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SUMMARY

The surface energy a phase-field approach to brittle fracture in anisotropic materials is also anisotropic
and gives rise to second-order gradients in the phase field entering the energy functional. This necessitates

C1 continuity of the basis functions which are used to interpolate the phase field. The basis functions
which are employed in IsoGeometric Analysis, such as Non-Uniform Rational B-Splines and T-Splines
naturally possess a higher-order continuity and are therefore ideally suited for phase-field models which are
equipped with an anisotropic surface energy. Moreover, the high accuracy of spline discretisations, also
relative to their computational demand, significantly reduces the fineness of the required discretisation.
This holds a fortiori if adaptivity is included. Herein, we present two adaptive refinement schemes in
isogeometric analysis, namely, adaptive local refinement and adaptive hierarchical refinement, for phase-
field simulations of anisotropic brittle fracture. The refinement is carried out using a subdivision operator
and exploits the Bézier extraction operator. Illustrative examples are included which show that the method
can simulate highly complex crack patterns such as zigzag crack propagation. An excellent agreement is
obtained between the solutions from global refinement and adaptive refinement, with a reasonable reduction
of the computational effort when using adaptivity. Copyright c© 2018 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

The numerical simulation of fracture is a technically relevant and scientifically challenging issue.

Since the early simulations in the 1960s two parallel strands have been pursued, namely discrete and

smeared methods [1]. While in the former approach cracks are treated as geometric discontinuities,

leading to topological changes, see e.g. recent work which utilises spline technologies to model

the discontinuity [2, 3, 4, 5], in the latter approach the discontinuity is modelled by distributing

it over a small, but finite width [6]. The early attempts appeared to be deficient in the sense that

they caused loss of well-posedness of the boundary value problem at, or close to structural failure.

The concomitant grid sensitivity then prevents to obtain physically meaningful answers. While a

host of solutions have been proposed to remedy this issue, gradient-enhanced damage models have

proven to be particularly powerful for modelling fracture in quasi-brittle and ductile materials [7].

Recently, phase fields have been used to describe brittle fracture in an elegant and mathematically

well-founded manner [8, 9, 10, 11]. Phase fields can be classified as a smeared approach, and bear

much similarity to gradient-enhanced damage models [12].

∗Correspondence to: R. de Borst, University of Sheffield, Department of Civil and Structural Engineering, Sheffield S1
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2 LIN CHEN, BIN LI, RENÉ DE BORST

The phase-field approach to brittle fracture finds its origins in the so-called variational approach to

fracture [8]. Herein, crack initiation and quasi-static propagation were considered as a minimisation

problem of a Griffith-like energy functional. To make the problem amenable to large-scale

computations a regularisation strategy was developed subsequently, which transforms the sharp

crack into a distributed crack, which is governed by a phase-field variable c. The width of the

distributed crack is set by an internal length scale ℓc [13]. The resulting functional contains first-

order derivatives of the phase-field variable. This fits naturally in a standard C0 Galerkin approach,

and therefore enables the use of standard finite element procedures.

In the vast majority of phase field models have been applied to the analysis of brittle fracture in

materials with an isotropic surface energy, e.g. [13, 14, 15, 16]. Nevertheless, many natural and man-

made materials have an anisotropic surface energy owing to their microstructure, for instance caused

by the manufacturing process. This anisotropic character can significantly influence the crack path,

for instance in single crystals, in geological materials, in rolled aluminium alloy plates, in fibre-

reinforced composites, or in extruded polymers, e.g., [17, 18, 19].

Different from materials with an isotropic surface energy, higher-order gradients enter the

functional which describes brittle fracture in materials with a strongly anisotropic surface energy

[20, 21, 22, 23], inspired by the extended Cahn-Hilliard phase-field model proposed in the context

of crystal growth and solidification. Preliminary numerical simulations [20], carried out using a

meshfree discretisation method, appeared to well reproduce crack patterns observed experimentally

[24].

Indeed, the presence of higher-order, in this case second-order derivatives of the phase-field

variable in the resulting functional, requires a C1 interpolation of the phase field, which precludes

the use of standard C0 finite elements. Next to the use of meshfree methods [20], mixed finite

element formulations can be used to achieve C1 continuity, similar to formulations for plates and

shells. Another, very natural approach is the use of B-spline technologies, as promulgated the

past decade through IsoGeometric Analysis (IGA). B-splines, or to be more precise, Non-Uniform

Rational B-Splines (NURBS) have been used before in the context of phase-field analyses of brittle

fracture [25], but there the necessity to use a C1 approximation arose from the wish to use a spatial

distribution for the phase field which is smooth at the centre of the phase field, rather than showing

a kink as in most phase-field models for brittle fracture, e.g. [10, 11]. Herein, the expression for

the surface energy which is dictated by the physics of (strongly) anisotropic brittle fracture is the

sole motivation for the inclusion of higher-order terms, which necessitates the choice for a smooth

interpolation of the phase-field variable.

Different from previous works which exploit IsoGeometric Analysis in the phase-field approach

to brittle fracture, we use T-Splines as the basis functions. This has several advantages. To begin

with, it allows us to pre-define the continuity of the basis functions during their construction [26].

Moreover, T-spline technology departs from the rigid tensor-product structure of NURBS and less

control points are required when defining a complex geometry. In this contribution, we will further

pursue these advantages and enhance them by using adaptivity, i.e. locally refined and hierarchical T-

splines [27, 28]. Indeed, the higher accuracy provided by B-spline technology in general, combined

with adaptivity facilitated by T-splines, can be important steps to make the phase-field approach to

fracture practical, in the sense that the number of degrees of freedom remains reasonable also for

bigger and more complex problems. Compatibility with standard finite element data structures is

ensured through the use of Bézier extraction.

