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Chapter 3: Multilevel models for age-period-cohort analysis 

Andrew Bell and Kelvyn Jones 

To be published in Bell, A (ed, 2021) Age, Period and Cohort Effects: Statistical Analysis and the 

Identification Problem. Routledge 

Abstract 

Multilevel models (aka mixed models, random effects models, hierarchical linear models) have been 

used widely when considering age, period and cohort effects. In some cases, this is presented as a 

solution to the identification problem, for example the ‘Hierarchical APC model’. This chapter will 

show why this is not the case, using both simulations and real-data examples, illustrating why mixed 

models produce the results that they do, and showing that those results are often not in line with the 

underling reality. Whilst mixed models may allow APC models to be identified, they do so by making 

strong assumptions that are implicit in the model design and data structure. The chapter will go on to 

show ways in which mixed models can be used, not as a solution to the identification problem, but as 

a way of framing APC models that makes the assumptions of those models explicit. This is illustrated 

using examples of mental health in the UK at the turn of the 20th/21st century, and changes in mortality 

across the 20th Century. 

Last updated 10.12.18  



4.1 Introduction 

Over the last 30 years, multilevel models (also called mixed models, random effects models, and 

hierarchical linear models, depending on the discipline) have become one of the most-used statistical 

methods in the social science. The models are able to separate variation in a dependent variable into 

a number of different ‘levels’ with different units, and have allowed a nuanced understanding of how 

much different sources of variance matter. They have allowed, for instance, understanding of how 

much schools (in comparison to individual attributes) matter for educational attainment (O’Connell 

and McCoach, 2008); how much hospitals matter to patient outcomes (Leyland and Goldstein, 2001), 

and how much neighbourhoods or countries affect individuals that live within them (Jones, 1991). 

The age-period-cohort identification problem can also be thought of as a problem of partitioning 

variance into different parts – that is, understanding to what extent change in a given outcome’s 

variance is dependent on age, period and cohort. Not only that, but longitudinal data that is often 

used to attempt APC identification is inherently multilevel (Bell, 2019; Fitzmaurice et al., 2011). Panel 

data consists of individuals measured on multiple occasions, creating a multilevel structure of 

occasions nested in individuals. Repeated cross-sectional data consists of individuals nested within 

surveys. As such, it is perhaps unsurprising that multilevel models have become a key focus of age-

period-cohort analysis, both as a framework through which to specify identifying constraints (see 

chapter 2), and as a potential solution to the identification problem itself. 

This chapter discusses those models, and the extent to which they provide a useful framework for the 

analysis of age-period-cohort effects. We will also show why these models do not work as a solution 

to the age-period-cohort identification problem, and why multilevel age-period-cohort models 

produce the potentially biased results that they do. If you have read the preceding chapters, it will not 

surprise you to learn that much like the Intrinsic Estimator (chapter 3), these models are not panaceas 

that solve the identification problem – indeed we show that these models make implicit assumptions 

that are as strong as any made by other models. The purpose of this chapter is to make the models 



implicit assumptions explicit, so that researchers can fully understand the strengths and limitations of 

multilevel models, and make decisions about when these models will and will not be useful. 

The chapter proceeds as follows. First, we give a brief introduction to multilevel models and how they 

work, before proceeding to thinking about how such models could work in an age-period-cohort 

framework. We then discuss the different combinations of fixed and random parameters that we can 

use to estimate as age, period and cohort effects, and discuss what those different parameterisations 

mean in terms of the explicit assumptions that they make. We then focus in particular on the 

Hierarchical Age Period Cohort model (HAPC) (Yang and Land, 2006), which uses a multilevel model to 

attempt to disentangle APC and solve the identification problem – we show that it does not work as 

an all-purpose solution, and explain why it finds the results that it finds. Finally, we finish with a 

discussion of what the models discussed in this chapter can achieve, with examples focussing on 

mental health and mortality. 

4.2 What are multilevel models? 

Multilevel models are an extension of regression models, used when data spans multiple ‘levels’ – that 

is there are multiple units of analysis at which an outcome variable varies. These models are used 

extensively across the social science. In education research, there is often interest in how attainment 

is affected by different attributes of pupils, classes, and schools. In this instance, multilevel models 

can be used to find both how pupil, class and school attributes affect attainment, but also consider 

how individual classes and schools achieve higher and lower attainment, controlling for their 

measured attributes. 

