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Robust Hybrid Linear State Estimator Utilizing

SCADA and PMU Measurements
Ahmad Salehi Dobakhshari, Member, IEEE, Mohammad Abdolmaleki, Vladimir Terzija, Fellow, IEEE,

Sadegh Azizi, Senior Member, IEEE

Abstract—This paper intends to improve the accuracy of power
system State Estimation (SE) by introducing a hybrid linear
robust state estimator. To this end, automatic bad data rejection
is accomplished through an M-estimator, i.e. a Schweppe-type
estimator with Huber loss function. The method of Iteratively
Reweighted Least Squares (IRLS) is used to maximize the
likelihood function in the M-estimator. Leverage measurements
are also treated by a simple yet effective formulation. To
run the algorithm for real-world large-scale grids, cumbersome
construction of the Jacobian matrix at each iteration is avoided.
In addition, convergence to the local minima faced in the large-
scale Gauss-Newton algorithm is not a concern as the proposed
formulation is linear with no approximation. As observability
and redundancy considerations mandate SE to take advantage
of traditional SCADA measurements along with available PMU
measurements, the linearity of the proposed SE formulation is
guaranteed regardless of whether PMU-only, SCADA-only or
hybrid SCADA/PMU measurements are utilized. In this regard,
covariance matrix for measurements weights is derived for both
types of measurements. Thanks to the linear formulation and
therefore swiftness of the proposed algorithm, SE could be run
for different power systems with a few up to thousands of buses.

Index Terms—Huber loss function, PMU, Power system oper-
ation, RTU, SCADA, Schweppe-type estimator, State estimation.

I. NOMENCLATURE

Va True voltage amplitude at bus a.

VVV meas
a PMU measurement of voltage at bus a.

V meas
a Remote Terminal Unit (RTU) measurement

of voltage amplitude at bus a.

VVV a Unknown true complex voltage at bus a with

respect to the phase angle of reference bus.

Iab True current amplitude through line a-b.
ϕab True phase-angle of the current through line

a-b (with respect to VVV a).

Icalab RTU calculated/measured current amplitude

through line a-b.
ϕcal
ab RTU calculated/mesured phase-angle of the

current through line a-b (with respect to VVV a).

Pmeas
ab ,Qmeas

ab RTU active and reactive power measurements

through line a-b.
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III locab True complex current through line a-b (with

respect to VVV a).

IIIab Unknown complex current through line a-b
with respect to the reference bus.

IIImeas
ab PMU measurement of complex current through

line a-b with respect to the reference bus.

III loca,inj True complex current injection at bus a (with

respect to VVV a).

IIIa,inj True complex current injection at bus a with

respect to the reference bus.

εVa
Measurement error of V meas

a .

εεεVVV a
Complex measurement error of VVV meas

a .

εIab
Measurement error of Imeas

ab .

εεεIIIab
Complex measurement error of IIImeas

ab .

εδa Measurement error of δmeas
a .

δa Unknown phase-angle of complex voltage at

bus a.

La Set of branches connected to bus a.

zab Series impedance of transmission line a-b.
yab Shunt admittance of transmission line a-b.
[I] Identity matrix.

[Yse] Diagonal matrix of series admittances of

branches.

[A] Bus-branch incident matrix of the network.

[Ysh] Diagonal matrix of shunt admittances of

branches.

V meas Vector of Va
meas values (a 6= 1).

VVV meas
Vector of VVV a

meas
values.

Ical Vector of Iab
cal values (a 6= 1)

ϕcal Vector of ϕab
cal values (a 6= 1).

IIImeas
Vector of IIImeas

values.

Ical1 Vector of Iab
cal values (a = 1).

ϕcal
1

Vector of ϕab
cal values (a = 1) .

[Ybus] Bus-admittance matrix of the network.

Icalinj Vector of measured/calculated injected-current

amplitudes by RTUs excluding the reference

bus.

ϕcal
inj

Vector of measured/calculated phase angles of

injected current by RTUs excluding the refer-

ence bus.

VVV Vector of true complex voltage at buses exclud-

ing the reference bus.

δ Vector of voltage phase-angles excluding the

reference bus.

εεε Vector of complex measurement errors.

m Number of measurements.

n Number of buses.
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II. INTRODUCTION

POWER system State Estimation (SE) is a prerequisite for

a number of energy management system (EMS) appli-

cations running in real time in power system control rooms.