This contribution aims at developing an efficient and accurate solution strategy for distributed

fracture modelling of materials that are governed by an anisotropic surface energy, see Section 2 for

a succinct introduction to phase-field modelling of brittle fracture in such materials. As discussed,

we have discretised the phase field using T-splines, and Section 3 gives a brief overview of the

construction of the Bézier extraction operator and the subdivision operator for T-splines. In Section

4 we discuss the implementation of the adaptive local and hierarchical refinement. With that, all

the necessary ingredients are in place to describe the algorithm for an element-based, adaptive

isogeometric finite element method for higher-order phase models, and a range of examples show

the versatility of the approach.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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PHASE-FIELD MODELLING USING ADAPTIVE ISOGEOMETRIC ANALYSIS 3

Figure 1. Two-dimensional crack Γ at an angle θ and with a unit vector n normal to the crack path.

2. PHASE-FIELD APPROXIMATIONS OF ANISOTROPIC FRACTURE

In the variational approach to fracture [8] crack initiation and quasi-static crack propagation are

considered to be equivalent to the minimisation of a Griffith-like energy functional. Herein, we

consider a cracked body Ω ⊆ Rn with prescribed displacements û on Γu and tractions t̂ on Γt. The

total energy functional for the cracked body then reads:

E (u,Γ) =

∫

Ω\Γ

W(u) dΩ−

∫

Γt

u · t̂ dΓ +

∫

Γ

Gc(n) dΓ, (1)

where the first term refers to the elastic energy stored in the cracked body, W(u) being the energy

density function. We henceforth consider isotropic linear elasticity, i.e. W(u) = µ ε(u) · ε(u) +

λ/2 tr(ε(u))
2

with εεε the small-strain tensor, and λ and µ Lamé’s constants. The second term is

the potential energy of external forces, while the last term represents the (anisotropic) fracture

surface energy in the sense of Griffith’s theory of brittle fracture, and Γ is the discontinuity in

the displacement field.

Materials with an anisotropic surface energy are characterised by an orientation-dependent

fracture toughness Gc(n), where n is the unit vector normal to the crack surface, see Figure 1.

In a two-dimensional setting, n can be replaced by an angle θ, and the surface energy can be

parametrised as Gc(θ). In this study, the orientation-dependent fracture toughness is written as

Gc(n) = G0 γ(n), where G0 is a scaling factor with the dimension of energy per unit surface and

γ(n) represents a dimensionless function of the normal vector n. With this definition, Eq. (1) can

be transformed into:

E (u,Γ) =

∫

Ω\Γ

W(u) dΩ−

∫

Γt

u · t̂ dΓ + G0

∫

Γ

γ (n) dΓ, (2)

Direct numerical implementation of Griffith’s energy functional, Eq. (2), is challenging because

of the unknown location of the displacement jump. To transform the discrete crack problem into a

distributed or smeared model a regularisation strategy has been proposed [13]. In this framework,

cracks are represented by a scalar phase-field variable c, which ranges from 1 (the completely broken

state) to 0 (fully intact material, away from the centre of the crack), which varies smoothly over a

band of finite width, see for instance Francfort and Marigo [8] for the energy functional of materials

characterised by an isotropic or weakly anisotropic surface energy.

As argued in the Introduction, materials with a strongly anisotropic surface energy exist and are

technically relevant. To introduce such a more general anisotropy in the phase-field approach to

brittle fracture, higher-order tensors and higher-order derivatives of the phase-field variable must

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



4 LIN CHEN, BIN LI, RENÉ DE BORST

be included [20]. To make the variational approach to brittle fracture also amenable to large-scale

computations under such requirements, the energy functional of Eq. (2), which is applicable to a

discrete crack, is replaced by the functional [23]:

Eℓ (u, c) =

∫

Ω

a(c)W(u) dΩ−

∫

Γt

u · t̂ dΓ +
G0

βℓc

∫

Ω

(

w(c) + ℓ4c ∇
2c : C : ∇2c

)

dΩ, (3)

where a(c) = (1− c)2 is a degradation function, w(c) = 9c is a monotonically increasing function

which represents the energy dissipation per unit volume, and β = 4
∫ 1

0

√

w(c) dc = 96/5 is a

normalisation parameter. ∇2c is a Hessian, i.e. (∇2c)ij =
∂2c

∂xi∂xj
and C is a positive-definite fourth-

order tensor with the same symmetries as the linear elastic stiffness tensor [29]. Assuming a

cubic symmetry, three material constants, C1111, C1122 and C1212, suffice to define C. The damage

evolution then follows from (in a strong format) [20, 23]:

2ℓ4G0

β

(

2 (C1122 + 2C1212)
∂4c

∂x2∂y2
+ C1111

(

∂4c

∂x4
+

∂4c

∂y4

))

+W(u) a′(c)ℓ+
G0

β
w′(c) = 0,

(4)

complemented by the irreversibility condition ċ ≥ 0. The resulting anisotropic surface energy Gc(θ)
then takes the form [20, 23]:

Gc(θ) = G0
4

√

C(θ), (5)

with

C(θ) =
1

4
(3C1111 + C1122 + 2C1212)

(

1 +
C1111 − C1122 − 2C1212

3C1111 + C1122 + 2C1212
cos θ

)

. (6)

Finally, an internal length scale ℓc > 0 has been introduced, which governs the width of the

distributed crack. Typically, ℓc has a small value and several (Lagrangian) elements are needed to

properly capture the strain profile over the crack width. This usually leads to very fine meshes with

a concomitant computational burden. A significant advantage can thus be gained by using adaptive

mesh refinement. Using Eq. (6) the effective internal length ℓ(θ) then takes the form [20, 23]:

ℓ(θ) = ℓc
4

√

C(θ), (7)

The optimal crack profile in a normal cross-section of the crack now reads [23]:

c(x) = 1−
3

16

(x− x0)
4

ℓ4c(θ)
+

|x− x0|
3

ℓ3c(θ)
−

3

2

(x− x0)
2

ℓ2c(θ)
, x ∈ [x0 −D0, x0 +D0], (8)

where D0 = 2 ℓ(θ) = 2ℓc
4

√

C(θ) and the crack width is 2D0, see Figure 2(a). The surface energy is

called weakly anisotropic if Gc(θ) is convex and strongly anisotropic if Gc(θ) is non-convex [20, 23].

The convexity can be checked graphically through the polar plot of the reciprocal surface energy

Gc (θ), see Figure 2(b).

Equation (4) is a fourth-order partial differential in the phase-field variable, which results

in second-order spatial derivatives in the weak form. Clearly, C1 continuity is required for the

interpolation of the phase-field variable. Indeed, the solution space, which is also used for the

parameterisation of the geometry, should be constructed such that it allows for a higher-order

continuous representation of the phase field. To accomplish this, T-splines are employed, which can

produce higher-order continuous basis functions as well as exactly describe the geometry [27, 28].

There is a need to use fine discretisations, at least around the crack, in order to accommodate realistic

values for the internal length scale ℓc. Therefore, it is desirable to locally refine the area near the

crack path and adaptive refinement using T-splines is a powerful tool to achieve this. We will now

describe how this can be done using local and hierarchical refinement of T-splines.

3. BÉZIER EXTRACTION OF REFINED T-SPLINES

We first review the concepts of Bézier extraction of locally refined T-splines [27, 30]. The Bézier

extraction framework will be formulated such that it includes locally refined T-splines of a T-mesh,

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



PHASE-FIELD MODELLING USING ADAPTIVE ISOGEOMETRIC ANALYSIS 5

Figure 2. (a) Examples of the optimal crack profile c(x) centered at x0 for fully broken elastic bar. 2D0 is
the crack width. (b) Polar plot of reciprocal anisotropic surface energy Gc(θ).

which can be employed in adaptive isogeometric analysis. In the current contribution, we restrict the

initial T-mesh to be a structured T-mesh with a nested spline space, such as a semi-standard T-spline

mesh [27]. The same polynomial degree p is assumed in all parametric directions. A T-mesh T is

composed of quadrilateral elements with T-junctions. Elements are defined as non-zero parametric

areas which are confined by the edges of the T-mesh and the continuity reduction lines. An example

of a quadratic T-spline mesh is given in Figure 3(a). In the figure, anchors are prescribed in the

index and the parameter domains. For each anchor, a T-spline blending function N is defined by

a local knot vector Ξi (i = 1, · · · , n) with n the number of anchors on T [27]. A T-spline space

N = {Ni : supp Ni ∈ T } is constructed by the union of T-spline blending functions. A T-spline

surface S
(

ξ1, ξ2
)

is described by anchors and blending functions:

S
(

ξ1, ξ2
)

=
∑

α∈A

PαNα

(

ξ1, ξ2
)

γα, (9)

where A is the index set of anchors, Pα denotes the coordinates of anchors, and γα the scaling

weight, which enables the T-splines to satisfy the partition of unity property [27]. For completeness,

we consider a rational T-spline surface, see Figure 3(a):

S
(

ξ1, ξ2
)

=
∑

α∈A

PαRα

(

ξ1, ξ2
)

γα, (10)

where Pα =
(

x1
α, x

2
α, wα

)

contains the coordinates of anchor α. wα is the weight of anchor α. The

weighted coordinates of anchor α are Pw
α =

(

wαx
1
α, wαx

2
α, wα

)

. Rα (ξ) denotes rational T-splines:

Rα

(

ξ1, ξ2
)

=
wαNα

(

ξ1, ξ2
)

W (ξ1, ξ2)
=

wαNα

(

ξ1, ξ2
)

∑

α∈A wαNα (ξ1, ξ2)
. (11)

We represent T-splines as element-wise Bernstein shape functions to directly incorporate it in

standard finite element data structures [26]

Ne

(

ξ1, ξ2
)

= CeBe

(

ξ1, ξ2
)

, (12)

with Ce the element Bézier extraction operator for anchors with support over element e.

For refinement we can also insert a meshline instead of inserting an anchor [26], see Figure

3(b). Generally, anchor insertions and meshline insertions are equivalent techniques for adaptive

refinement [26]. In a T-mesh, a meshline ε must:

(i) not terminate in the centre of an element (knot span);

(ii) insert one line at a time;

(iii) span across at least p+ 2 knots.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 LIN CHEN, BIN LI, RENÉ DE BORST

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Anchors EdgesElementsContinuity reduction lines Inserted meshlines

Index and parameter domain Physical domain

(a) Initial T-spline surface

(b) Refined T-spline surface after meshline insertions

Figure 3. Example of a quadratic T-spline mesh. The object is given in the index domain (i, j), in the physical

domain (x1, x2), and in the parameter domain
(

ξ1, ξ2
)

.

A meshline insertion can be either a new meshline, an elongation of an existing meshline, a joining

of two existing meshlines, or increasing the multiplicity of an existing line [27].