A multilevel model might be specified as follows: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 

(4.1) 



In this 2-level model, 𝑌𝑖𝑗  measures the attainment of a pupil i in a school j. 𝑋1𝑖𝑗 is a pupil-level variable 

(for example, past performance in an exam). 𝑋2𝑗 is a school-level variable (for example, the size of the 

school. There are then two residual terms: 𝑢𝑗 the school-level residual, and 𝑒𝑖𝑗  the pupil-level residual. 

Both of these are assumed to be Normally distributed, with a mean of zero and a variance that is 

estimated. 

𝑢𝑗~𝑁(0, 𝜎𝑢2),  𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

(4.2) 

We can tell, from such a model, the effects of the measured variables (through 𝛽1 and 𝛽2), just like 

with single-level regression – we call this the ‘fixed part’ of the model as its effect is unchanging across 

school and pupil. Additionally, we are estimating the model’s ‘random part’, which includes the effect 

of unmeasured school effects (through the variance of the school-level residuals 𝑢𝑗) where ‘random’ 

simply means ‘allowed to vary’. Thus, we could answer questions around how much an attribute of 

schools (such as 𝑋2𝑗 above) is related to attainment, as well as how much schools seem to matter 

generally in comparison to unmeasured student attributes (through the estimates of the school 

variance 𝜎𝑢2 in comparison to the student-level variance 𝜎𝑒2. We can also use these models to consider 

attainment differences between specific schools once the variables in the fixed part of the model have 

been accounted for (on the basis of different estimated values of 𝑢𝑗). 

This is a two-level model (where the two levels are students and schools). However, the models are 

extendable to include additional levels (e.g. extending the above model to include three levels: pupis, 

classes, and schools). These levels do not need to be exactly nested in one another, such that one 

could include for example both a school and neighbourhood level in a model, to understand how both 

a pupil’s school and their home neighbourhood are related to their attainment. So, students at a given 

school might live in multiple neighbourhoods, and students that live in a particular neighbourhood 

might go to different schools. These models, where the levels are not exactly nested, are called cross-



classified models. Clearly, multilevel models are highly flexible at capturing the complex structures 

present in many social situations. 

Such models are frequently used with longitudinal data. When using panel data – data that follows 

individuals over time – we can use a multilevel structure of occasions (or, repeated measures) nested 

in individuals (that could be nested in further levels such as schools or neighbourhoods). When using 

repeated cross-sectional data – repeated surveys of the same population, but different samples each 

time – again, there is an inherent multilevel structure of individuals nested within surveys/years. 

Because of this, multilevel models are a standard way of modelling data over time. 

4.3 Why use multilevel models for age-period-cohort analysis? 

Given the use of multilevel models in longitudinal analysis, it makes sense that such models would be 

used, in some form or another, for analysing age, period and cohort analysis. Indeed, conceptualising 

at least period and cohort as ‘levels’ in a multilevel model makes a lot of sense. Periods and cohorts 

can be understood as contexts in which people exist – individuals are situated within the occasion of 

measurement, and they are situated within the generation (birth cohort) that they were born into. 

Just like neighbourhoods and schools influence individuals that reside within them, generations and 

occasions also have a conceptual top down effect on individuals. And whilst it is less conceptually clear 

that age can be thought of as a context (rather than an attribute of an individual), there is no technical 

reason why it should not be treated in that way, given individuals of the same age share common 

experiences at a given time of their lives. 

