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ABSTRACT1

Quantum probability, first developed in theoretical physics, has recently been successfully used in2

cognitive psychology to model data from experiments that previously resisted effective modelling3

by classical methods. This has led to the development of choice models based on quantum prob-4

ability, which have greater flexibility than standard models due to the implementation of complex5

numbers through, for example, complex phases or ‘quantum rotations’. This paper tests whether6

these new models can also capture choice modification under implicit ‘changing perspectives’ in7

choice contexts with salient moral attributes. We apply these models to two distinctly different8

case-studies. In the first, respondents have to make choices between route alternatives with vari-9

able ‘concrete’ and ‘moral’ attributes - Chorus et al. (2018)’s ‘taboo trade-off’ between time-cost10

and deaths-injuries. The second study investigates how an individual weighs wages and commut-11

ing times for themselves relative to the wages and commuting times for their partner. Under both12

scenarios, we find that the flexibility provided by quantum choice models allows them to accu-13

rately capture and formally explain choices across the differing contexts.14

15

Keywords: Quantum probability; moral choice; travel behaviour16

1. INTRODUCTION17

Moral choice scenarios can be summarised as those where the choices or actions a decision-maker18

takes could negatively impact other individuals. Thus, to the decision-maker, the choice alter-19

natives may to some extent be categorised as ‘right’ or ‘wrong’, depending on how serious (and20

possibly how likely) the consequences are. As a result, the associated choices can perhaps be more21

complex as they do not involve straightforward trade-offs between rather concrete attributes of al-22

ternatives. For example, a decision-maker may not choose the alternative that they would choose23

based on more attractive concrete features as they believe it to be an overall morally contentious24

option. Alternatively, a set of options may all have negative features, where different schools of25

moral thought suggest different actions should be taken (for example, Awad et al. (2020) discuss26

country-level variations in decision-making in ‘moral machine’ choice tasks).27

While moral choice behaviour has received much attention in economics and psychology, it is28

rarely considered in the choice modelling literature (see Chorus 2015 for a detailed discussion).29

This is despite the fact that many typical experiments conducted to understand or interpret an indi-30

vidual’s preferences in moral choice scenarios use paradigms such as variations of the well-known31

trolley problem (where a ‘runaway trolley’ has two possible paths, both of which will result in the32

death of some individual(s), and the decision-maker must choose who to save), for which a precise33

understanding of the trade-offs that are being made could be obtained using choice models. This34

is perhaps due to the fact that an individual’s moral preferences are difficult to investigate outside35

of the laboratory, with typical experimental methods for examining moral choice scenarios often36

suffering from low external validity (Bauman et al., 2014). However, more recently, moral choice37

behaviour has become more prominent in the travel behaviour modelling community through, for38

example, the reinvention of the trolley problem as a self-driving car problem (Awad et al., 2018).39

Thus far, there has not been much consideration given to the types of choice models used for the40

modelling of such scenarios, despite the wide range of theoretical explanations for moral behaviour41

that have been proposed (Chorus, 2015). However, some steps towards the development of choice42

models specifically for moral choice contexts have been made (Chorus et al., 2018).43

In this paper, we specifically look at models based on quantum probability theory. These have44
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not yet been applied to moral choice scenarios, despite the adoption of such methods ‘allowing45

for a re-examination of the challenge of formalising psychological concepts of conflict, ambiguity,46

and uncertainty’ (Wang et al., 2013). Quantum probability theory has recently made a significant47

impact in cognitive psychology (Bruza et al., 2015). This impact is in part due to the underly-48

ing logic of quantum probability theory which revealed a fundamental lack of distributivity of49

propositions concerning non-compatible features of an observed system (Birkhoff and Von Neu-50

mann, 1936). This key difference between classical and quantum logic reveals that under quan-51

tum theory, the law of probability following the distributivity of ‘and’ and ‘or’ of propositions –52

A∧(B∨C) = (A∧B)∨(A∧C) – may fail to hold (for a detailed example, see Hancock et al. 2020).53

Another essential difference follows from the description of a system by using state vectors with54

complex-valued components which entail the occurrence of interference effects when such states55

are superposed, famously leading to the paradoxical state of Schrödinger’s cat being both dead and56

alive at the same time in a historical thought experiment devised to point out the consequences57

of the entanglement of the quantum system and its observer (Schrödinger, 1935). In effect, the58

measurement of a property of a system occurs differently, namely by applying projection operators59

on the state vector of a system which inherently ‘changes the system by making an observation’ -60

as opposed to simply reading of the value of a pre-existent property of the system. Crucially, these61

features mean that the adoption of quantum probability theory allows for a powerful and elegant62

framework for modelling and understanding many ‘paradoxical’ findings which become ‘intuitive’63

(Wang et al., 2013), such as probability judgement errors (Busemeyer et al., 2011), question order-64

ing effects (Trueblood and Busemeyer, 2011) and violations of the ‘sure thing principle’ (Pothos65

and Busemeyer, 2009; Broekaert et al., 2020). A classic example of a probability judgement error66

is given by Tversky and Kahneman (1983), who found that participants, after reading ‘Linda was67

a philosophy major. She is bright and concerned with issues of discrimination and social justice’,68

were more likely to agree with the statement ‘Linda is a feminist bank teller’ than the statement69

‘Linda is a bank teller’. This subjective assessment clearly contradicts logical set theory in which70

the category “feminist bank teller" is a subset of the category “bank teller", and hence on proba-71

bilistic grounds of set membership, this should lead to a lower association of Linda with the former72

category.73

With, for example, ordering effects also frequently observed in choice modelling applications,74

it is unsurprising that quantum models have also since made the transition into choice modelling75

(Lipovetsky, 2018). Furthermore, quantum models can be used to accurately capture the ‘change of76

decision context and mental state’ when moving between choices made under revealed preference77

and stated preference settings (Yu and Jayakrishnan, 2018). Additionally, it has been demonstrated78

that quantum probability theory can be implemented into choice models to accurately understand79

route choice problems as well as best-worst choice behaviour in the context of alternative routes80

(Hancock et al., 2020). Thus there appears to be ample scope for further developments of quantum81

choice models, with our previous development of the notion of a ‘quantum rotation’ within a82

choice model providing useful transitions across choice contexts. The aim of this paper is to build83

on work presented in Hancock et al. (2020), which focussed solely on typical travel behaviour84

data, by testing these models on more complex choice scenarios. We specifically test whether85

these rotations and other quantum choice model features can equivalently be used to accurately86

capture changes in choice context within moral choice scenarios.187

1A prior version of a formal model using rotations in choice scenarios with moral trade-off was developed by
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We apply the models to two very different datasets. The first allows us to test whether quantum88

choice models can be used to capture the impact of the presence of a ‘taboo trade-off’ (Chorus89

et al., 2018) involving trade-offs between ‘moral’ and ‘concrete’ features.2 The moral attributes of90

the route alternatives appeal to the personal sense of right versus wrong grounded in the decision-91

maker’s socio-cultural and philosophical or religious association - like the personal answerability92

or blame for opting for a route alternative with a higher expected number of deaths or severely93

injured travellers. The concrete attributes on the other hand call for a more pragmatic material94

utility which a priori does not ponder rightness or wrongness of the choice - like for instance the95

additional time on a route alternative. It goes without saying that these categories may well be per-96

ceived as intertwined; a faster route alternative with implicit detrimental environmental effects can97

appeal to the decision-maker’s ethical principles. Vice versa, a utilitarian based ethical approach98

held by a decision-maker could result in equating moral attributes with pragmatic features of the99

alternative.100

The second dataset tests whether quantum choice models can be used to capture differences101

between how an individual weighs wage and commuting times for themselves relative to consid-102

ering the wages and commuting times for both their partner and themselves, developed by Swärdh103

and Algers (2009), with descriptions also in Beck and Hess (2016). An aspect of morality is again104

appealed to in this experimental paradigm. The consideration of the partner’s situation may appeal105

to the decision-maker’s empathy or selfishness with respect to the partner, or, a particular balanced106

choice may result from an evaluation of the pragmatic joint utility for the couple.107

The remainder of this paper is organised as follows. Section 2 gives an introduction to quantum108

probability, discusses how it has provided useful explanations for choices with a moral component109

in cognitive psychology, and shows how we mathematically build our quantum choice models.110

Section 3 shows the empirical application to our two moral choice datasets. We finish with some111

conclusions and directions for future research.112

2. THE QUANTUM PROBABILITY APPROACH113

In this section, we first give a basic overview of the quantum probability approach; we refer the114

reader to Khrennikov (2010); Busemeyer and Bruza (2012); Broekaert et al. (2016); Yearsley and115

Busemeyer (2016); Yearsley (2017) for a more extensive coverage on the application of quantum116

theory in decision-making. Next, we in turn look at how quantum probability can be used to capture117

a change in perspective, and how it has been used to explain a number of ‘paradoxical’ phenomena118

in cognitive psychology, some of which have moral components. Finally, we demonstrate how we119

mathematically operationalise the quantum probability approach into the models utilised in this120

paper.121

2.1. Basic features of the approach122

Under quantum models, each choice scenario is represented in a n-dimensional ‘Hilbert’ space,123

which is spanned by a set of n orthonormal (possibly complex) vectors, with one vector for each124

possible choice alternative. In essence, the cognitive process corresponding to the experimen-125

tal paradigm is implemented by performing operations on specifically constructed vectors of the126

Hancock (2019).
2The authors Chorus et al. (2018) have coined the types of attributes as ‘sacred’ and ‘secular’. We have opted to

denominate the attributes by more culturally neutral terms in comparison to Chorus et al. (2018).
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Hilbert space.3 This vector represents the decision-maker’s behavioural belief-action state at a127

given moment in the experimental paradigm, in particular for the present datasets, expressing their128

preferences.129

A basic example of this is given in Fig. (1), where we adapt the Hilbert space to the paradigm130

corresponding to the first dataset (Chorus et al., 2018). A similar example is described in more131

detail in the introduction of Hancock et al. (2020), where an individual is choosing whether to132

commute to work by car or by train.133

Belief

State

Status Quo
1 SQ|

NP|

Z|

ψ | |
SQ

ψ| |
NP

New Policy

1

FIGURE 1 : A schematic representation of the belief state in the geometric quantum-like model for

a binary choice between the ‘New Policy’ or the ‘Status Quo’. The belief state |Z〉 is a superposition

of |NP〉 and |SQ〉, meaning that the decision-maker has a propensity to choose both the ‘New

Policy’ or their ‘Status Quo’. The numerical probabilities of choosing each alternative are obtained

from the complex-valued amplitudes of the projections on the respective axes by squaring the

moduli |ψNP| and |ψSQ|.

