
to identify a typical dark-to-light transition, but not so
large as to span a dark-light-dark transition. Testing
using different win_size values was then undertaken to
ensure that the setting was effective in identifying the
density gradient features that are typically present.

min_dens_diff and slope_thresh – These parameters
were set by experimentation with a range of different
settings, and in conjunction with choosing an appropri-
ate setting for the win_size parameter. In setting the
values for these parameters, it was necessary to find a

value that identified as many density gradients as
possible, while minimizing the false detections that
would result from a setting that was too sensitive.
peak_search_win – This parameter was set using similar

considerations to those used to set the parameterwin_size.
upwa_search_win and down_search_win – The choice

of settings used for these parameters is discussed in
detail within Appendix C.
neg_slope_thresh – The main function of this param-

eter is to reduce the time taken for the computer vision
algorithm to process the images, by curtailing the search
for a matching density gradient in image N+1 when a
match is unlikely to be found or a match better than the
best match already identified is unlikely to be found. It
was considered that provided the value was negative, the
setting of this parameter would most likely have very
little impact on the results obtained. Consequently, the
value of this parameter was set to a small negative value
without trialing a range of values.
corr_coeff_thresh and max_diff – These parameters

were set by experimenting with different values of
corr_coeff_thresh and max_diff and inspecting the
graphical outputs showing the locations of matching
density gradients identified in image N+1.
max_vert_step and min_len – These parameters were

set to optimize the robustness of the computer vision
algorithm through elimination of discontinuous density
gradient features and density gradient features that are
only a few pixels wide. The parameter values were
chosen by inspecting the graphical outputs showing the
locations of density gradient features prior to any
filtering. The effect of the filtering process using param-
eters max_vert_step and min_len can be seen by com-
paring Figures 1(a) and (b) (pre-filtering) with
Figures 2(a) and (b) (post-filtering).

APPENDIX E: THE SETTINGS USED
FOR THE COMPUTER VISION ALGORITHM

PARAMETERS

See Table E1.

Table E1. Values of Image Analysis Parameters Used in the

Computer Vision Algorithm (See Also Appendix F)

Image Analysis Variable Value Used

i_height 800
i_width 312
win_size 26
min_dens_diff 0.2
slope_thresh 0.005
peak_search_win 30
upwa_search_win 5
down_search_win 25
neg_slope_thresh � 0.001
corr_coeff_thresh 0.9
max_diff 0.25
min_len 5
max_vert_step 3
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APPENDIX F: NOTE REGARDING GRAYSCALE
VALUES AND THE SETTING OF PARAMETERS

The high-speed camera used for this research records
at a grayscale resolution of 8 bits, yielding integer values
of 0 to 255, where 0 corresponds to the darkest possible
grayscale value and 255 corresponds to the lightest
possible grayscale value. In the computer vision algo-
rithm, pixel grayscale values are read in and processed
as double-precision floating-point values. An 8-bit
integer value of 0 is equal to a floating-point value of
0, and an 8-bit integer value of 255 is equal to a
floating-point value of 1. Therefore, setting the min_-
dens_diff parameter to a floating-point grayscale value
of 0.2 corresponds to a minimum 8-bit integer grayscale
difference of 51 between the darkest and lightest pixels
in the vertical window. Similarly, setting of the
slope_thresh parameter to a floating-point value of
0.005 corresponds to a slope that is the equivalent of
an 8-bit integer grayscale density difference of approx-
imately 33 over a displacement (win_size) of 26 pixels.
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