One could, therefore, at least in theory, estimate a model that treats all of age, period, and cohort as 

levels in a multilevel model, with each discrete value of the three terms treated as additive random 

effects: 𝑌𝑖𝑗 = 𝛽0 + 𝑢𝑝 + 𝑢𝑐 + 𝑢𝑎 + 𝑒𝑖  

𝑢𝑝~𝑁(0, 𝜎𝑢𝑝2 ), 𝑢𝑐~𝑁(0, 𝜎𝑢𝑐2 ),   𝑢𝑎~𝑁(0, 𝜎𝑢𝑎2 )  𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

(4.3) 



Here, p c and a represent discrete period, cohort, and age groups respectively, with 𝑢𝑝 giving the 

effect of being in year p, 𝑢𝑐 giving the effect of being born in birth cohort c, and 𝑢𝑎 giving the effect 

of being in age group a. This would imply a multilevel structure as shown in figure 4.1 

Figure 4.1: The multilevel structure specified by equation 4.3 

 

There are, however, a number of issues with models such as these. First, as mentioned in previous 

chapters, the identification problem is likely to be a problem in models like these if there are any linear 

effects present in the processes that generated the data. Interestingly, because age, period and cohort 

are treated as random effects, and so are subject to shrinkage (that is being pulled back towards a 

zero effect when unreliably estimated), these models will be identifiable, even when there is no 

grouping across APC years. This would not be the case in a fixed-classification model in which dummies 

are used to represent each and every age group, year, and birth year. However, this doesn’t mean 

that the estimates that are produced by the multilevel model will be correct. Second, the assumption 

that the random effects 𝑢𝑎, 𝑢𝑝 and 𝑢𝑐 are independent and identically distributed is likely to be 

incorrect. Consecutive years are likely to be more related to each other than years that are far apart 

in time; people born in 1950 are likely to be more similar to those born in 1951 than to those born in 

1980; and so on. 

Given this, it might make more sense to model a mixture of fixed and random classifications, with the 

fixed part modelling continuous, long-run changes, and the random part of the model providing 

estimates of discrete changes net of any long-run changes. However, this needs to be done on the 



basis of theory and an understanding of the APC processes that are being modelled. For instance, age 

is a parameter that is likely to have only a continuous effect – that is, it is unlikely there is a specific 

effect of being, for example, age 24, but rather an underlying smooth effect of getting older across a 

longer age range. It will usually make more sense, therefore, to model this as a linear (or polynomial) 

trend in the fixed part of the model, showing a smooth change in an outcome variable through the life 

course. This is not necessarily the case for periods and cohorts, where a specific event (like a war or 

an economic recession) might lead to an effect on an outcome related to a very specific year or birth 

cohort. There might also be a combination of these two sorts of effects – that is, there might be a 

continuous effect of successive birth cohorts, as well as more discrete effects associated with specific 

birth cohorts born in very specific moments in history. For example, in general people born longer ago 

have higher rates of mortality, whilst there are also specific events (being born during the Spanish flu 

epidemic of 1919, or the Dutch famine of 1944) that also additionally impact individuals’ mortality. 

As such, we want to develop a model that can model both of the above – smooth changes over time, 

and isolated events with discrete effects. Not only that, but if we model smooth effects in the fixed 

part of a multilevel model, it will account for much of the dependency across APC units, meaning the 

random effects assumptions are more likely to be met in modelling discrete effects. For example, we 

might believe that there is a smooth trend associated with age (with no additional discrete effects 

associated with particular ages). We might also think that there are only discrete period effects, and 

both discrete and smooth cohort effects. This would result in a model along the lines of: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝐴𝑔𝑒𝑖 + 𝛽2𝐴𝑔𝑒𝑖2 + 𝛽3𝐶𝑜ℎ𝑜𝑟𝑡𝑖 + 𝛽4𝐶𝑜ℎ𝑜𝑟𝑡𝑖2 +  𝑢𝑝 + 𝑢𝑐 + 𝑒𝑖 
𝑢𝑝~𝑁(0, 𝜎𝑢𝑝2 ), 𝑢𝑐~𝑁(0, 𝜎𝑢𝑐2 ),     𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

(4.4) 

Here, we have included a polynomial effect for age (estimated by 𝛽1 and 𝛽2) and cohort (𝛽3 and 𝛽4), 

and discrete random effects for period (𝑢𝑝) and cohort (𝑢𝑐). It would also simplify the multilevel 



structure implied by the model to that in figure 4.2 where Age is no longer a ‘structure’ but treated as 

a measured variable. 