Here we consider a T-mesh, T , with n anchors, see Figure 3(a). Now, we insert a series of single

meshlines, {εi}
n
i=1, in T , which results in Tr with nr anchors, see Figure 3(b). The T-splines N

associated with T are now described by T-splines Nr associated with Tr:

ΓN
(

ξ1, ξ2
)

= ΓSNr

(

ξ1, ξ2
)

(13)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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PHASE-FIELD MODELLING USING ADAPTIVE ISOGEOMETRIC ANALYSIS 7

where S is the refinement operator, which is obtained by using the Bézier extraction, Equation (12)

[27]. Γ denotes a diagonal matrix with the scaling weights γ of N, and N and Nr are T-spline

blending functions related to the T-mesh T and Tr, respectively.

Considering Equation (13), the scaling weight γr of Nr is derived as:

Υ
r = ΥS with Υ

r =
[

γr
1 , γ

r
2 , · · · , γ

r
nr

]

and Υ = [γ1, γ2, · · · , γn] (14)

with γr and γ are the scaling weights related to the T-mesh Tr and T , respectively. The weighted

coordinates of anchors on Tr are then derived as:

P
w
r = Γ

−1
r S

T
ΓP

w (15)

where Γr is a diagonal matrix with the scaling weight γr of Nr along the diagonal, see Equation

(14). Pw and P
w
r are column vectors with the control points related to the T-meshes T and Tr,

respectively.

4. LOCAL AND HIERARCHICAL REFINEMENT USING BÉZIER EXTRACTION

The most common adaptive refinement techniques for T-splines are hierarchical refinement and local

refinement (LR) by anchor insertions or meshline insertions in a T-mesh [31, 32]. These techniques

are normally implemented using the sub-division approach. Herein, we will use Bézier extraction.

First, some basic aspects of local and hierarchical refinement of T-splines are briefly summarised.

Then, implementation aspects will be given for adaptive refinement on the basis of T-splines. Finally,

the update of the state vector after adaptive refinement is given.

(a) initial T-mesh T1 (b) LR T-mesh T

Figure 4. Example of a quadratic LR T-mesh in the parameter domain. The green lines indicate meshline
insertions.

4.1. Local refinement of T-splines in IGA

We consider an initial T-mesh T1 with n anchors. Each anchor is associated with a local knot

vector Ξi (i = 1, · · · , n) and a blending function Ni

(

ξ1, ξ2
)

. We suppose that a sequence of single

meshlines {εi}
n
i=1 is inserted in T1, so that we obtain a nested Locally Refined T-mesh (LR T-

mesh), Tn, such that Tn ⊃ Tn−1 ⊃ · · · ⊃ T2 ⊃ T1, Figure 4. For the LR T-mesh T , one can define

LR T-spline blending functions N : R2 → R if

• NΞ

(

ξ1, ξ2
)

= γNΞ1

(

ξ1
)

NΞ2

(

ξ2
)

is a weighted blending function.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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8 LIN CHEN, BIN LI, RENÉ DE BORST

• N has minimal support on T , i.e. no other meshlines traverse the interior space of N .

An LR T-spline space N = {Ni : supp Ni ∈ T } is defined by the union of LR T-spline functions.

The basic idea of LR T-splines is to maintain the minimal support after inserting meshlines into

an LR T-mesh T . This refinement is realised by knot insertions in each parametric direction. As

an example we take a knot insertion in the ξ1 parametric direction. We consider an LR T-spline

blending function Ni which is defined by local knot vectors Ξ1
i and Ξ

2
i

Ξ
1
i =

[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ1i , · · · , ξ

1
p+1, ξ

1
p+2

]

and

Ξ
2
i =

[

ξ21 , ξ
2
2 , · · · · · · · · · · · · · · · · · · , ξ2p+1, ξ

2
p+2

]

.

A new meshline, ε = ξ̂ ×
[

ξ21 , ξ
2
p+2

]

is inserted in T , yielding two additional local knot vectors: Ξ1
i1

and Ξ
1
i2:

Ξ
1
i1 =

[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1

]

Ξ
1
i2 =

[

ξ12 , · · · , ξ
1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1, ξ

1
p+2

] (16)

as well as two new anchors with respect local knot vectors Ξ1
i1 and Ξ

2
i , Ξ1

i2 and Ξ
2
i . Applying this

refinement procedure to T , we obtain updated anchors and elements on the refined LR T-mesh Tr.

The scaling weights and control points are then updated using Eqs (14) and (15).

Different refinement strategies have been proposed for LR T-splines [27, 33]: element based

full span and minimal span refinement, blending function based structured mesh refinement, and

element-based structured mesh refinement [26]. The starting point for all refinement strategies is

that a certain element or blending function is marked for refinement. For instance, we consider the

quadratic LR T-spline surface of Figure 3(a) as the initial LR T-spline surface. The element groups

eg are meant to be refined by the element-based structured mesh refinement strategy, see Figure

3(b). The implementation aspect of local refinement of T-splines is outlined in Section 4.3. In this

contribution, the element-based structured mesh refinement strategy is employed.