The preference of an individual decision-maker is represented by a (normalised) belief state134

vector which is denoted |Z〉. The action of making a choice is represented by a projection from135

the belief state vector onto the vector representing the chosen alternative, i.e. |NP〉 for the ‘New136

Policy’ or |SQ〉 for the ‘Status Quo’, in Fig. (1).137

The projection operations are represented by the dotted lines connecting the belief state (on the138

arc) to the axes orthogonally spanned by the two choice alternatives, resulting in the two respective139

component moduli |ψNP| and |ψSQ|. To be used as probabilities, the outputs of these projection140

processes need to fulfil two properties; a) they need to all be between 0 and 1, and b) they need141

to sum to 1. With the quantum approach, this is achieved by using the squared ‘length’ of each142

projection as the probability for that alternative. Since the state vector is normalised - i.e. of unit143

‘length’ (or modulus) - these two requirements are fulfilled. One can easily verify that with the144

two choices represented by a set of orthonormal vectors, the set of squared ‘length’ projections145

will sum to one according to Pythagoras’ Theorem (see Fig. 1).146

3A Hilbert space is a regular real, or complex-valued, vector space with an inner product and a completeness

property that assures converging limits will exist within the space itself.
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2.2. A change in choice perspective147

In quantum mechanics, two observables of a system are considered incompatible if a measurement148

of one of them influences the outcome of the other. Conversely, two observables are compatible149

if they do not influence each other.4 Thus in the context of our model, if two choices have no150

relation to each other and their respective answers do not impact each other, they are compatible.151

In such cases, the same belief state vector - albeit with different components dedicated to each of152

the choice tasks - can invariably be used for the two tasks. However, if we had two tasks which153

were related to each other by simple variation of some concrete attributes and hence require the154

same components of the belief state vector - then the belief state needs to be updated as well.155

For instance, in repeated choice tasks with only modified attributes of the alternatives, the belief156

state of the decision-maker is updated in line with the cognitive process associated with each new157

choice. Mathematically, the adaptation of the belief state to the different values of the attributes158

is determined by immediate implementation5 in the vector components, Eq. (3), and effectively159

corresponds to a rotation between the two state vectors (Hancock et al., 2020).160

However, ‘incompatible’ choice tasks at a deeper level - when a pair of choices impact each161

other on different components of the belief state - require different belief vectors for each of the162

tasks. To give a more detailed example of such task ‘incompatibility’, consider a scenario where163

the decision-maker has to choose their favourite and least favourite alternative from a set. The164

sensitivities for what constitutes the best alternative may not be equivalent to what constitutes the165

worst. This can be represented in quantum models through different vectors for an alternative being166

the best compared to the same alternative being the worst. To capture the change of perspective167

(considering the best, to considering the worst), a ‘quantum rotation’ is required, which maps168

the belief state vector representing the choice of alternatives as being the best, to the belief state169

vector representing the choice of alternatives as being the worst - and where the projection on170

the respective axes remain with their interpretation of providing the amplitudes for the respective171

alternatives. One can equivalently describe this rotation from a passive perspective in which the172

belief state remains invariant but the basis is rotated in the opposite direction. Hancock et al. (2020)173

have shown that such rotations (in Hilbert space) can capture the difference in the representation174

(value) of an alternative when evaluated as best compared to when evaluated as worst. In this paper,175

we use the same concept of a quantum rotation to capture changes of perspective in moral choice176

scenarios. We also introduce a supplementary method based on inserting complex phases at the177

level of attribute value functions in the belief state vectors to implement an alternative perspective178

operation. We thus assume that choices under moral contexts involve more of a dilemma within179

the deliberation process, with these model extensions capturing this additional process.180

In a given choice context, we assume that an individual would evaluate the scenario differently181

if they were first asked explicitly about the ‘ethical answerability’ of their choice. The presence of a182

salient moral component may lead the decision-maker to a similar implicit intermediate assessment183

and result in the decision-maker considering their choice from a different perspective. In the event184

of such an intermediate assessment of the moral attributes - from an effective change of perspective185

4In case of incompatibility, a Heisenberg uncertainty relation can be derived which states that the product of

the standard deviations of both observables should always be larger or equal to half the expectation value of their

commutator. Compatible observables will hence be represented by commuting operators, see e.g. Griffiths (1994)

section 3.4.
5Note that at this point, in stated preference settings, we make the assumption that previous choices do not impact

the current choice.
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on the choice - the choice proportions for the alternatives will have changed depending on the186

acceptance or dismissal of the moral components (see Fig. 2).187

Belief

State

Status Quo
1 SC|

NP|

Z|

ψ| |
SC

ψ| |
NP

New Policy

1
Ethical

Answerability

Not - Ethical

Answerability

ψ| |
NP

ψ| |
SC

EA|

n-EA|

FIGURE 2 : Schematic representation of making explicit consecutive binary choices under quan-

tum probability theory in the geometric quantum-like model; first the ‘Ethical Answerability’ or

‘Not - Ethical Answerability’ question, followed by ‘New Policy’ or ‘Status Quo’ question. In

this particular illustration, the change of the belief state is shown following a positive outcome

for the ‘Ethical Answerability’ question. While the initial belief state |Z〉 only had some latent

tendency for responding ‘Ethical Answerability’, after the positive outcome, the updated belief

state coincides with the ethical answerability belief state |EA〉 (the curved pink arrow shows the

renormalisation of the belief state after the collapse of |Z〉 onto |EA〉). Note that in this particular

case, the intermediate question results in an increase of the belief support for the choice ‘New

Policy’ on a positive outcome for ‘Ethical Answerability’ since the amplitude norm |ψNP|, in pink,

is larger in our case than the amplitude norm |ψNP|, in black, and the reverse is true for the ‘Status

Quo’ scenario. In the present rotation-based model, we make the assumption that the salient moral

attribute(s) of the alternatives can elicit an implicit questioning that does not entail a collapse of

the belief state but leads to a rotation approaching either towards the |EA〉 or |n-EA〉 belief state.

The rotation induced by implicit questioning thus causes a change of the belief support for both

alternatives SQ and NP compared to the initial belief state |Z〉.

Hence in general, under a quantum model, when a decision-maker makes a choice - albeit im-188

plicit - this will update their belief state. If, for example, they implicitly decide that a particular189

alternative is ethically answerable, their state vector would converge more closely to the ‘Ethical190

Answerability’ vector itself. This results in a change in the ‘lengths’ of projection onto the vec-191

tors representing the choice of the New Policy or the Status Quo alternative. We follow Chorus192

et al. (2018) by defining a new policy as involving a ‘taboo trade-off’ if a decision-maker could193

choose to decrease tax or travel time (a concrete attribute) at the cost of increasing the number194

of injuries or deaths (a moral attribute). Thus, in this example, under choice tasks that feature195

taboo trade-offs, the decision-maker is more likely to choose the new policy if they first decide196

that it is ethically answerable, and is less likely to choose it otherwise. Both tendencies are present197

in the decision-maker’s belief state, hence the implemented rotation for the decision-maker’s im-198

plicit change of perspective results effectively from a weighted combination of the two possible199

positions. The result of this is that quantum models can capture a change in perspective through200
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a quantum rotation, which can be mathematically represented simply by estimating the impact a201

change of basis (passive) - or change of the belief state (active) - has on the ‘lengths’ of projec-202

tions (Sections 3.1.3, 3.2.3). Besides implementing the change of perspective through a quantum203

rotation of the belief state vector, we also implement such a change of projection ‘lengths’ by the204

insertion of a complex phase on the attribute values in the belief states, (Sections 3.1.4, 3.2.4). In205

the latter case, the change of projection ‘length’ results from a constructive or destructive inter-206

ference between the complex summands within each belief state component itself. This complex207

phase method is similar to the more encompassing quantum rotation method in its effect of sum-208

ming complex components but differs in that this interference occurs at the more basal level of209

each attribute itself. Since specific complex phasing can augment the effect of moral attributes in210

the moral choice scenarios, this approach implements a perspective operation by a more detailed211

process than the encompassing effect of a quantum rotation.212

2.3. Quantum theory and formal modelling of moral choices in psychology213

Whilst choice models with a quantum logic framework have not yet been tested on moral choice214

data, there have been a number of applications of quantum logic to experiments for paradigms with215

a moral component (where, for example, decision-makers may make choices that impact a number216

of other individuals) in cognitive psychology. In particular, quantum probability theory has been217

used to explain ‘interference’ effects where an additional decision task impacts the probability of218

a subsequent decision for an action. For example, Busemeyer et al. (2009) tested the impact of ad-219

ditionally asking decision-makers to categorise a digitally modified face - according to pre-learned220

ad-hoc criteria - as ‘good’ or ‘bad’, before choosing how to respond by either a ‘withdraw’ or221

‘attack’ action, and in which a bonus was provided for responding with the action ‘attack’ after222

categorisation ‘bad’, or the action ‘withdraw’ after the category ‘good’, and a penalty otherwise.223

Their study found that the quantum approach could be used to accurately capture the difference in224

action responses with and without the categorisation task. Furthermore, in simulated jury decision-225

making experiments, where participants read strong or weak defences and prosecutions, quantum226

probability theory provided a better account of the ordering effects that were observed relative227

to models based on classical probability (Trueblood and Busemeyer, 2010). Ordering effects ob-228

served when participants state opinions about political figures can also be explained by quantum229

models (Pothos and Busemeyer, 2013). In the context of a ‘taboo trade-off’, where an individual230

can sacrifice ‘moral’ features in favour of ‘concrete’ features, a similar interference may take place231

in that a decision-maker may not wish to appear ‘unethical’ or expose socially undesirable choices.232