It provides input data for economic dispatch, optimal power

flow, contingency analysis, ancillary services and wide area

protection and control applications [1], [2]. Existing EMSs

around the world still rely on measurements provided by

supervisory control and data acquisition (SCADA) system. At

a hierarchically lower level of the SCADA system, remote

terminal units (RTUs) interface various meters to the SCADA

system by transmitting telemetry data, such as voltage, current,

active and reactive powers, circuit breaker status and other

measurements to the master station. The aim of SE is to esti-

mate the system state, i.e. voltage amplitude and phase-angle

at all network buses, using the aforementioned measurements

[3].

SCADA measurements, however, are nonlinear functions

of the system state variables, and therefore, the SE problem

is traditionally solved by using iterative algorithms such as

Newton’s iterative method [4]. Currently, the weighted-least-

squares (WLS) estimator is the most widely used approach

for solving SE using SCADA measurements [5]. There are,

however, several technical challenges related to the application

of the WLS estimator to the non-convex SE problem, such

as lack of guaranteed convergence. Besides, cumbersome

calculation of Jacobian matrix at each iteration as well as the

need for post-processing of the WLS estimation for bad data

detection and identification (BDDI) impose time-consuming

extra efforts to ensure the estimator will function desirably.

In comparison with the WLS estimator, the concept of

robust estimator [6] is more effective for solving the esti-

mation problems, in the sense that it inherently counteracts

the inclusion of bad data in the measurement set. However,

in practice, the application of robust estimators to SE has

been quite limited due to the heavy computational burden of

the nonlinear state estimator, which involves time-consuming

iterations [7]–[9].

In order to overcome the nonlinear nature of the SE process,

semidefinite (SDP) and conic programming have been used in

[10]–[13] for convexification of power flow equations. These

techniques enable solving robust SE problems for large-scale

systems in a reasonable time. However, dropping the rank-

one constraint might not work in all conditions of the network

topology and measurements as observed in the case of optimal

power flow problem [14].

Another avenue of research utilizes synchrophasor measure-

ments [15] making the SE problem linear. This requires plac-

ing a minimal number of PMUs at some certain locations to

ensure system observability [2], [16]–[18]. However, scarcity

of PMU measurements makes PMU-only SE unattainable

in many today’s power systems. Therefore, SE by hybrid

SCADA/PMU measurements has been investigated extensively

to bridge the gap between the past and future [19]–[22]. The

problem formulation though mostly resembles that of SCADA-

based SE [23] with the same practice for BDDI.

This paper presents a novel linear robust state estimator,

which is suitable for large-scale power systems due to its linear

formulation as well as automatic bad data rejection qualities.

In particular we build on the work of Schweppe [24] and apply

a Schweppe-type estimator with Huber loss function [6] to

deal with multiple bad data, automatically. As discussed in

[9], leverage measurements are not accounted for properly in

the Schweppe-type estimator [24]. According to [6], leverage

points, i.e. measurements with diagonal hat matrix values

greater than 0.5, are better to be avoided in the estimation.

Therefore, we modify the Schweppe-type estimator for these

leverage points by using the same weights as Schweppe [24]

for non-leverage points but modified weights for leverage

points based on the hat matrix elements. In contrast with [9],

no additional computations regarding the projection statistics

is required as the hat matrix is already available.

Robust state estimation based on M-estimator or IRLS has

been studied in the literature. Reference [25] uses nonlinear

constrained optimization considering zero-injection buses. A

Huber M-estimator is used to reject bad data and an iterative

Newton-based primal-dual interior-point approach is used to

solve the problem. In [26] an exponential function for the

M-estimator is used for solving SE. An iterative Newton-

based algorithm is utilized that needs updating both Jacobin

matrix and measurement functions at each iteration. Our

proposed method, in contrast to [25] is not modeled as a

non-linear optimization problem. Moreover, compared to [26],

the proposed method does not need calculating Jacobian and

measurement functions at each iteration, thanks to the constant

coefficient matrix in the proposed formulation.

Using IRLS, [27] basically solves the problem in [9] by

orthogonal decomposition and Given Rotations in order to

reduce the computational burden of the algorithm. References

[28], [29] solve least-absolute-value (LAV) estimator by IRLS

instead of linear programming. They use the conventional

nonlinear formulation of the SE problem and rely on Newton’s

algorithm to iteratively solve the problem by updating the

measurement function and Jacobian. This is in contrast to

the proposed algorithm where both measurement functions

and Jacobian matrices remain constant, thereby reducing the

computational effort. Reference [30] considers measurement

dependencies, yet still needs Jacobian and measurement func-

tions to be updated at each iteration.