(a) T-spline mesh T α (b) T-spline mesh T α+1

Figure 5. Construction of the cubic T-mesh T α+1 from T α. The anchors are indicated by circular dots.
Black denotes the anchors on the T-spline mesh T α, while red stands for those generated for the T-spline

mesh T α+1.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



PHASE-FIELD MODELLING USING ADAPTIVE ISOGEOMETRIC ANALYSIS 9

4.2. Hierarchical refinement of T-splines in IGA

Hierarchical refinement was originally proposed for the adaptive refinement of a surface [34],

but has subsequently also been used in analysis [2, 35]. Later, truncated hierarchical bases were

proposed in [36]. To further improve the ability of hierarchical refinement, T-splines are considered

as the input mesh [28, 32]. A hierarchical T-spline space is built on a finite sequence of L nested T-

spline spaces N l bounded by L parameter domains Ωl, l = 1, · · · , L. The nested nature of T-spline

space defines the nested domains for the hierarchy:

N 1 ⊂ N 2 ⊂ · · · ⊂ NL ΩL ⊆ ΩL−1 ⊆ · · · ⊆ Ω1. (17)

To construct nested T-spline spaces Nα ⊂ Nα+1, α = 1, · · · , L− 1, a multi-level T-spline mesh

is constructed with a hierarchy of L levels. In the multi-level mesh, the sequence of T-spline meshes

T α+1 is built by subdividing each effective rectangular cell in T α into two or four congruent cells by

meshline insertions, where an effective rectangular cell is a cell with a non-zero parametric length

in at least one parametric direction. Examples are the cells A and B in Figures 5(a) and 5(b). It is

noted that, when defining the cells, the continuity reduction lines are not considered, Figure 5(b).

At each hierarchy level, we have ni anchors with a corresponding local knot vector set Ξi =
{

Ξ
j
i

}

(i = 1, 2, ...L; j = 1, 2, ... ni). The local knot vector set Ξi is generated from successive

uniform cell subdivision within the parameter domain Ω, starting from Ω1. Hence, we obtain nested

parameter domains, Ωi+1 ⊂ Ωi, and nested local knot vectors, Ξi+1 ⊂ Ξi. Each knot vector set Ξi

defines a set of T-splines Ni =
{

N i
j

}ni

j=1
, which in turn forms a nested T-spline space N i. T-splines

at hierarchy level i can be described by T-splines at hierarchy level j:

N
i = S

i,j
N

j =

j−1
∏

l=i

S
l,l+1

N
l+1, (18)

with S
l,l+1 a subdivision or refinement operator [28], which is solved by Eq. (13) using the local

knot vector sets Ξl and Ξl+1.

The coordinates and weights of anchors on the T-spline mesh T i at hierarchy level i are computed

as:

P
i
w = S

i,1T
P

1
w =

(

i
∏

l=1

S
l,l+1

)T

P
1
w (19)

where P
i
w contains the weighted control points at level i. Each weighted control point is defined

as P
i
w,j =

(

wi
jx

i
1j , w

i
jx

i
2j , w

i
j

)

. If we consider rational T-spline basis functions, the subdivision

operator Sl,l+1 in Eq. (18) must be modified as follows [28]:

S̃l,l+1
IJ =

wl
J

wl+1
J

Sl,l+1
IJ , (20)

where w is the weight in Eq. (19) and Sl,l+1
IJ is the term in S

l,l+1.

We adopt the algorithm of [28] to construct the hierarchical T-spline bases H or the truncated

hierarchical bases HT . The formulation and the algorithm to determine H or HT have been detailed

in [28]. In this contribution, truncated hierarchical bases HT are used. The implementation aspects

of hierarchical refinement of T-splines for phase-field modeling are outlined in Section 4.3.

4.3. Implementation of adaptive refinement in IGA

As in most calculations of phase-field models, a staggered approach is adopted for the solution of

the coupled non-linear problem [10, 23, 37]. In the time-discrete evolution, given the displacement

field u
(i−1)
n and phase field c

(i−1)
n at time step ti−1, the solution at time ti is obtained by solving the

stationarity conditions for the functional, Eq. (3), under the unilateral constraint cn ≥ c
(i−1)
n . The

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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10 LIN CHEN, BIN LI, RENÉ DE BORST

problem is hence split in a ‘displacement’ sub-problem and a ‘damage’ sub-problem. At each time,

the two sub-problems are solved iteratively until a convergence criterion has been met.

The ‘displacement’ sub-problem consists of solving the minimisation problem for un for a given

phase field variable cn:

u = arg inf
u∈Su







∫

Ω

a(cn)W(u) dΩ−

∫

Γt

u · t̂dΓ







(21)

where Su =
{

u ∈ H1(Ω), u|Γu = û
}

, and û and t̂ represent the prescribed displacements on Γu

and the tractions on Γt, respectively. For the ‘phase-field’ sub-problem, the solution for cn is

obtained as the minimisation of Eq. (3) for a fixed un:

c = arg inf
c∈Sc







∫

Ω

a(c)W(un) dΩ+
G0

βℓc

∫

Ω

(

w(c) + ℓ4c ∇
2c : C : ∇2c

)

dΩ







(22)

subject to c ≥ c
(i−1)
n , where Sc =

{

c ∈ H1(Ω), c|Γc = ĉ
}

, and ĉ denotes the prescribed phase field

on Γc.

From the minimisation problems in Eqs (21) and (22), we obtain a global system of equations

KU = F, (23)

where U includes the nodal degrees of freedom, i.e. the displacement field u and the phase field c,
while F represents the force vector. With the local refinement strategy of Section 4.1, we first use

Bézier extraction to obtain the stiffness matrix of each element in the domain. Then, we solve Eq.

(23) to obtain the displacement field u and the phase field c [26].

For the hierarchical refinement strategy of Section 4.2, we must first derive the stiffness matrix of

the active elements at each hierarchy level, without consideration of multi-level blending function

interaction [26]. Then, we can assemble the stiffness matrix at each hierarchy level to form the

global system of equations K, which is a sparse matrix with the submatrices Ki along the diagonal.