 

Figure 4.2: Multilevel structure implied by equation 4.4 

 

 

One of the advantages of multilevel models is that they are highly extendable, and that applies to 

models like the above as well. We could add additional levels into a model like this – if we have panel 

data, we would usually include an additional individual-person level (see figure 4.3), and potentially 

further spatial levels (like neighbourhoods) as well (Bell, 2014). We could also add additional 

explanatory variables to the fixed part of the model which may represent measured attributes of 

individuals, birth cohorts and periods. The random effects are then the unexplained residual 

differences at each level net of the fixed effects of measured variables in the model. 

 

Figure 4.3: Multilevel structure implied by a model with panel data, extending figure 4.2 

 



We are, however, constrained in how many fixed classifications we can include in our model – that is, 

we can only include two of APC as linear effects in the model because of the identification problem 

(the other is constrained by the estimates of the other two to zero). This means that, in the model 

above, we are assuming that there is no continuous period trend – only discrete variation with no 

trend. As shown by O’Brien (2017), the choice of what variables we model as fixed effects will change 

the results that we find. Modelling two of APC as fixed effects will effectively set the trend of the third 

to zero. However, as we see later in this chapter, failing to model two of APC as fixed effects can lead 

to apparent arbitrary apportioning of effects to random effects which (a) will mean those effects are 

not independently and identically distributed, but more seriously (b) will produce solution to the 

identification problem that is based on the data’s structure and groupings, rather than the true data 

generating process. In other words, including fewer than two of APC in the fixed part of the model will 

not make the assumptions being made less strong – it will just make them less visible. 

4.4 The Hierarchical Age Period Cohort model 

One of a number of methods to appear in the literature in the early noughties is the Hierarchical Age-

Period-Cohort (HAPC) model (Yang and Land, 2006, 2013). The HAPC model is a version of the models 

described in the above section. It uses a specific combination of fixed continuous predictors and 

discrete random effects: age as a polynomial in the fixed part of the model, and period and cohort as 

discrete random effects (as in figure 4.2), meaning the model can be specified as in the equation above 

but without the cohort fixed parameters: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝐴𝑔𝑒𝑖 + 𝛽2𝐴𝑔𝑒𝑖2  +  𝑢𝑝 + 𝑢𝑐 + 𝑒𝑖 
𝑢𝑝~𝑁(0, 𝜎𝑢𝑝2 ), 𝑢𝑐~𝑁(0, 𝜎𝑢𝑐2 ),     𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

(4.5) 

The logic of the model may be apparent to the reader given the above discussion. It makes sense to 

think of age as a continuously changing random effect, because discrete effects of specific ages are 



rarely plausible, and because it is conceptually an attribute of the individual (i in the equation above). 

Similarly, period and cohort are indeed contexts in which an individual resides, much like 

neighbourhoods or schools, and other spatial contexts that are frequently modelled in this way. 

However, this does not mean that it solves the problems identified above, most notably the 

identification problem. And yet, the model has been used in a range of different social science and 

health disciplines as if it were a solution to the age-period-cohort identification problem (for examples, 

see: Dassonneville, 2013; Reither et al., 2009; Schwadel, 2010), and the authors of the method have 

claimed that the model does indeed solve the identification problem: 

“An HAPC framework does not incur the identification problem because the three effects are 

not assumed to be linear and additive at the same level of analysis” (Yang & Land, 2013:191). 

“The underidentification problem of the classical APC accounting model has been resolved by 

the specification of the quadratic function for the age effects” (Yang & Land, 2006:84). 

If you have read the previous chapters, it is likely that you will already be somewhat sceptical of these 

claim, and that, with only one of APC specified in the fixed part of the model, it is likely that near-linear 

APC effects will be mis-apportioned. And indeed, simulation studies have shown that linear or near-

linear APC trends can be incorrectly apportioned using the HAPC model (Bell and Jones, 2014a; Luo 

and Hodges, 2016). For instance, we were able to replicate Reither et al’s (2009) study of obesity, 

using data generated in a quite different way from the results found by both them and us (Bell and 

Jones, 2014b). Follow-up commentaries have shown that, even for data that is not linearly generated, 

and even when there are all of age, period and cohort effects present in the processes that generated 

the data, the model can radically mis-apportion APC effects (Bell and Jones, 2015c, 2018). 