Similarly, an individual may consider their own welfare differently if they are also required to con-233

sider the welfare of their partner.6 For this reason, we use quantum models to test for interference234

effects in both of the choice datasets considered in this paper.235

2.4. Mathematical outline for basic quantum choice models236

Whilst the quantum approach provides a convenient structure for capturing phenomena in cognitive237

psychology, its operationalisation into a choice model is less simple. The key component (as238

discussed in detail by Hancock et al. 2020) is that a decision-maker has some ‘belief state’ |Z〉239

6A recent theoretical model by Yilmaz (2019) proposes unitary transformations of the decision-maker’s belief

state based on first-person perspectives on imagined belief states of third-person agents to produce an effective ethical

choice outcome. In contrast, our model implements the decision-maker’s implicit intermediate belief state rotation to

potentially consider their choice from their ethically concerned perspective, or not.
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regarding their preferences over J alternatives presented in the experimental paradigm. When a240

decision-maker makes a choice, their state goes from ‘indefinite’ to ‘definite’, by projecting their241

belief state onto the vector representing the chosen alternative, where we further assume that the242

presented alternatives are mutually exclusive and exhaust all choice possibilities. This means that243

the choice probability, Pr[Alt j], for a specific alternative Alt j, is given by the modulus square of244

the amplitude for that alternative appearing in the decision-maker’s belief state245

Pr[Alt j] = |ψ j|2, (1)

where |Z〉 is a column vector, with |Z〉 = (ψ1 . . .ψ j . . .ψJ)
τ . Since the belief state vector is nor-246

malised, the probabilities for the alternatives add up to 1:247

J

∑
j=1

|ψ j|2 = 1. (2)

Consequently, we must build quantum choice models by developing methods for defining a belief248

state vector based on functions of the attributes of the alternatives. For the applications in this249

paper, we consider an approach based on the ‘quantum amplitude model’, as developed in Hancock250

et al. (2020). The key feature of the quantum amplitude model (QA) is that the amplitudes of251

each alternative are explicitly implemented with the use of some value function. This allows us252

to directly estimate the probabilities with which each alternative is chosen. Whilst a number of253

different value functions can be used, we focus on the use of regret-like functions (Chorus, 2010)254

for the applications in this paper. The amplitude for an alternative i for individual n in choice task255

t is thus defined as:256

ψnti =

(

δQA,i +
J

∑
j 6=i

K

∑
k=1

ln(1+ eβk(xntik−xnt jk))

)

/
√

Nnt , (3)

where j = 1, ...,J is an index across alternatives, k = 1, ...,K is an index across attributes, δQA,i257

are alternative specific constants, βk are attribute-specific weights and N is a normalisation factor.258

This factor, which ensures that the probabilities with which each alternative is chosen sum to one,259

is obtained from the sum of the squared moduli numerators:260

Nnt =
J

∑
i

∣

∣

∣

∣

∣

(

δQA,i +
J

∑
j 6=i

K

∑
k=1

ln(1+ eβk(xntik−xnt jk))

)∣

∣

∣

∣

∣

2

. (4)

Note that given the probabilities with which the different alternatives are chosen are based on261

squaring these amplitudes, the same probabilities will be generated if all amplitudes are multiplied262

by the same factor - as opposed to the addition of the same term. Thus the number of additive263

constants that are identifiable is equal to the number of alternatives. Additionally, the equations264

as presented here imply that the amplitudes are in real-valued space, with operations moving the265

amplitudes into complex space introduced in the following section. Our approach thus makes266

explicit use of complex-valued operations and hence enacts interference effects which cannot be267

obtained in the real-valued trigonometric approach of Lipovetsky (2018). Alternative methods for268

capturing moral features can still use the above implementations, with for example, the use of269

additional constants or separate β -coefficients depending on the choice context.270
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2.5. Quantum model perspective operations for a change in choice context271

We consider two possible extensions (which we label ‘perspective operations’) to the basic quan-272

tum choice models described above, with each extension attempting to capture a ‘change of per-273

spective’ for the taboo or moral trade-off in a different way.274

1. A ‘quantum rotation’ (models QAR-1 and QAR-2). We follow Hancock et al. (2020) in275

using Pauli matrices to implement a rotation operation on the belief state itself. For scenarios276

involving two alternatives, this rotation occurs in a 2-dimensional Hilbert space, with the277

rotation matrix generated by Pauli matrices;278

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (5)

The rotation operator, R, itself - about axis n = (nx,ny,nz) and over angle ϑ - is then given279

by;280

R = e−iϑn·σ , (6)

where n ·σ gives some combination of the Pauli factors, with the restriction that |n|= 1.281

For choice scenarios involving three alternatives, as in the second dataset, we apply two282

consecutive quantum rotations on different pairs of alternatives. Given the importance of283

ordering within quantum models, the choice of pairs and order in which the two rotations284

are made will impact the outcome.285

To apply the rotation, we use the initial belief state, Ψ0, which is simply the vector with286

amplitudes for each alternative using Eq. (3) - i.e. model QA without additional features.287

We then obtain the belief state for the changed perspective, Ψ f , by applying the rotation288

matrix:289

Ψ f = RΨ0. (7)

The rotation thus appropriately adjusts the amplitudes for the different alternatives depending290

on the impact that the change of perspective has on the choice being made. A matrix R with291

zero off-diagonal elements (i.e. if we have n · σ = σz) would result in no change in the292

probabilities with which each alternative is chosen. As a contrast, ϑ = π/2 and n ·σ = σy293

results in the probabilities for a pair of alternatives perfectly swapping.294

We consider two different options for constructing R:295

(a) A rotation, R1, that uses a single estimated parameter. It is based on previous work296

where we used a Hamiltonian approach to quantum modelling (see Hancock et al.297

2020). We implement the rotation with a fixed constant (ϑ = π/2) and modulate it298

with a single parameter (h) that also weights the Pauli matrices:299

R1 = e−i π
2

√
1+h2n·σ , (8)

with n =
(

0, h√
1+h2

, 1√
1+h2

)

.300
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(b) A rotation, R2, that uses up to three estimated parameters. The angle ϑ is estimated301

directly and ω1 and ω2 are axis parameters used to weight the Pauli matrices, with302

n = (sin(ω1),cos(ω1) · cos(ω2),cos(ω1) · sin(ω2)).303

2. The introduction of ‘complex phases’ (model QAP), such that the amplitudes for the choice304

alternatives contain real and imaginary parts. We implement these complex phases in the305

QA model by multiplying ln(1+ eβk(xntik−xnt jk)) in Eqs. (3, 4), with eiϕk . Note that we could306

estimate a different ϕk for each attribute k, or alternatively have a simpler structure such that307

a single additional parameter is estimated (ϕk = ϕ, ∀k).308

To apply a model with a rotation, we first estimate amplitudes for each alternative based on the309

basic QA model. Then, under choice scenarios in which there is a ‘change of perspective’, we apply310

either of two implementations of the quantum rotation (QAR-1 and QAR-2). The second feature311

of the complex phases is instead implemented directly into the basic QA model. It thus assumes312

that moral attributes are ‘treated differently’ to others. If these attributes are very different, then313

the estimates for their respective phases, ϕk, will be different, allowing interference interactions.314

3. EMPIRICAL APPLICATION315

In this section, we present the results of two case studies. In each case, we first detail the dataset316

that is used for testing our quantum choice models. We then apply our quantum model under317

basic settings before introducing quantum rotations for specific choice contexts or alternatively318

adding complex phases in the specification. We conclude by providing combined models with319

both rotations and complex phases.320

3.1. Quantum modelling for taboo trade-offs321

3.1.1. Description of data322

The first dataset we use involves ‘taboo trade-offs’ and comes from Chorus et al. (2018) (and is323

thus henceforth labelled the ‘taboo trade-off dataset’). Decision-makers choose between the intro-324

duction of a new transport policy or keeping the status quo. To simplify the choice scenarios, each325

new policy simply offered an increase or decrease compared to the status quo for four attributes,326

with shifts by ±300 EUR vehicle ownership tax, ±20 minutes travel time for each car commuter327

per day, ±100 serious injuries in traffic accidents and ±5 deaths in traffic accidents. This results328

in a total of 16 possible new policies, which are offered in turn to each of 99 decision-makers,329

resulting in a dataset with a total of 1,584 choices. For consistency, we follow Chorus et al. (2018)330

by defining a choice as involving a ‘taboo trade-off’ if a decision-maker could choose a policy that331

involves decreasing tax or travel time (a concrete attribute) at the cost of increasing the number332

of injuries or deaths (a moral attribute). One could of course argue that a scenario that increases333

injuries and reduces time or cost is not a taboo trade-off if deaths are also reduced at the same334

time. We also follow Chorus et al. (2018) in including all 16 choice scenarios in our dataset to aid335

a direct comparison with their ‘Taboo Trade-off Aversion’ model (TTOA). Two of these scenarios336

include dominated alternatives (Scenarios 1 and 5 in Table 3). A summary of the observed share337

of choices under the different scenarios is given in Table 1.338

For all attributes, we observe that the new policy is more likely to be chosen if there is a339

decrease in the attribute, as expected. Additionally, we observe that individuals are less likely to340

pick the new policy if it falls into the category of a taboo trade-off. The observed shares for each341
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TABLE 1 : Observed shares for choosing the new policy or the status quo depending on the

attribute change

Chosen alternative

New Policy Status Quo

Tax
Decrease 50.88% 49.12%

Increase 20.32% 79.68%

Time
Decrease 43.44% 56.56%

Increase 27.78% 72.22%

Injuries
Decrease 53.28% 46.72%

Increase 17.92% 82.08%

Deaths
Decrease 47.72% 52.28%

Increase 23.48% 76.52%

Taboo Yes 30.08% 69.92%

Trade-Off No 42.72% 57.28%

specific choice scenario are given together with model results in Table 3. This dataset is suitable342

for quantum choice modelling as decision-makers may not process the different attributes or the343

different choice tasks in the same way. Thus, quantum rotations and complex phases may both344

provide a method for capturing these differences.345

3.1.2. Basic models for the taboo trade-off dataset346

For the first set of models tested, we do not include either quantum rotations or complex phases in347

the specifications, so as to test the basic structure of the quantum models.348

We test models without any parameters to control for the presence of a taboo trade-off, as well349

as models with an additional constant added to represent the presence of a taboo-trade off. We350

have a parameter to capture the relative importance of each attributes, and test the quantum model351

as specified by Eq. (3). We now look in turn at the amplitudes for the status quo (SQ) and new352

policy (NP) options, where we do not show an index for individuals, n, as all participants complete353

all 16 choice tasks and there is no variation in the attributes at the individual level:354