The submatrix K
i constitutes the stiffness matrix of the active elements at hierarchy level i. To

enforce the interaction between the multi-level hierarchical bases H or HT in Eq. (23), a hierarchical

subdivision operator Mh is introduced, which yields the following hierarchical system of equations:

KhUh = Fh with Kh = MhKM
T
h and Fh = MhF (24)

with Mh the hierarchical subdivision operator [26, 28]. Solution of Eq. (24) leads to nodal degrees

of freedom for the control points which are associated with the hierarchical bases H or HT . In a

non-linear solution scheme, computing the stiffness matrix K requires U rather than Uh from the

previous iteration,

U = M
T
hUh. (25)

Below we provide a general procedure for the solution of a phase-field model which employs

adaptive isogeometric analysis using local or hierarchical refinement:

S1 Solve the system of equations to obtain the nodal degrees of freedom collected in U. For

adaptive local refinement, Eq. (23) is considered, while for adaptive hierarchical refinement,

Eqs (24) and (25) are used.

S2 Compute the phase field c at the Gauss integration points of each element.

S3 Mark elements for refinement on the basis of S2, using the criterion that the phase field

c in any of the Gauss points exceeds the threshold ccrit, in here, ccrit = 0.2. For adaptive

hierarchical refinement, element marking continues until the highest hierarchy level is

attained. For adaptive local refinement, element refinement is carried out until a prescribed

smallest element size em is reached in the physical domain. For materials with a strongly

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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anisotropic surface energy, the crack propagation transiently arrests during loading, which

results in an abrupt propagation in a single time step. This could lead to a dependence of

the crack path on the underlying meshes [38]. For a strongly anisotropic energy model, the

dependence of the numerical solution on the mesh (and also on the algorithm) is due to the

fact that small imperfections (due to physics and/or numerical errors) may significantly affect

the final solution [38]. To enforce the irreversibility condition, we consider the condition

c > cn−1; cn−1 denote phase field values from the previous time step (load step).

S4 Refine the marked elements [26]. If no element needs to be refined, stop the calculation and

proceed to next step. Otherwise return to S1.

4.4. State vector update after refinement

During refinement, new elements are introduced to accurately capture crack propagation. For non-

linear problems, this requires a transfer of the state vector, i.e. the displacements and the phase field,

from the previous time t to provide initial values for the new elements at time t+∆t. The transfer

of state vector from coarse elements to finer elements is exact after local and hierarchical refinement

[26, 28].

We consider t
U, which has been obtained at time t. The corresponding T-spline basis function

space is tA, for instance the LR T-spline space N for the local refinement of Section 4.1, or the

hierarchical T-spline space of Section 4.2. For the next time t+∆t, certain elements may have been

marked for refinement. If so, the basis function space and the control points are updated. We denote

the space of basis functions at time t+∆t by t+∆tA.

In a non-linear solution scheme, we need to map the vector t
U to produce a new initial vector

t+∆t
0 U at time t+∆t. During element refinement, the mapping of t

U to t+∆t
0 U is exact, and is

given by [2, 3]:
t+∆t
0 U =

(

S̃
T
t

)

t
U (26)

where S̃t denotes the modified subdivision operator.

For the local refinement strategy of Section 4.1, S̃t is given by:

S̃t = Γ
T
SΓ

−T
r (27)

where Γ and Γr are diagonal matrices with the scaling weight γ of the T-spline basis functions in

the spaces tA and t+∆tA, respectively. S denotes the refinement operator between the T-spline basis

functions in tA and t+∆tA. Γr, S and Γ are computed using Equation (15).

For the hierarchical refinement in Section 4.2, S̃t is defined between the hierarchy levels [2]. We

can obtain the state vector t+∆t
0 U

l+1 at hierarchy level l + 1 from the state vector t
U

l at hierarchy

level l through

S̃l,l+1
t,IJ =

{

Sl,l+1
IJ for N l+1

J ∈ t+∆tAl+1

0 otherwise
(28)

where l is the hierarchy level; Sl,l+1
IJ denotes the subdivision operator between hierarchy levels l and

l + 1, see Equation (20).

5. EXAMPLES

To assess the performance of the methodology, we present two examples with zigzag crack

propagation, namely in a square plate and in a trapezoid specimen, each with a strongly anisotropic

surface energy. In the first example, the adaptive refinement techniques (local and hierarchical

refinement) are compared numerically, including the crack path, the force-displacement relation

and the energy evolution.

In the second example, we only employ the adaptive local refinement technique to trace the crack

propagation. We introduce the initial crack as a discrete discontinuity in the geometry. A single

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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12 LIN CHEN, BIN LI, RENÉ DE BORST

patch is used rather than introducing subdomains with C0 lines or prescribing the phase-field variable

c = 1 along the initial crack as often done elsewhere [25]. Indeed, when using isotropic of weakly

anisotropic surface energies, a pre-existing crack can be introduced by imposing the condition c = 1.

However, this is not feasible when a strongly anisotropic surface energy is used because the pre-

existing crack can lie in a so-called forbidden direction [20, 24]. Imposing the condition c = 1 on

such a line poses numerical, but also mathematical and physical issues [23].

In general, T-spline meshes are generated by adaptive local refinement of NURBS meshes [27].

Herein, the initial T-spline mesh is directly defined by NURBS meshes. The corresponding initial

local knot vectors
(

Ξ
1
1, Ξ

2
1

)

and the initial control points P1 are thus directly obtained from the

NURBS meshes. In the examples the geometry is modelled with the same polynomial degree p = 2
in each parametric direction. For adaptive local refinement, the element-based structured mesh

refinement strategy is employed. For adaptive hierarchical refinement, the truncated hierarchical

bases are employed to describe the geometry of domain and also to approximate the solution space.