4.5 Why do multilevel APC models produce the results that they do? 

We have already discussed that the choice of fixed-part APC parameters affect the results that are 

likely to be produced. If we include two of APC in the fixed part of the model, the third one will 

automatically be set to a trend of zero, and the other two trends will adjust to accommodate this 



constraint. For example, if the true data generating process consists of a period trend with a gradient 

of 1 unit, but only age and cohort are included in the fixed part of the model, that period trend will be 

estimated as zero, and the cohort and age trends will be overestimated by 1 unit. That is, APC trends 

are tied to each other – if we constrain one to be wrong, the other two will also be wrong to the same 

extent to adjust the predictions of the model to be accurate. 

Given the inflexibility of a model with two of APC in the fixed part of the model, it might be tempting 

to think that including fewer than two of APC in the fixed part of the model might be more effective. 

It is this that inspires the use of the HAPC model (equation 5), and could also be used to justify the use 

of a model along the lines of equation 3, which treats all of APC as random variables. Unfortunately, 

this doesn’t solve the problem – all it does is make it less clear precisely what assumptions the model 

is making. However, the model is still making strong, but implicit, assumptions, meaning that 

misleading inference is still likely to occur. 

So what does drive a model like the HAPC model, or the fully-random model in equation 4.3, to 

produce the results that it does? The answer lies in two things: the data collection process and 

resultant structure of the data being used, and the ways in which multilevel model estimators aim to 

maximise model fit. 

The vast majority of APC analysis uses data that is collected in waves. That is, data is collected for an 

approximately representative sample, across all age groups, on a number of occasions. The result of 

this is that we could plot an age-by-period diagram of our data, and that diagram would be 

rectangular. It might be easy to think that this is the only way data can be collected, but in reality a 

number of other structures are, or could be used. For instance, cohort studies collect a sample of 

people born in a given year, and follow them through the rest of their lives. It isn’t possible to study 

APC effects with a single cohort (because age and period are exactly collinear, and cohort is non-

varying), but we can have variation in all three by combining multiple cohort studies together. This 



produces a dataset that, when arranged in an age-by-cohort array is rectangular but will be in the form 

of a parallelogram when arranged age-by-period (see figure 4.1). 

 

Figure 4.4: data structures associated with panel / repeated cross-sectional data and repeated 

cohorts, when arranged age-by-year and arranged age-by-cohort. The arrows represent cohorts 

progressing through the life course. It should be noted the large number of cohort groups that exist 

with panel / repeated cross-sectional data compared to the number of years. 

 

 

These differences in data structures may seem like they should be unimportant for the inference that 

models would produce, but it turns out that they have important characteristics that can influence 

the results produced by the models. Most notably, with repeated cross-sectional and panel data there 

will always be a wider range of cohorts than there will be years of measurement. For example, 

consider a panel dataset that runs every year between 1991 and 2008 (such as the British Household 

Panel Survey) with individuals aged between 18 and 70. This will have year groups spanning 18 years, 

but cohorts spanning from 1921 (those 70 in 1991) to 1990 (those who are 18 in 2008) – a 69 year 

range for birth cohorts. 



Now, imagine there is a linear effect of period, of strength 1 (such that for every year that passes, we 

would expect an increase in the dependent variable of 1). If that were to be modelled in a multilevel 

model with period residuals, the size of those residuals would depend on the range of the periods – a 

wider range would lead to bigger residuals to account for bigger differences. Similarly, if there were a 

linear effect of cohort, of strength 1, that were modelled by birth cohort residuals in a multilevel 

model, the size of these residuals would also depend on the residuals for that data frame. This is 

visualised in figure 4.5 (from Bell and Jones, 2018, p787). 