ψt,SQ =
(

δSQ +δbase + ln(1+ e−βT T ·∆t,T T )+ ln(1+ e−βTax·∆t,Tax)

+ ln(1+ e−βDE ·∆t,DE )+ ln(1+ e−βIN ·∆t,IN )
)

/Nt , (9)

and for the new policy:355

ψt,NP =
(

δTaboo · zt,taboo +δbase + ln(1+ eβT T ·∆t,T T )+ ln(1+ eβTax·∆t,Tax)

+ ln(1+ eβDE ·∆t,DE )+ ln(1+ eβIN ·∆t,IN )
)

/Nt , (10)

where t is an index across choice tasks, t = 1..16, ∆t,x = 1 if attribute x increases under the new pol-356

icy or ∆t,x =−1 if the attribute decreases under the new policy, and where the normalisation factor357
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Nt satisfies Eq. (4). We include relative importance parameters for the four different attributes,358

βT T for travel time, βTax for travel tax, βDE for number of deaths and βIN for number of injuries.359

As all of these attributes are unfavourable - less is better - we expect negative estimates for these360

coefficients. This leads to a decrease in the amplitude of the new policy if ∆t,x = 1 (i.e. there is361

an increase in the attribute), resulting in a smaller probability. We add a constant, δbase, to both362

numerators and a constant, δSQ, that allows us to statistically test the underlying bias towards the363

status quo. As a contrast to random utility models, the additional constant here does not result in364

an overspecification, with an increased value for δbase corresponding to less deterministic choices.365

Under the basic model that accounts for the presence of a taboo trade off, we additionally estimate366

a taboo trade-off constant where appropriate, δTaboo, which is multiplied by zt,taboo, an indicator367

that takes a value of one for choice tasks where there is the presence of a taboo trade-off, and a368

value of zero otherwise. In our model that does not account for taboo trade-offs, we fix δTaboo to369

a value of zero. Additionally, as there are no attribute levels in this dataset, multiplying all param-370

eters by the same constant results in the same likelihood for the quantum amplitude model. We371

consequently fix the first β -coefficient to a value of −1 to avoid an overspecification. This will372

result in the QA model having the same number of free parameters as the logit model.373

We compare our quantum models to logit models that are equivalent to those specified by374

Chorus et al. (2018). The utility for the two alternatives is defined as:375

Ut,SQ = (δSQ −βT T ·∆t,T T −βTax ·∆t,Tax −βDE ·∆t,DE −βIN ·∆t,IN)+ εt,SQ, (11)

and:376

Ut,NP =
(

δtaboo · zt,taboo +βT T ·∆t,T T +βTax ·∆t,Tax +βDE ·∆t,DE +βIN ·∆t,IN

)

+ εt,NP, (12)

where ε is a type I extreme value error. The addition of δtaboo to the utility for the new policy in the377

presence of a taboo trade-off gives us the ‘Taboo Trade-off Aversion’ model (TTOA) as specified378

by Chorus et al. (2018).379

The results of our quantum and logit models are given in Table 2, where we first report basic380

logit and basic quantum models, before reporting models that include an additional constant for381

choices including a taboo trade-off (Logit-t and QA-t, respectively). For all of the model estimation382

in this paper, we use R packages maxLik (Henningsen and Toomet, 2011) and Apollo (Hess and383

Palma, 2019).384

Without any parameter for a taboo trade-off, the quantum amplitude (QA) model is outper-385

formed by the logit model. Notably, the model appears to find very similar relative ratios for the386

different β -attribute coefficients as logit. The addition of a taboo parameter (which is significant387

in each model) results in a reduction in the estimates for injuries and deaths for both models. It388

improves the fit of the QA model slightly more than the logit model, but the logit model still has389

the best log-likelihood and adjusted ρ2 value at this point.7 For the basic models, the best overall390

BIC value is obtained by a logit model without a taboo parameter.391

3.1.3. Models with quantum rotations for the taboo trade-off dataset392

We next turn to models with additional rotations implemented in the presence of a taboo trade-off,393

which attempt to capture the ‘change of perspective’, as described in Section 2.5. Thus, if the394

7Note that ‘Logit-t’ is identical to the ‘Generic Taboo Trade-Off Aversion’ (TTOA) model as described by Chorus

et al. (2018).
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decision-maker can decrease travel time or tax at the cost of increasing the number of fatalities or395

serious injuries, a rotation is applied.396
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TABLE 2 : Results of all models applied to the taboo trade-off dataset, together with all parameter estimates, where ◦ and ⋆ indicate

attribute pairs which have the same phase.

Type Basic models Quantum rotations Models with complex phases Combined

Specification Logit QA Logit-t QA-t QAR-1 QAR-2 QAPh-1 QAPh-2a QAPh-2b QAPh-2c QAPh-3 QAC

Free parameters 5 5 6 6 6 7 6 7 7 7 9 9
Log-likelihood -721.23 -725.40 -719.47 -722.61 -717.94 -717.77 -719.17 -712.94 -719.16 -718.83 -712.79 -712.35

BIC 1479.29 1487.63 1483.15 1489.43 1480.09 1487.12 1482.54 1477.45 1489.90 1489.24 1491.89 1491.02
B-S test p-value (vs. RRM-t) 0.0402 0.2655 0.2181 0.0008 0.0184 0.0111

Adj. ρ2 0.3386 0.3348 0.3392 0.3364 0.3406 0.3399 0.3395 0.3443 0.3386 0.3389 0.3426 0.3430

Average No taboo 41.57% 41.22% 42.71% 42.12% 41.86% 42.01% 42.06% 43.07% 42.08% 42.23% 43.04% 42.87%
probability of Taboo (before rotation) 30.97% 32.39% 30.08% 31.18% 28.82% 30.61% 30.92% 30.13% 30.90% 30.80% 30.07% 31.49%
choosing NP Taboo (after rotation) - - - - 30.69% 30.36% - - - - - 30.16%

βTax

est. -0.4888 -1.0000 -0.5232 -1.0000 -1.0000 -1.0000 -1.3989 -1.4536 -1.3963 -1.3679 -1.4293 -1.6455
rob.t-rat. -10.31 fixed -10.05 fixed fixed fixed -9.05 -6.88 -9.31 -9.45 -5.22 -5.70

βT T
est. -0.2598 -0.5271 -0.2834 -0.5675 -0.5225 -0.5304 -0.7442 -0.8368 -0.7476 -0.7792 -0.8517 -0.9638

rob.t-rat. -6.54 -5.08 -7.01 -5.83 -5.38 -5.40 -6.56 -5.23 -6.79 -6.59 -5.12 -4.53

βIN
est. -0.5548 -1.1239 -0.5052 -0.9660 -1.1731 -1.1201 -1.5786 -1.8668 -1.5764 -1.6693 -1.7748 -1.9672

rob.t-rat. -10.31 -7.26 -8.99 -6.75 -7.49 -6.84 -8.84 -9.21 -8.90 -7.05 -8.11 -7.74

βDE

est. -0.3957 -0.7870 -0.3444 -0.6627 -0.8458 -0.7988 -1.1301 -1.4356 -1.1364 -1.1128 -1.5081 -1.5517
rob.t-rat. -9.43 -6.95 -7.80 -6.32 -7.15 -6.15 -8.22 -7.93 -7.13 -8.24 -5.22 -6.61

δSQ

est. -0.9269 -0.9208 -0.6293 -0.6244 -0.9704 -0.8747 -1.7840 -1.2720 -1.7945 -1.8456 -1.2543 -1.2672
rob.t-rat. -8.17 -6.95 -4.12 -4.35 -7.02 -5.10 -6.80 -9.52 -6.28 -6.53 -8.35 -7.90

δbase
est. -0.2995 -0.5226 -0.7632 -0.8383 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

rob.t-rat. -1.37 -2.65 -4.14 -4.38 fixed fixed fixed fixed fixed fixed

δtaboo

est. -0.4409 -0.3506
rob.t-rat. -2.30 -2.75

h
est. -0.2779

rob.t-rat. -6.07

ω
est. -1.85 3.0729

rob.t-rat. (vs π/2) -94.29 28.79

ϑ
est. 1.5708 1.7257 2.0577

rob.t-rat. (vs π/2) fixed 0.91 0.43

ϕTax

est. -0.5644◦ -0.9913◦ -0.5797◦ -0.7790◦ -0.9584 -1.1296◦

rob.t-rat. -6.23 -6.27 -3.23 -4.25 -4.77 -7.56

ϕT T
est. -0.5644◦ -0.9913◦ -0.5540⋆ -0.4428⋆ -1.0188 -1.1296◦

rob.t-rat. -6.23 -6.27 -3.60 -3.40 -4.21 -7.56

ϕIN
est. -0.5644◦ 0.3904⋆ -0.5797◦ -0.4428⋆ 0.3367 0.4453⋆

rob.t-rat. -6.23 2.03 -3.23 -3.40 1.77 2.56

ϕDE

est. -0.5644◦ 0.3904⋆ -0.5540⋆ -0.7790◦ 0.4794 0.4453⋆

rob.t-rat. -6.23 2.03 -3.60 -4.25 2.23 2.56

Rotation R[1,1] -0.15-0.95i -0.15+0.95i -0.47-0.88i
matrix R[1,2] 0.27+0.00i 0.27+0.00i -0.06+0.00i