With a suitable rescaling of the loading [39], we can set Young’s modulus E = 1 and the

surface energy G0 = 1 to describe all the experiments. Poisson’s ratio is set ν = 0.3. Here, we

consider a strongly anisotropic surface energy of the form Gc(θ) =
4

√

1 + 0.8 cos 4 (θ + θ0) by

setting C1111 = 1.8, C1122 = −1.7 and C1212 = 0.15 and then applying a standard transformation

for the rotation of C by an angle θ0 [23].

Figure 6. (a) Geometry and boundary conditions for a square plate. c = 0 is imposed on the
upper and lower boundaries; (b) polar plot of the reciprocal surface energy 1/Gc(θ), with Gc(θ) =

4

√

1 + 0.8 cos 4 (θ + π/72).

5.1. Zigzag crack propagation in a square plate

We consider a unit rectangular domain under tension loads. Figure 6(a) shows the geometry and

the boundary conditions. The width of the plate is given as the unit length L = 1 with a height

H = 0.4L. Plane-stress conditions are assumed. The rotation of the fourth-order tensor C is given

by θ0 = π/72, see Figure 6(b). The internal length scale ℓc = 0.02. We set the smallest element size

em = l/5 for adaptive local refinement, which corresponds to a hierarchy of 3 levels to construct

truncated hierarchical bases. The initial meshes for the global, adaptive local and hierarchical

refinement are given in Figure 8. For the initial meshes of adaptive refinement, the left, top and

bottom boundaries are discretised in order to match the boundary conditions in the case of global

refinement. For global refinement, the reference solution, 200× 100 elements are employed to

discretise the domain.

The computed load-displacement curve, and the elastic and surface energies are shown in Figure

7. A good agreement is obtained between the solutions of global and adaptive refinement. The first

jump in the force and the energies relates to the re-initiation of the crack associated with an add-

crack of finite length appearing in a single time step, see Figure 8(right). The second jump and third

jump (not well visible due to the small values) are manifestations of unstable crack propagation at

each kink [23]. These jumps are consistent with theoretical analyses [40], which show that a crack

kinking is associated with a jump in time and space of the propagating crack.

The predicted crack paths for the adaptive mesh and for the uniformly refined mesh are shown

in Figure 8. The solutions produce similar crack patterns. The adaptive algorithm well captures the

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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Figure 7. Load-displacement curve and evolution of the elastic and surface energies. The force is obtained by
summation of loads in the y-direction along the top boundary. ”Hier-Ref” represents the results of adaptive
hierarchical refinement and ”Loc-Ref” denotes those of adaptive local refinement, while ”Glo-Ref” stands

for those of global refinement, which are taken as the reference solution.

zigzag behaviour of crack propagation. A slight difference occurs between the crack paths due to

the dependence on the underlying meshes [38], see Section 4.3.

In
it
ia

l 
m

e
s
h

Figure 8. Meshes for the hierarchical (left) and local (middle) refinement, and the phase field c (right) on a
globally refined mesh at different load steps.

5.2. Zigzag crack propagation in a curved plate

In this section, we consider a curved plate under tension loading. The geometry and boundary

conditions are shown in Figure 9(a). The width of the plate is given as the unit length L =
1. The domain is initially discretised by NURBS with a polynomial degree p = 3 and q =
1 respectively in the horizontal and vertical direction. The knot vectors are given as Ξ

1 =
[0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1] and Ξ

2 = [0, 0, 0, 1, 1, 1]. The coordinates of control points P are

given in Figure 9(b). In this example, we consider NURBS with polynomial degrees p = 3 and

q = 3. The knot vector and the control points are updated by order elevation from initial NURBS.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



14 LIN CHEN, BIN LI, RENÉ DE BORST

Figure 9. (a) Geometry and boundary conditions for a curved specimen. c = 0 is imposed on the upper and
lower boundaries; (b) Bézier physical mesh and control points, all the weights of control points are w = 1.

Plane-stress conditions are assumed. The rotation of the fourth-order tensor C is given by

θ0 = π/72, see Figure 6(b). The internal length scale ℓc = 0.02. In this example, we will employ the

adaptive hierarchical refinement to trace the crack propagation. To construct truncated hierarchical

bases, we consider the smallest element size em = l/5, which corresponds to a hierarchy of 3 levels.

The initial meshes for the global and adaptive hierarchical refinement are given in Figure 11. For

global refinement, the reference solution, 300× 80 elements are employed to discretise the domain.

As expected, in Figure 10, a good agreement is obtained for the load-displacement curve, and

the elastic and surface energies in the case of global and adaptive refinement. The jumps in the

figure relates to the re-initiation of crack and unstable crack propagation in a single time step,

see Figure 11(bottom), which are consistent with theoretical analyses [40]. Similar crack patterns

are observed for the the adaptive refinement and for the global refinement, see Figure 11. The

crack path initiates from the left side of the plate with an angle similar to that in Figure 8 due

to the restriction of forbidden crack directions [23]. For the crack propagation direction, it has been

suggested that the underlying crack path selection is dictated by the Generalized Maximum Energy

Release Rate criterion (GMERR) [23], which postulates that the crack propagate in a direction given

by the angle θ such that G(θ)/Gc(θ) attains a maximum among all θ ∈ [−π, π]. Checking the crack

propagation direction explicitly requires the computation of G(θ) at each time step using the Leblond

expansion [41], i.e. computing the stress intensity factors (SIFs). However, the computation of SIFs

is nontrivial and requires the calculation of a path-dependent integral [42].

Figure 10. Load-displacement response and evolution of the elastic and the surface energies. The force is
obtained by summation of the loads in the y-direction along the top boundary. ”Hier-Ref” denotes results of

the adaptive local refinement, while ”Glo-Ref” stands for those of global refinement.