Given the identification problem, we know that statistical models will reapportion APC linear effects 

in such a way to maximise model fit. In this case, high values of residuals would imply a worse model 

fit, since these residuals count as unexplained variance in the random part of the model. If we consider 

the HAPC model (equation 4.5), we would expect the model to apportion any trend to period rather 

than cohort, because the ‘cost’ of the residuals in terms of model fit is lower. If there were a linear 

cohort trend of magnitude 1, it would make sense for the model to reapportion this; given Cohort = 

Period - Age, it could reapportion this as a Period trend of magnitude 1 and an Age trend of magnitude 

-1. The Age trend has no additional cost to the model’s fit, since it is absorbed in the fixed part of the 

model, whilst the period trend is low cost in comparison to the equivalent cohort trend of the same 

magnitude. As such, in that situation the model is likely to find the wrong answer – it is in effect 

assuming there is no cohort effect, and modelling any change over time as a period effect. 

Note that, if using repeated cohort data, we would expect the results to be reversed, because the 

range of years would be much greater than the range of cohorts. For other multilevel models, for 

example that in equation 4.3, the answer is more complex, since an age trend would also need to be 

modelled in the random part of the model, making the trend costly in terms of model fit. The results 

are likely to depend on the range of the age variable, but O’Brien, (2017) finds that, at least in some 

cases, such a model sets the cohort trend to close to zero, so would be likely to produce results similar 

to that produced by the HAPC model. The result is also likely to vary as a result of grouping periods 



and/or cohorts unevenly (Bell and Jones, 2018). The key point, however, is that these models are not 

apportioning affects based on actual APC processes. They are being apportioned based on the 

structure of the data being used. 

 

Figure 4.5: Estimated cohort and period residuals associated with a cohort and a period linear 

effect of magnitude 1. Reproduced from Bell and Jones (2018, p787). 

 

 

4.6 What Multilevel APC models should researchers use? 

This should make for sober reading for anyone considering using multilevel models as an automatic 

way of getting around the APC identification problem. Whilst these models do not always make any 

obvious explicit assumptions with regard to APC trends, they do always make implicit assumptions 

that are as strong as those made in other APC models, such as those outlined in the previous chapters. 

However, this is not to say that models such as these do not have value. The ability to estimate linear 

(and other polynomial) long-run effects in the fixed part of the model, as well as discrete random 

changes in the random part, is really powerful and allows for quite nuanced analysis of how APC 



effects operate. However, this needs to be done with an awareness that the identification problem 

cannot be solved, and that we need to make explicit assumptions and justify them with theory. 

Given this, a model such as that in equation 4.4 might be a sensible one, if we are willing to assume 

that period trends have no continuous trends (that is, whilst there is random fluctuations from one 

year to the next, perhaps because of economic shocks, there are no long-run changes that are a result 

of period trends). This is often a reasonable assumption to make, where there are theoretical reasons 

why we would expect change over time to be a result of successive cohort replacement rather than 

years passing. This is the approach taken by Bell (2014) in his analysis of APC effects on mental health, 

and discussed further below (see also Delaruelle et al., 2015 for a similar approach). Alternatively, if 

we were able to assume the opposite (that periods drive change over time), we would want to include 

period in the fixed part of the model, and not cohort. Theory, plausibility and research questions, 

accompanied by a sceptical openness, are needed to derive an appropriate model specifications and 

analysis. 

We do not have to assume a particular parameter has a linear slope of zero. We could, instead, 

constrain one of the fixed part parameters in the multilevel model to a particular value, potentially in 

a Bayesian framework by applying a strongly informative prior to that parameter (Bell and Jones, 

2015b). This could be useful if, for instance, you have a strong idea of what the age trend of a variable 

should look like; for medical outcomes, we might have medical reasons for being able to assume an 

age trend, constrain the age parameter to that value, and then estimate period and cohort trends 

assuming the constraint on the age parameter is reasonable (for an example of this, see Van der Bracht 

and Van de Putte, 2014). It might be that we cannot know an exact constraint on a parameter, but 

might be able to impose some bounds on a parameter: for example, that any age effect will be positive 

(greater than zero). A combination of such constraints might lead to boundaries within which the true 

linear APC effects must lie (see chapter 7, also Fosse and Winship, 2016). Finally, one could use a range 

of constraints, compare the different combinations of APC trends that those different constraints 



produce, and come up with an argument for which combination is the most plausible. The important 

point is that, in each case, the constraint that is made and the process by which it is assumed is made 

explicitly so that a reader can judge the validity, or otherwise, of that assumption. 