R R[2,1] -0.27+0.00i -0.27+0.00i 0.06+0.00i
elements R[2,2] -0.15+0.95i -0.15-0.95i -0.47+0.88i
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The models in this section are based on those in Section 3.1.2, with the amplitudes being397

estimated equivalently using Eqs. (9) and (10). However, instead of adding a constant to capture398

the presence of a taboo trade-off, an additional rotation is applied to the estimated amplitudes399

using Eq. (7). We test two different rotations, with each based on the Pauli matrices, as described400

in Section 2.5.401

1. We first use a rotation matrix, R1, with one free parameter, h, for weighting the Pauli matrices402

ny =
h√

1+h2
, nz =

1√
1+h2

and set the rotation angle ϑ = π
2
·
√

1+h2. Notice that an estimate403

of h = 0 would indicate no change in probability. Positive estimates indicate a shift towards404

alternative 1, whereas negative estimates indicate a shift towards alternative 2.405

2. We next use a rotation matrix, R2, based on our second method using trigonometric functions406

to define the weights for |n|. We find that fixing nx = 0 results in no loss of model fit, leaving407

us with two free rotation parameters: one for the angle, ϑ , and another ω , where we set408

ny = cos(ω) and nz = sin(ω) (which guarantees |n|= 1).409

The results of models with quantum rotations are again given in Table 2. This table also reports410

p-values from Ben-Akiva and Swait tests (Ben-Akiva and Swait, 1986) for non-nested models,411

assessing whether the quantum models have a statistically better fit than the TTOA (Logit-t) model.412

This table further reports the average probability of choosing the new policy (NP) before and after413

the quantum rotation is applied to a choice scenario which contains a taboo trade-off (the observed414

choice proportions appear in Table 1).415

For model QAR-1, which has the quantum rotation implemented, we see a significant improve-416

ment in log-likelihood from the addition of 1 parameter. This quantum model now has a better BIC417

(1,483.15) than the TTOA model (1,480.09) and is statistically better at the 5% level, with a p-value418

of 0.040 from the Ben-Akiva and Swait test. The addition of a second free parameter in the model419

(QAR-2) does not result in a significant improvement in the log-likelihood compared to the QAR-1420

model.421

In line with the results of Chorus et al. (2018) and Table 1, we observe that across all models,422

the presence of a taboo trade-off results in the decision-maker being less likely to choose the423

New Policy alternative. As the number of model parameters increases, the average probabilities424

under the model become increasingly closer to matching the observed share of new policy choices425

(30.08% when there is a taboo trade-off, 42.72% when there is not, see Table 1). For QAR-2, we426

observe that the rotation, on average, reduces the probability of choosing the new policy. Under427

QAR-1, the opposite is true. Whilst this result may appear counterintuitive, we observe a greater428

estimate for βDE (see Table 2) in QAR-1 in comparison to QA, demonstrating that the additional429

flexibility of including a rotation allows for more extreme estimates to help capture choices in430

general. We will return to the impact of quantum rotations on the probabilities of choosing the431

alternatives in more detail later (see Section 3.1.5).432

3.1.4. Models with complex phases for the taboo trade-off dataset433

An alternative mechanism for capturing different ‘processes’ with a quantum choice model is the434

implementation of complex phases, as described in Section 2.5. As with models implementing435

quantum rotations, we have a number of options for how many free parameters to use in the speci-436

fications for the quantum choice models. We consider the following three possibilities:437
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1. A single complex phase, ϕ , for all of the attributes, such that all ln(1+ eβx·∆x) are replaced438

with e−iϕ · ln(1+ eβx·∆x) in Eqs. (9) and (10). This implementation of phases tests whether439

the introduction of complex phases improves the model performance in general.440

2. Two complex phases, ϕ1 and ϕ2, each respectively applied to two attributes. This gives us441

three distinct configurations. Our focus of interest is on the configuration with one phase442

applied to the two moral attributes and the other phase applied to the two concrete attributes.443

If this model is significantly better than the other configurations, it would suggest that the444

moral and concrete attributes are indeed ‘different’ and can be categorised as such.445

3. Four complex phases with four free parameters, {ϕ1,ϕ2,ϕ3,ϕ4}, with a different phase for446

each attribute. This configuration allows us to test the performance of the introduction of447

relative complex phases overall.448

The results of models with complex phases are given in Table 2. As with quantum rotations, we449

again observe that there is a significant improvement obtained by including complex phases. The450

first model offers a good improvement over the base QA model, but is not statistically better than451

the TTOA model. Further additional free parameters result in improvements in model fit. As these452

parameters are significantly different from zero (if ϕ = 0, then we have ei0 = 1, which corresponds453

to real-only amplitudes), we have evidence to reject models without complex phases in favour of454

models with complex phases. Note that the introduction of complex phases into the specification455

of the amplitudes (Eq. 3) means that we no longer have an overspecification by not fixing one456

of the β -coefficients. This is a direct result of having real-valued constants in the amplitudes.457

However, we still have five base parameters as the estimate for δbase becomes insignificant, and is458

thus fixed to a value of zero. Crucially, the model results suggest that concrete and moral attributes459

are treated ‘differently’ in the cognitive choice process, as a substantial gain is found through the460

use of separate phases for the concrete and moral attributes, but not for other combinations of uses461

of two complex phases. Furthermore, we obtain insignificantly different estimates for the tax and462

time phases and the deaths and injuries phases when each parameter has a separate phase (model463

QAPh-3). This suggests that the concrete attributes are treated ‘equivalently’ in the cognitive464

choice process and similarly so for the moral attributes. In comparison to models with a quantum465

rotation, the models with complex phases record better BIC values, with the best adjusted ρ2 value466

of 0.3443 for a model with complex phases compared to 0.3406 for a model with a rotation. This467

implies that the moral aspect in the choice tasks is better captured by a perspective operation that468

implements separate complex phases for moral and concrete attributes, as opposed to the inclusion469

of a rotation for particular choice tasks.470

3.1.5. Combined model for the taboo trade-off dataset471

For our final model, we test the use of a model that incorporates both a quantum rotation and472

complex phases simultaneously. Our final model for the taboo trade-off dataset is based on the473

best performing model thus far (QAPh-2a) combined with the use of a rotation based on Pauli474

matrices. It thus has two complex phase parameters (one for concrete attributes, and one for moral475

attributes), as well as two rotation parameters. This results in the model having an additional four476

parameters to capture the moral components in the choice tasks, on top of the five parameters of477

the basic QA model.478
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The results of the combined model (QAC) are shown in Table 2. For this model, we observe479

significant estimates for the parameters for the complex phases, where these are not significantly480

different from the estimates for these parameters under a model without additional rotation param-481

eters (QAPh-2a). The combined model does not offer a significant improvement over the version482

with complex phases, with the estimates for the rotation parameter ϑ not being significantly dif-483

ferent from π/2, indicating that the rotation has minimal impact. This implies that for this dataset,484

complex phases and additional rotations are approximately equivalent.485

However, there is evidence that there is still an effect by including the rotation, through con-486

sideration of the results in Table 3. This table gives the probability of supporting the new policy487

under each of the different choice scenarios before and after the quantum rotation is applied. Cru-488

cially, our final model has smaller mean absolute deviations from the true share of support than the489

TTOA model (which is unsurprising given that this model has more free parameters and records490

a statistically significant improvement in the model fit). This is only the case for the ‘taboo tasks’491

after the implementation of the rotation, suggesting that the combined model still benefits from the492

inclusion of the rotations. Note that a rotation is not like an additive constant, which would always493

result in a bias towards one alternative. Instead, the combination of real and imaginary numbers494

(the interference effect) results in a shift that may swing the probabilities in either direction, which495

is hence unlikely to result in a direct bias towards one alternative. In this case, the rotation almost496

always reduces the probability of choosing the new alternative. This is in line with our expecta-497

tions: the presence of a taboo trade-off reduces the likelihood of choosing the new policy.498

3.2. Quantum modelling for moral trade-offs involving a couple’s respective commutes499

3.2.1. Description of data500

The second dataset we test involves decision-makers completing two distinct sets of choice tasks501

based on an individual’s willingness to accept longer commutes for better salaries (see Beck and502

Hess, 2016, for a detailed description of the survey). The first set of tasks involved trade-offs503

between the individual’s current travel time and salary or an increased salary (of 500 or 1000 SEK504

in net wage per month) at a cost of an increase in one-way travel time (of either 10 or 25 minutes).505

The second set additionally included attributes for increased travel time and salaries for the partner506

of the decision-maker (under the assumption that both the decision-maker and their partner both507

commute to work), meaning that the decision-maker has to make choices about who to prioritise508

(the dataset is thus henceforth referred to as the ‘couple commuter dataset’). All choice tasks509

included a status quo alternative, a new location and an ‘I am indifferent’ option. A sample of510

1,179 households (with both partners in each household, resulting in 2,358 individuals) completed511

4 tasks for the first set involving only attributes affecting themselves, and 4 or 5 tasks for the512

second set with attributes impacting both members of the household. This resulted in a total of513

20,041 choice observations.514

While the first set of choice tasks involves typical time-cost trade-offs that can potentially be515

captured well with traditional choice models, the latter involves a more complex decision context516

without any ‘crisp’ trade-off element in that there may not be a clear ethical protocol for how to517

make the decision. This dataset thus provides another test for our quantum model features that518

capture changes in choice context. The observed choice shares for the alternatives are given in519

Table 4, where we see that a decision-maker is more likely to pick the status quo (SQ) over the520

new location (NL) if the choice task also includes attributes concerning their partner.521

At the outset, it should already be noted that the presence of an ‘indifference’ option in a SC522
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TABLE 3 : Observed and theoretical choice probabilities in the taboo trade-off dataset. The ‘taboo

trade-off’ occurs if a decision-maker chooses to decrease tax or travel time at the cost of increasing

the number of injuries or deaths. The impact of the quantum rotations is rendered explicit; ‘Before’

is the probability of choosing the new policy without applying a quantum rotation, ‘After’ is the

probability following the application of the quantum rotation. TTOA gives theoretical probabilities

from the ‘Generic Taboo Trade-Off Aversion’ model (Chorus et al., 2018).