5.3. Zigzag crack propagation in a trapezoid specimen

We now introduce an initial crack as a discrete discontinuity in the geometry instead of introducing

subdomains or prescribing phase field values c = 1. The adaptive local refinement strategy is

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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Initial mesh

Figure 11. Meshes for the hierarchical (top) refinement, and the phase field c (bottom) for a globally refined
mesh at different load steps.

Figure 12. (a) Geometry and boundary conditions for a trapezoid specimen. c = 0 is imposed on the
upper and lower boundaries; (b) polar plot of the reciprocal surface energy 1/Gc(θ), with Gc(θ) =

4

√

1 + 0.8 cos 4 (θ + π/90).

employed. The geometry of the specimen has a trapezoidal shape and is pre-cracked, see Figure

12(a), which also shows the Dirichlet boundary conditions, with c = 0 for the phase field and

prescribed displacements ūy on the top and bottom boundaries. The polar plot of the reciprocal

surface energy 1/Gc(θ) is shown in Figure 12(b). The rotation of C is given by θ0 = π/90. The

width of the plate is given as L = 1 with heights H1 = 0.4L and H2 = 0.8L, respectively. Plane-

stress conditions are assumed.

The initial crack is placed in the centre line with a length L1 = 0.16L. Basically, one can introduce

several subdomains separated by C0 lines or prescribe phase-field values c = 1 along the initial

crack [25] to represent an initial crack in the isogeometric analysis. However, using subdomains

with C0 lines is detrimental for the higher-order continuity of the splines interpolation. It actually

degenerates into standard finite elements with several ‘macroelements’. Moreover, prescribing c = 1
directly is not allowed in models with a strongly anisotropic surface energy. For these reasons we

will introduce the initial crack as a discrete discontinuity in the geometry. This is done by meshline

insertions in the locally refined T-mesh, which yields discontinuous basis functions [3]. By repeating

meshline insertions in the parameter space, the order of the interpolation can be decreased locally, till

C−1 continuity, and a discontinuity results in the physical space. We will use the example of Figure

13 to illustrate the concept. Figure 13(a-left) is the initial T-mesh used to describe the trapezoid

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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(a) Ω in the index and parameter domain before (left) and after (right) inserting the initial crack

(b) Ω in the physical domain after inserting the initial crack

Figure 13. Trapezoid plate Ω in the index, parameter and physical domains before and after inserting the
initial crack. In (b), a shift is applied to control points 1, · · · , 4 to better visualise the initial crack.

plate. In order to introduce the initial crack in the middle plane we insert the green meshlines in the

ξ1 parametric direction, see Figure 13(a-right) [3]. Figure 13(b) represents the trapezoid plate in the

physical domain after meshline insertions. Due to the discontinuity, the coordinates of the control

points 1, 2 equal those of control points 3, 4, Figure 13(a-right). To better visualise the discontinuity

in Figure 13(b) a shift
(

δ1, δ2
)

has been applied to control points 1, · · · , 4:

(

δ11 , δ
2
1

)

= (0, 0.01)
(

δ12 , δ
2
2

)

= (0, 0.01)
(

δ13 , δ
2
3

)

= (0,−0.01)
(

δ14 , δ
2
4

)

= (0,−0.01) (29)

Figure 13(b) illustrates a crack passing through the middle plane. Figure 13(b-left) is the diagram

of the trapezoid plate Ω, while Figure 13(b-right) shows the enlargement of the initial crack.

The evolution of external loads, the elastic and the surface energies as a function of the

displacement ūy is shown in Figure 14. The results of the adaptive local refinement agree well

with those of the global refinement. In the figure, the first jump in the force and the energy reflects

the initiation of the crack, see the first crack kink. The second and the third jump correspond to

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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unstable crack propagation at a kink. Figure 15 presents the crack paths which stem from adaptive

refinement and global refinement. The adaptive refinement well captures the evolution of the phase

field. The kinking of the propagating crack is also illustrated.

Figure 14. Load-displacement response and evolution of the elastic and the surface energies. The force is
obtained by summation of the loads in the y-direction along the top boundary. ”Loc-Ref” denotes results of

the adaptive local refinement, while ”Glo-Ref” stands for those of global refinement.

Initial mesh

Figure 15. Meshes for the local (top) refinement, and the phase field c (bottom) for a globally refined mesh
at different load steps.

6. CONCLUDING REMARKS

Higher-order phase-field models for fracture have been considered to investigate crack propagation

in materials with a strongly anisotropic surface energy. In these models, the existence of higher-

order derivatives of the phase-field variable in the energy functional necessitates C1 continuous basis

functions. Herein, we have employed the T-splines as the basis functions. To accurately capture

the crack topology, a small value of the internal length is preferred. This, however, requires fine

discretisatons. This requirement is mitigated by the use of T-splines, which are more accurate

than Lagrangian polynomials, and a further improvement in efficiency is obtained by locally

refining the areas where the crack propagates. We have considered hierarchical as well as local

refinement strategies. Using Bézier extraction, standard finite element data structures can still be

used. Algorithms have been provided for both refinement techniques.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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Three examples have been studied numerically and show that for adaptive refinement, the crack

pattern, the force-displacement relation and the energy evolution well match those obtained using

a globally refined mesh. The computation time is reduced by 30% ∼ 50% for the cases studied.

Finally, the technology makes it possible to introduce an initial crack as a discrete discontinuity in

the geometry, which by-passes the need to reduce continuity in isogeometric analysis or to prescribe

phase-field values c = 1 in the domain.
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