Finally, in some situations we are not interested in long run change, and only interested in discrete 

shocks. In this situation we can use a multilevel model like that in equation 4.4, but ignore the fixed 

part estimates entirely, only interpreting the random part estimates. We can use a method like this to 

find, for instance, period and cohort effects related to specific years of measurement or years of birth. 

However, we need to be careful not to mis-interpret these results by assuming that the linear effects 

do not exist – for instance, a non-linear trend in random effects might mean something very 

substantively different when a linear trend is included. However, sharp discrete changes in those 

random effects can often be interpreted, as we will see in the second example below. 

We now present two examples that take some of the approaches outlined above: first a study of 

mental health that assumes a zero period effect, and second a study of mortality that ignores the 

estimated fixed part estimates entirely, and considers only discrete changes around those trends, 

estimated in the random part of the model. In each case, R code to guide readers in how to implement 

such multilevel models is provided online. 

4.7 Example 1: Mental Health in the UK, 1991-2008 

How does an individual’s mental health change over their life course? There is some literature (e.g. 

Blanchflower and Oswald, 2008) which suggests that it takes a U-shaped pattern, with mental health 

worsening to midlife, and then improving into old age. However, this is often based on cross-sectional 

data (where the life course effect is confounded with cohort, and even when longer-term data is used, 

the problem of APC identification problem. 

Bell (2014) and Bell and Jones (2015a) used a multilevel model in order to attempt to find whether 

this U-shape really exists when cohorts are controlled, using data from the British Household Panel 

Survey (BHPS), which runs from 1991-2008 in the UK. They used a model like that in equation 4.4, 



where Y is the score in the General Health Questionnaire (GHQ - Goldberg and Williams, 1988), a 

measure of mental health measured from 0 to 36, where high scores indicate worse mental health. 

The model used included age and cohort polynomials in the fixed part of the model, and so assumed 

that there were no period trends, on the basis that “there is no reason to expect a continuous period 

trend across periods affecting all ages. Cohorts, through the nature of individuals’ upbringings, more 

plausibly explains how changes in mental health could occur over time” (Bell, 2014, p23). Because the 

data is panel, the structure was that depicted in figure 4.3, with additional household and local 

authority levels. 

The results showed that, in fact, when the assumption of no period effects is made, there is no U-

shaped relationship between age and mental health – in contrast, mental health worsens throughout 

the life course (see figure 4.6a). Whilst the assumption of no period effects is arguably contentious, it 

is no more contentious than any other assumption that would need to be made to meaningfully 

identify an APC model. 

The model was further able to identify discrete period effects (figure 4.6b), and both discrete and 

continuous cohort effects (combined in figure 4.6c) that suggested a general trend of worsening 

mental health with successive cohorts. 

 

  



Figure 4.6: Predicted GHQ scores for different values of age, period and cohort. (a) fixed part 

continuous age effect, (b) fixed part continuous cohort effect combined with discrete random-part 

cohort effect, (c) discrete random-part period effect. Taken from Bell and Jones (2015a, p208-210). 

 

 

4.8 Example 2: Mortality in the UK through the twentieth century 

There are many things that have led to changes in mortality over the last 100+ years. First, mortality 

has reduced, as a result of medical and public health advances, implying the presence of continuous 

period effects, or cohort effects, or both. There is also, of course, changes in mortality as individuals 

age – that is, the likelihood of death increases as an individual ages. However, these trends are likely 

to be subject to the identification problem, and, in the absence of good theoretical reasons to 

constrain one of age, period and cohort, it would be impossible to find such APC effects robustly. 



However, as well as this more long-run changes, we also expect to find discrete event-based period 

and cohort effects related to events in particular years. In particular, we would expect wars and 

disease epidemics to have effects both on those who lived in those times (a period effect), and also 

those who were born or brought up in those times and carried on through their lives (a cohort effect). 

Because these are not linear or near-linear trends, they can be identified, potentially through a 

multilevel model. 