Scenario
Attributes

Share of support for New Policy

Taboo
Observed

TTOA QAC

Tax Time Injuries Deaths Trade-Off? (Logit-t) before after

1 - - - - No 98.0% 93.6% 97.5%

2 - - - + Yes 68.7% 70.4% 67.6% 65.3%

3 - - + + Yes 29.3% 23.9% 32.6% 27.3%

4 - + + + Yes 11.1% 9.2% 16.1% 12.2%

5 + + + + No 2.0% 1.9% 2.7%

6 + - - - No 62.6% 64.3% 63.3%

7 + + - - No 44.4% 36.7% 42.7%

8 + + + - No 4.0% 7.1% 3.5%

9 - + - + Yes 42.4% 43.3% 40.6% 41.9%

10 + - + - Yes 15.2% 13.3% 12.2% 13.8%

11 - - + - Yes 46.5% 55.5% 56.4% 53.0%

12 - + - - No 80.8% 82.5% 81.4%

13 - + + - Yes 30.3% 28.7% 29.5% 29.2%

14 + - - + Yes 22.2% 22.6% 21.0% 24.2%

15 + - + + Yes 5.1% 3.7% 7.3% 4.6%

16 + + - + No 7.1% 12.8% 9.1%

Mean absolute deviation from true share of support (%; all choice tasks) 3.03 2.19 1.57

Mean absolute deviation from true share of support (%; taboo tasks only) 2.68 3.15 2.05

survey calls for special attention in model specification. Indeed, as discussed by Hess et al. (2014),523

the inclusion of an ‘indifference’ option means that non context-dependent models are likely not524

suitable. To understand this point, note that making both the status quo and the alternative option525

worse or better by the same amount, be this through changes in time, salary, or both, should not526

affect the degree to which a decision-maker is indifferent between them. However, in structures527

based on random utility maximisation (RUM), changes to time or salary for the non-indifference528

options would change their utilities and hence their probabilities relative to the indifference option,529

whose utility is unchanged. Hess et al. (2014) shows that on the contrary, as a result of regret530

models using a value function that is reliant on pairwise comparisons of alternatives, the same531

change in all non-indifference alternatives does not impact the probability of choosing the indif-532

ference option. Within a quantum choice model framework, there are numerous possibilities for533

capturing indifference. For the work on this dataset, we implement the simplest solution. This534

is to assume that the indifference choice is a separate component of the belief state, using a 3-535

dimensional Hilbert space. The indifferent alternative thus appears in the model equivalently to536

any of the other alternatives, except that it does not depend directly on the attributes of the other537
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TABLE 4 : Observed shares of alternatives under each choice scenario in the couple commuter

dataset.

Scenario

Attribute changes
ObservedTravel time (TT, mins). Salary (SEK/month)

Own TT Own Salary Partner TT Partner Salary SQ NL Indifferent

1 +10 +500 0 0 70.3% 24.5% 5.2%

2 +25 +500 0 0 70.0% 23.9% 6.1%

3 +10 +1000 0 0 71.1% 24.1% 4.9%

4 +25 +1000 0 0 69.5% 25.3% 5.2%

5 +10 +500 +10 +500 74.4% 20.6% 5.0%

6 +10 +500 +25 +500 73.6% 21.2% 5.2%

7 +10 +500 +10 +1000 73.8% 20.3% 5.9%

8 +10 +500 +25 +1000 76.0% 19.2% 4.7%

9 +25 +500 +10 +500 74.4% 21.3% 4.3%

10 +25 +500 +10 +1000 73.4% 20.4% 6.2%

11 +10 +1000 +10 +500 74.8% 20.6% 4.6%

12 +10 +1000 +25 +500 74.0% 20.9% 5.1%

13 +25 +1000 +10 +500 72.4% 22.5% 5.1%

alternatives, c.f. Eq. (3). It does however depend on the attributes indirectly, by the normalisation538

of the components (see Eq. 4). However, by implementing the RRM value functions, our quantum539

model inherits the property that choice probabilities will be invariant to uniform increases or de-540

creases of the attribute values. If, for example, we observe an increase of ∆x across attribute x for541

all alternatives, then there is no change in the amplitudes: eβk((xntik+∆x)−(xnt jk+∆x)) = eβk(xntik−xnt jk).542

This means that for the choice scenarios detailed in Table 4, the absolute values for a decision-543

maker’s travel time and salary do not have an impact: it is only the relative differences between the544

status quo and new location that impact the choice probabilities, both in RRM and our quantum545

amplitude model. This discussion explains the use of RRM as the base model against which we546

compare our quantum model.547

3.2.2. Basic models for the couple commuter dataset548

For this dataset, there are two distinct choice sets: the first only includes factors impacting the549

decision-maker alone (CT1) while the second additionally includes impacts on the partner (CT2).550

For the QA model on the CT1 data, the amplitudes for the status quo (SQ), new location (NL)551

and indifference (Ind) alternatives are then:552

ψnt,SQ =
δbase +δSQ + ln(1+ e

−βOT T
·∆Ont,T T )+ ln(1+ e

−βOSal
·∆Ont,Sal )

Nnt
, (13)

553

ψnt,NL =
δbase + ln(1+ e

βOT T
·∆Ont,T T )+ ln(1+ e

βOSal
·∆Ont,Sal )

Nnt
, (14)

and554

ψnt,Ind =
δInd +δbase

Nnt
. (15)
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We again estimate a constant that is added to the amplitude for all alternatives, δbase, and Nnt is555

a normalisation factor calculated using the numerators from each amplitude, Eqs. (13, 14, 15),556

in line with Eq. (4). For the remaining terms, we have that ∆Ont,T T
is the change in the decision-557

maker’s travel time, ∆Ont,Sal
is the change in their salary and the β -coefficients estimate the relative558

importance of these attributes (‘O’for ‘own’). The amplitude for the new location alternative re-559

places −β with β and obviously drops δSQ, where we do not show δNL, which is normalised to560

zero, while the constant δInd is included for the indifference alternative.561

For the random regret minimisation models, the random regret functions for the CT1 data are562

given by:563

RRnt,SQ = δSQ + ln(1+ e
βOT T

·∆Ont,T T )+ ln(1+ e
βOSal

·∆Ont,Sal )+ εnt,SQ, (16)
564

RRnt,NL = δNL + ln(1+ e
−βOT T

·∆Ont,T T )+ ln(1+ e
−βOSal

·∆Ont,Sal )+ εnt,NL, (17)

and565

RRnt,Ind = δInd + εnt,Ind. (18)

Note that the direct comparison of the equations for amplitudes and regret allows for a clear math-566

ematical interpretation of the difference between the models. Whereas the quantum models ad-567

ditionally have a normalisation factor such that the probabilities can be calculated directly from568

these amplitudes, using Eq. (2), the regret model implements uncertainty in which alternative is569

chosen through use of type I extreme value distributed error terms, ε . A further difference arises570

in that ∆x and −∆x are interchanged when moving between amplitudes and regret. This is simply571

to ensure the correct sign for the directionality of the attributes in the respective models, with the572

negative of the regret used to calculate probabilities.573

For CT2, additional terms are added for the attributes impacting the partner. An additional574

layer of flexibility is possible (and explored below), by allowing the parameters for own time and575

salary to be different in CT1 and CT2, i.e. not just allowing for differences between the evaluation576

of the impact on the respondent themselves (vs on the partner), but allowing that impact to be577

different when the impact on the partner is also considered.578

The results of the basic quantum choice models together with the equivalent RRM models are579

given in Table 5. The first models (RRM-1 and QA-1) keep the parameters for the importance of580

a decision-maker’s own salary and travel time constant between CT1 and CT2, labelling them as581

βOSal
and βOT T

. The second set (RRM-2 and QA-2) have separate parameters for CT1 and CT2 for582

the importance of own salary and cost, as well as separate constants for CT1 and CT2.583

Regardless of whether RRM and QA are compared with or without the use of separate param-584

eters, the results indicate a substantial advantage for the quantum models. Additionally, both QA585

and RRM find clear evidence that the use of separate CT1 and CT2 parameters lead to further586

gains in fit, demonstrating that there is an inconsistency in how a decision-maker considers factors587

impacting themselves in the absence (CT1) or presence (CT2) of factors impacting their partner.588

These differences are clearly visible in the second set of models, where we see a reduction in both589

the own salary and own time parameters when going from CT1 to CT2, where this is an indication590

of differences in noise (lower parameters mean a less deterministic choice process), but also dif-591

ferences in relative valuations as the reduction is larger for the salary coefficient than for the time592

coefficient. The models imposing homogeneity between CT1 and CT2 are biased as a result and593

show that individuals give higher importance to their own salary and their own travel time, while594

the second set of models shows that this is only the case for salary.595
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TABLE 5 : Results of all basic models and models with quantum rotations for the couple commuter dataset, together with all parameter

estimates.

Type Basic Models Models with a quantum rotation

Specification RRM-1 QA-1 RRM-2 QA-2 QAR-2a QAR-2b QAR-2c QAR-2d QAR-2e QAR-2f

Free parameters 6 7 10 12 11 11 11 11 11 11
Log-likelihood -12,784.21 -12,624.13 -12,426.71 -12,289.38 -12,430.74 -12,463.49 -12,283.33 -12,426.12 -12,461.48 -12,436.75

Adj. ρ2 0.41908 0.42631 0.43514 0.44129 0.43491 0.43342 0.44161 0.43512 0.43351 0.43464
BIC 25,612.62 25,299.83 24,927.10 24,667.17 24,942.52 25,008.01 24,647.70 24,933.28 25,004.00 24,954.55

Average probability of chosen alternative (by type of alternative and by experiment)

CT1

Status Quo 77.66% 75.61% 76.97% 77.73% 77.84% 77.74% 77.63% 77.90% 77.70% 78.07%
New Location 44.47% 40.97% 42.39% 43.10% 44.04% 44.00% 43.04% 44.24% 44.22% 43.97%

Indifferent 1.91% 9.28% 5.01% 6.22% 6.76% 6.76% 6.24% 6.60% 6.67% 6.70%

CT2

Status Quo 76.62% 78.70% 77.86% 78.19% 77.44% 77.75% 78.23% 77.62% 77.93% 77.07%
New Location 29.38% 29.41% 33.47% 33.54% 28.78% 27.73% 34.08% 28.40% 27.57% 28.72%

Indifferent 8.04% 3.54% 5.00% 5.37% 5.22% 5.29% 5.25% 5.35% 5.26% 5.35%

Overall 64.38% 64.18% 64.84% 65.35% 64.69% 64.66% 65.39% 64.76% 64.72% 64.61%

Parameter Estimates

Choice Set both both CT1 CT2 CT1 CT2 both both both both both both

βOT T

est. -0.1434 -3.0200 -0.1609 -0.1290 -0.0747 -0.0315 -0.1875 -0.1554 -0.0692 -0.1617 -0.1445 -0.1960
rob.t-rat. -39.89 -16.95 -37.19 -30.43 -7.16 -13.04 -8.80 -10.91 -9.96 -10.33 -11.63 -6.79

βOSal

est. 2.1004 26.3856 2.4834 1.4860 0.9225 0.3381 1.8225 1.6141 0.8541 1.6326 1.5364 1.8534
rob.t-rat. 35.69 17.99 31.93 15.80 9.18 6.95 11.38 13.77 11.80 13.55 14.72 9.05

βPT T

est. -0.0956 -1.5624 -0.1315 -0.0332 -0.1580 -0.1370 -0.0754 -0.1381 -0.1234 -0.1773
rob.t-rat. -35.77 -26.04 -28.78 -14.74 -13.88 -17.37 -15.31 -15.74 -17.57 -10.46

βPSal

est. 1.3103 15.1615 0.8569 0.2052 1.7746 1.5900 0.5142 1.6317 1.6599 1.5995
rob.t-rat. 21.77 35.19 5.40 3.74 8.42 8.79 4.67 10.41 9.56 7.37

δSQ

est. -0.3498 -8.7204 -0.5274 0.8100 0.0056 -0.2434 -0.4447 -0.2817 0.0055 -0.3365 -0.2380 -0.5032
rob.t-rat. -5.43 -8.03 -6.88 4.33 0.15 -7.28 -4.03 -3.78 0.20 -4.02 -3.60 -3.44

δIND
est. 5.1402 10.2110 4.2313 6.1702 1.1199 2.4040 1.1086 1.1086 1.1221 1.0972 1.1075 1.1066

rob.t-rat. 64.77 12.01 50.96 52.16 45.65 352.05 35.11 40.10 55.29 39.97 42.23 33.92

δbase

est. 1.2753 -0.8342 -2.2278 -0.5590 -0.6243 -0.8522 -0.6151 -0.6524 -0.5510
rob.t-rat. 2.06 -16.93 -221.78 -11.29 -15.27 -23.14 -14.55 -17.10 -9.56

First Rotation 1-2 1-2 1-3 1-3 2-3 2-3
Second Rotation 1-3 2-3 1-2 2-3 1-3 1-2

ω1−2

est. 1.3914 1.0363 0.8699 1.3074
rob.t-rat. (vs π/2) -3.34 -0.79 -15.70 -2.05

ϑ1−2
est. 2.8047 3.0650 1.9568 0.2188

rob.t-rat. (vs π/2) 44.56 23.58 9.33 -26.57

ω1−3
est. 0.3423 1.6702 2.7346 1.3994

rob.t-rat. (vs π/2) 13.75 7.19 2.86 -9.03

ϑ1−3
est. 0.5017 1.6371 2.8437 0.8244

rob.t-rat. (vs π/2) -22.57 0.74 28.91 -5.16

ω2−3
est. 1.2713 1.2225 0.5071 1.6737

rob.t-rat. (vs π/2) -16.68 -16.78 -20.56 2.03

ϑ2−3

est. 1.4465 1.5556 2.8602 1.2224
rob.t-rat. (vs π/2) -2.13 -0.46 108.97 -0.75
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3.2.3. Models with quantum rotations for the couple commuter dataset.596

This dataset also provides opportunities for the use of additional features from quantum choice597

models to test for an inconsistency or ‘change of perspective’ incurred through changing from598

thinking about just yourself compared to yourself and your partner. We test the change of per-599

spective to the choice task with attributes impacting the partner through two consecutive quantum600

rotations over the alternatives (status quo, new location and indifferent). For our models imple-601

menting quantum rotations, we use Eqs. (13, 14, 15) to define the amplitudes for the alternatives602

within the first set of choice tasks. For the amplitudes under the second set of choice tasks, we ini-603

tially use these equations to estimate the amplitudes before then applying quantum rotations. Thus,604

for these models, we estimate a single set of coefficients that apply to choices made in both choice605

sets. We then require a product of two rotation matrices for adjusting the amplitudes appropriately606

when additionally considering travel time and salary changes for the partner. The new amplitudes607

after the rotation are then given by:608

Ψ f = RBRAΨ0, (19)

where RA and RB are both estimated using Eq. (6) and rotation matrices based on R2 with the609

use of axis and angle parameters. We again find that fixing nx = 0 results in no loss of model fit,610

leaving us with four free parameters, ωA, ωB, ϑA and ϑB, where we again set ny = cos(ω) and611

nz = sin(ω). Given that we implement two consecutive rotations on pairs of alternatives, there are612

six combinations of pairwise rotations. The results of these six models are given in Table 5. In613

all six cases, we see an improvement in fit over the basic model (QA-1). The third option (QAR-614

2c) which first rotates between the status quo and the indifference option (alternatives 1 and 3),615

before rotating between the status quo and the new option (alternatives 1 and 2), offers the most616

substantial improvement in fit. It also outperforms the second basic model (QA-2), suggesting that617

the rotations can better account for the differences between tasks completed in the different choice618

sets than is the case for using separate parameters.619

3.2.4. Models with complex phases for the couple commuter dataset620

We next turn to the incorporation of complex phases, where we again test a number of possible621

specifications, given that there are six different attributes and many possibilities for how many622

phases to implement. We consider the following possibilities for how to introduce complex phases.623

1. A model with a single complex phase, ϕ , that is applied to all of the attributes.624

2. A model with two complex phases, ϕ1 and ϕ2, with the first applied to attributes impacting625

the decision-maker and the second applied to attributes impacting the partner.626

3. A model with two complex phases, with the first applied to travel time attributes and the627

second applied to salaries.628

4. A model with two complex phases, with the first applied to attributes in the first set of choice629

tasks, and the second applied to attributes in the second set of choice tasks.630

5. A model with six complex phases with six free parameters, {ϕ1, . . . ,ϕ6}, with a different631

phase for each attribute in each set of choice tasks.632
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TABLE 6 : Results of all models with complex phases and the combined models for the couple

commuter dataset, together with all parameter estimates, where ◦ and ⋆ indicate attribute pairs

which have the same phase.

Type Models with complex phases Combined

Specification QAPh-1 QAPh-2 QAPh-3 QAPh-4 QAPh-5 QAC-1 QAC-2

Free parameters 8 9 9 9 13 17 15

Log-likelihood -12,536.66 -12,366.51 -12,536.65 -12,487.07 -12,319.10 -12,249.70 -12,250.21

Adj. ρ2 0.43024 0.43792 0.43019 0.43244 0.43989 0.44286 0.44293

BIC 25,132.26 24,799.33 25,139.60 25,040.45 24,733.98 24,624.65 24,610.94

Average probability of chosen alternative (by type of alternative and by experiment)

CT1

Status Quo 75.57% 76.99% 75.57% 76.21% 77.79% 78.15% 78.18%

New Location 39.84% 42.51% 39.84% 39.36% 42.96% 43.92% 43.84%

Indifferent 8.77% 6.83% 8.76% 8.34% 6.65% 6.13% 6.15%

CT2

Status Quo 79.57% 78.57% 79.58% 78.99% 78.32% 78.21% 78.22%

New Location 33.13% 31.82% 33.13% 33.51% 32.81% 34.15% 34.13%

Indifferent 4.01% 5.40% 4.01% 4.37% 5.40% 5.26% 5.27%

Overall 64.79% 65.02% 64.79% 64.76% 65.34% 65.65% 65.66%

Parameter Estimates

βOT T

est. -3.1325 -0.1441 -3.1557 -3.3643 -0.0709 -0.0385 -0.0383

rob.t-rat. -12.99 -28.52 -8.63 -14.15 -18.58 -9.75 -9.96

βOSal

est. 17.9584 1.4095 18.0740 26.0038 0.8198 0.6026 0.5430

rob.t-rat. 13.83 22.79 8.92 14.09 17.04 7.28 11.10

βPT T

est. -2.0343 -0.0992 -2.0487 -2.6486 -0.0908 -0.0513 -0.0543

rob.t-rat. -14.07 -18.67 -8.96 -14.95 -10.33 -7.12 -9.03

βPSal

est. 9.0215 0.6876 9.0752 10.1627 0.5504 0.2528 0.2530

rob.t-rat. 1.20 7.43 8.38 18.89 6.44 5.07 5.00

δSQ

est. -41.2320 -0.5687 -41.4785 -33.3201 -0.0046 0.0992 0.0784

rob.t-rat. -12.40 -6.16 -8.57 -11.00 -0.15 4.85 5.04

δIND
est. 6.6360 1.2861 6.7424 8.9254 0.7372 1.0810 1.0512

rob.t-rat. 10.09 36.59 7.70 10.35 15.23 81.06 32.53

δbase

est. 1.1958 -0.8424 1.1482 0.7655 -0.9828 -1.2130 -1.1817

rob.t-rat. 2.59 -25.32 2.75 17.27 -27.24 -99.16 -55.73

ω1−2

est. 0.7219 0.3527

rob.t-rat. (vs π/2) -7.57 -9.96

ϑ1−2
est. 2.3048 2.5050

rob.t-rat. (vs π/2) 5.86 18.47

ω1−3
est. 1.6817 1.7523

rob.t-rat. (vs π/2) 3.55 3.94

ϑ1−3

est. 2.3981 2.7212

rob.t-rat. (vs π/2) 3.49 9.95

ϕOT T1

est. 0.3958◦ 0.5282◦ 0.3960◦ 0.7655◦ 0.1119 0.1653 0.0619◦

rob.t-rat. 17.62 31.39 17.60 17.27 2.12 2.55 1.76

ϕOT T2

est. 0.3958◦ 0.5282◦ 0.3958◦ -3.04E-06⋆ -1.0690 0.2035 0.0619◦

rob.t-rat. 17.62 31.39 17.60 -4.13 -15.75 1.41 1.76

ϕPT T

est. 0.3958◦ -1.2984⋆ 0.3958◦ -3.04E-06⋆ 1.2073 0.3628 0.2338

rob.t-rat. 17.62 -29.61 17.60 -4.13 25.92 2.69 3.78

ϕOSal1

est. 0.3958◦ 0.5282◦ 0.1602⋆ 0.7655◦ 0.2671 0.1045 0.1502⋆

rob.t-rat. 17.62 31.39 0.41 17.27 11.21 4.69 6.75

ϕOSal2

est. 0.3958◦ 0.5282◦ 0.1602⋆ -3.04E-06⋆ 0.7928 0.5541 0.1502⋆

rob.t-rat. 17.62 31.39 0.41 -4.13 12.23 3.77 6.75

ϕPSal

est. 0.3958◦ -1.2984⋆ 0.1602⋆ -3.04E-06⋆ -1.0220 -0.5316 -0.7645

rob.t-rat. 17.62 -29.61 0.41 -4.13 -27.09 -2.99 -3.29

The results of these different possibilities are given in Table 6. The incorporation of a larger633