This was the approach undertaken by Jones et al. (2018) alongside some more graphical techniques 

(see chapter 5). They used a Poisson multilevel model to model data from the Human Mortality 

Database (1922-2016), that has data on mortality across all years and all age groups (University of 

California and Max Plank Institute for Demographic Research). The model is thus specified as follows: 

𝐿𝑜𝑔𝑒(𝐷𝑒𝑎𝑡ℎ𝑠𝑖) = 𝐿𝑜𝑔𝑒(𝐸𝑥𝑝𝑖) + 𝛽0 + 𝛽1𝐴𝑔𝑒𝑖 + 𝛽2𝐴𝑔𝑒𝑖2 +  𝛽3𝑃𝑒𝑟𝑖𝑜𝑑𝑖 +  𝑢𝑝 + 𝑢𝑐 

(4.6) 

The outcome is the natural log of the number of deaths, with an offset being the natural log of the 

expected number of deaths (that is, the number of deaths, given the population size, we would expect 

if deaths were distributed evenly. The inclusion of the offset means that, instead of modelling the 

outcome of (log) number of deaths, the outcome effectively becomes the (log) mortality rate for the 

given age-year cell. Age and period are specified in the fixed part of the model, but any two of APC 

could be used, given the aim is simply to soak up the long run APC effects. The result is that the period 

and cohort residuals should be free of linear trends, allowing us to model non-linear discrete changes 

more appropriately. The level 1 residuals are assumed to follow a Poisson distribution, whereby the 

variance is equal to the mean, and the period and cohort residual differentials are assumed to be 

Normally distributed. 

These period and cohort residuals are shown below in figure 4.7 for men. It can be seen that there is 

some non-linearity in these figures – however this should not be over-interpreted – this is a long-run 



but non-linear change not fully captured by the fixed-part age and period parameters, and it’s meaning 

may well be different when combined with any linear trends that have been controlled out in the fixed 

part of the model. What we can consider, however, are any non-linear discrete changes that occur in 

this data. In this regard we can see some very clear cohort effects that appear to have produced an 

increased mortality for people born in 1919, and decreased mortality for people born in 1948. In terms 

of period effects, again there are potentially misleading non-linearities, but there also appear to be a 

significant increase in mortality associated with the early 1940s. 

There are some clear reasons why such effects might have occurred. 1919 corresponds with the 

outbreak of the Spanish flu, which as well as causing high levels of mortality at the time, is also known 

to have had more long-lasting damage to young people at the time, including children born with pre-

natal exposure to the disease (Almond, 2006). This corroborates the idea that a higher mortality risk 

associated with the Spanish flu followed individuals in that birth cohort through the rest of their lives. 

The opposite effect, associated with the year 1948, corresponds to the formation of the NHS and other 

post-war improvements in public health. It seems that those measures had a positive effect on those 

born at the time, suggesting that improvements in prenatal and antenatal healthcare were particularly 

valuable, and stayed with those individuals through their continuing lives. For period effects, there 

appears to be an effect of the second world war – unsurprising given the large number of lives lost at 

that time. 

  



Figure 4.7: Cohort and period level residuals conditional on continuous trends estimated in the fixed 

part of the model (𝑢𝑐 and 𝑢𝑝 in equation 4.6), on male mortality. 

 

 

4.9 Conclusion 

Multilevel models present a useful tool for considering age period and cohort effects. This is because 

data that can be used for APC analysis is inherently multilevel, because longitudinal data always has 

some kind of structure. However, multilevel models do not provide a solution to the identification 

problem – rather a structure around which the identification problem can be considered, and 

appropriate and strong assumptions made in order to make the models produce robust results if those 

assumptions are justified. 

Whilst others have suggested multilevel models present a potential automatic solution to the 

identification problem, this is not the case: such multilevel models may be identifiable, but they tend 

to apportion APC near-linear effects on the basis of the structure the data being analysed, rather than 

the true effects present in the processes that generated the data. As such, multilevel models need to 

make assumptions that are justified by theory and made explicit, or ensure that only discrete non-

linearities are interpreted. 

In sum, multilevel models present opportunities for APC analysis, but are not a magic bullet – they are 

not a solution to the identification problem because no such solution can exist. 
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