number of complex phases opens up the potential for large gains in fit, but the actual specification634
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of the phases is important. For example, a significant gain is found by moving from a single phase635

to two phases for each combination except for the model with different phases for travel time as636

opposed to salaries (QAPh-3). The most substantial of these gains is found by QAPh-2, which has637

separate phases for attributes impacting the decision-maker and attributes impacting their partner.638

The best performing model overall is a model with a different phase for each of the different at-639

tributes, suggesting that, as with the first dataset, the attributes are considered differently. However,640

this model does not perform as well as a basic quantum amplitude model with separate parame-641

ters for the different choice sets (see Table 5). Consequently, as opposed to the results of the first642

dataset, it is the addition of quantum rotations rather than complex phases that better captures the643

implicit change in choice context.644

3.2.5. Combined model for the couple commuter dataset645

For our combined model, we again utilise a model with both quantum rotations and complex phases646

to capture the change of perspective when commute attributes concerning the partner are also647

present. Given the good performance of QAPh-5, which has six phases, and of QAR-2c, we opt648

to combine these models for our final model. This means that it has 7 parameters in common with649

the basic model (QA-1), 6 complex phases (with one for each attribute) and 4 rotation parameters,650

as before for the models with quantum rotations. Note that we implement rotations based on the651

best performing rotation model, thus first rotating between the status quo and the indifference652

option (axis parameter ω13, angle ϑ13) before rotating between the status quo and the new location653

alternative (axis parameter ω12, angle ϑ12).654

Table 6 gives the results of our combined model. This time, in contrast with the results for the655

taboo trade-off dataset, we see that the model (QAC-1) combining quantum rotations and complex656

phases does offer a significant improvement over a model offering only one of these additional657

features to capture the change of perspective. We also see that the model with six phases has658

rather different estimates for the phases for the same attributes across the different choice sets,659

suggesting that these attributes cannot be treated equivalently (Fig. 3). For the combined models,660

we find significant estimates for both the phase and rotation parameters. However, we note that661

there is not a significant difference between the phase parameters across choice sets (ϕOSal1
and662

ϕOSal2
) and (ϕOT T1

and ϕOT T2
). It thus appears that the quantum rotation, which is used for the663

‘change of perspective’ from the first choice task to the second choice task, already captures the664

difference between choice sets. We consequently include a second combined model (QAC-2) with665

just four complex phases. This final model does not result in a significant loss of model fit, as666

expected, and achieves the best adjusted ρ2 and BIC.667

This effect is particularly clear through closer consideration of the estimates for the complex668

phase parameters, ϕ . These are displayed graphically in Fig. (3). For the model with complex669

phases only (QAPh-5), we observe very different estimates across attributes, choice task set and670

whether an attribute affects the decision-maker or the partner. This illustrates why the QAPh-5671

model can outperform the models with only two complex phases, with the flexibility of inter-672

actions across all attributes clearly helping to improve performance. The addition of quantum673

rotations, (moving from QAPh-5 to QAC-1) results in phases regressing closer to smaller values674

(modulo 2π). This results in a weaker interference interaction across the attributes, with the real675

parts growing in magnitude whilst the imaginary parts shrink. The only exception is the phase to676

attribute OTT-2 which appears to vary strongly. However, the phase to OTT-2 in QAC-1 is not677

reliable (t-value = 1.41), hence its value shift from QAPh-5 to QAC-1 should not necessarily be678
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understood as a significant adaptation but rather a shift to a spurious local optimisation value in679

QAC-1. Notably, the estimates for OTT-1 and OTT-2 are similar in QAC-1, and the use of only680

one phase for the decision-maker’s travel times (and one phase for salary) gives us the result in681

QAC-2, which records an insignificant loss of model fit.682

Table 6 also compares the average probability for the chosen alternative under each of these683

models. The combined models do better than other models for choices where the decision-maker684

opts to change to the new location, with the combination of quantum rotations and complex phases685

evidently helping capture these choices. The coefficients associated with attributes (β ) change686

substantially across the different models, with the ratios of parameters also changing. A decision-687

maker’s own salary ranges from being approximately equivalently as important as their partner’s688

salary, to more than double the importance in the combined model. The converse is true for travel689

times, with the combined model indicating a partner’s travel time is of greater importance than that690

of the decision-maker. The opposite is true in the basic model.691

FIGURE 3 : Illustration of the estimated complex phase coefficients for the travel time (TT),

salary increase (Sal) of the decision-maker (O) and partner (P) in the quantum models QAPh-

5 (only complex phases), QAC-1 (rotations and 6 phases) and QAC-2 (rotations and 4 phases).

Model QAC-2 keeps the same phases for the choice set CT1 (self) and CT2 (self and partner).



Hancock, Broekaert, Hess and Choudhury 26

4. CONCLUSIONS692

The growing interest in moral decision-making in choice modelling calls for the development of693

appropriate model specifications. The present paper has focussed on quantum probability and694

demonstrated that quantum rotations, as well as complex phases, accurately capture an implicit695

change in decision context when a more salient moral element enters the dimension of choice.696

For our first choice paradigm with a ‘Taboo trade-off’, we find that models containing a per-697

spective operation implemented by both rotations and complex phases do not significantly improve698

upon models with just one of these features. This however is not the case for the second choice699

paradigm with a moral component due to choices impacting the partner, in which our combined700

model with a perspective operation that has both features outperforms simpler specifications. Fur-701

ther work is thus required to establish the relative strengths and merits of these different features702

for the decision-maker’s implicit perspective change, with it being possible that the first choice sce-703

nario is too simple (in having only two alternatives) to merit further model features. Importantly,704

quantum models have the potential to offer better performance than more conventional approaches705

in both datasets, as shown by our empirical results.706

Overall, whilst the results for the quantum choice models in this paper are promising, it is not707

clear that they are distinctly better than those of Hancock et al. (2020). This implies that we cannot708

necessarily attribute the success of the quantum rotations and complex phases to the fact that there709

are moral components in the choices modelled. This is particularly clear from the result that our710

quantum model already has better model fit than the random regret model for the second dataset711

tested in this paper before the moral component was captured through the additional quantum712

model features. Further tests of quantum probability theory based models could shed light on713

whether they are models that are particularly suited to moral decision-making with salient attribute714

scenarios, or whether they are suitable for decision-making in general.715

Further models should consider different sorts of moral choice data and scenarios. For exam-716

ple, quantum models may be well suited for modelling choices made in ‘moral machine’ choice717

tasks. The application of these models to choice scenarios where multiple individuals disagree,718

communicate and reassess on what is their ‘most ethical’ choice would be particularly interesting.719

On such socially sensitive matters moreover, results may also differ significantly for revealed pref-720

erence datasets due to continuing concerns about external validity of stated moral choices (Bauman721

et al., 2014).722

Closer to our present study, given that quantum models explicitly assume that a decision-maker723

is uncertain about their choice, an ‘indifferent’ (or equivalently a ‘neither’) alternative may be bet-724

ter modelled not as a separate alternative, but based on the superposition principle. The indifferent725

belief state would be expressed through a superposition of the belief states for each of the two726

choices. Such a superposition could contain a relative complex phase, which could depend on727

specific attributes of the alternatives. Such an approach would then resort to an interference effect728

between the belief states supporting the respective choices. The representation space would be729

smaller again - a 2-dimensional Hilbert space, and its choice probabilities renormalised to include730

the third - indifference - option. Other extensions to explore scenarios with an indifference option731

could make the indifference-component of the belief state explicitly dependent on the attributes of732

the choices (as a contrast to Eq. 15). Such a function could, for example, express an additional733

effect at play in the balance of the two other choices; the indifference between two very favourable734

alternatives may be less prominent than the indifference between two pale alternatives - due to a735

lack of interest. A further theoretical development of the quantum model could incorporate the im-736
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pact of previous choices through a carry-over parameter that modifies the amplitude of the present737

quantum perspective operation. Finally, another next step could be to test the decision-maker for738

explicit ethical answerability of the choice alternatives first. For example, in the taboo trade-off739

paradigm, a decision-maker’s explicit change of perspective could then be further analysed from740

the tensorial belief state (Status Quo, New Policy) ⊗ (Ethical, Not-Ethical), and compared to a test741

where only an implicit change of perspective is assumed.742

Whilst we include a discussion on various parameter ratios, one clear weakness of the new743

quantum choice models developed here is that, by not being grounded in microeconomic theory,744

they cannot be used to compute context independent welfare measures. This is a common limi-745

tation of all models that include departures from a random utility framework. With our previous746

work (Hancock et al., 2020) demonstrating that quantum choice models can produce forecasts and747

elasticities, further research is needed to establish how the outputs can be used in an appraisal748

context.749

Overall, however, our results indicate that choice models with a quantum probability frame-750

work have vast potential, both within moral choice scenarios and more generally.751
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