This paper extends the linear formulation of [31] in order

take advantage of PMU measurements to solve the hybrid SE

problem. The generalized M-estimator used will highly speed

up the hybrid SE process, while rejecting bad data during the

process. It is worth mentioning that IRLS is a tool to solve

the proposed linear M-estimator with the least computational

effort. This tool is widely utilized in statistics and has been

applied to the proposed formulation as well. Moreover, the

derivations of covariance matrix of PMU/RTU measurements

corresponding to the developed system of equations are rigor-

ously obtained. The linearity of the coefficient matrix in our

formulation makes it suitable for robust Schweppe type estima-

tor, which involves much more iterations than the conventional

WLS-based SE.

The proposed SE algorithm is generalized in the sense that

its input data do not have to be limited to PMU measurements.
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TABLE I
CONTRIBUTION OF THE PROPOSED METHOD OVER PREVIOUS SE

ALGORITHMS

Reference [1], [3] [24] [7], [8] [10]–[13] [16], [17]

Algorithm WLS M-E LAV SDP WLS

Measurements SCADA SCADA SCADA SCADA PMU

Linear No No No No Yes

Robust No Yes Yes Yes No

Need GPS No No No No Yes

Convexified No No No Yes No

Leverage No No No No No

Need init. guess Yes Yes No No No

Reference [31] [9] [19]–[21] [22] Proposed

Algorithm WLS M-E WLS LAV M-E

Measurements SCADA SCADA Hybrid PMU
SCADA
PMU or
Hybrid

Linear Yes No No Yes Yes

Robust No Yes Yes Yes Yes

Need GPS No No Yes Yes No

Convexified No No No No No

Leverage Meas. No Yes No No Yes

Need init. guess No Yes Yes No No

This paves the way for integrating PMU measurements into

existing SCADA measurements while maintaining the linearity

of the hybrid state estimator, ensuring a fast solution process.

In the case of purely PMU measurements, the proposed

method replicates the state estimator presented in [22]. The

contribution in this specific case will be the utilization of

an M-estimator instead of LAV estimator and the treatment

of leverage measurements if PMU measurements include in-

jection measurements. In other words, in contrast with [22]

that assumes no injection measurement exists, the proposed

algorithm does not pose such restriction and can readily deal

with leverage measurements resulting from injection measure-

ments. Table I compares the proposed and previous methods

in terms of different technical characteristics. In brief, with

identical measurement inputs, the proposed method overcomes

difficulties of traditional state estimator such as the need for

initial guess, challenges with convergence and sensitivity to

bad data.

III. PRELIMINARIES AND NOTATIONS

The variables referring to voltages and currents in the rest of

this paper can be categorized into true, measured, calculated

and estimated values. To distinguish between the variables

of these categories, (.)meas, (.)cal and (̂.) denote measured,

calculated and estimated values, respectively. True values are

denoted with no superscript. In particular, calculated values

are confined to branch-current amplitudes and phase angles

of complex current with respect to the phase angle of the

sending-end complex voltage (see (5) below). All complex-

valued variables (matrices and vectors) are printed in bold,

while regular font is used for real-valued matrices and vectors.

Matrices and vectors are denoted by [.] and . respectively.

In particular, [I] represents the identity matrix and 0 denotes

all-zero vector of appropriate size. [(.)] denotes a diagonal

matrix whose elements are vector .. Complex voltages and

currents with respect to a certain reference angle (i.e. phase

angle of voltage at the reference bus) cannot be measured

except by using PMUs (synchrophasors). Nonetheless, branch

currents can be expressed as complex values with respect to the

voltage phase-angle at the same bus. These complex variables

measured by corresponding local RTUs are denoted by (...)loc.

IV. EXACT LINEAR FORMULATIONS FOR MEASUREMENTS

In what follows, firstly SCADA measurements used for SE

are formulated based on the results from [31], [32]. Next,

the derivations corresponding to PMU measurements including

the phase-angle measurements and voltage and current phasor

measurements are developed. It should be noted that sampling

rates of SCADA and PMU measurements are not the same.

This problem also known as the time skew problem can be

dealt with by buffering PMU measurements [33], [34].

A. SCADA Voltage Amplitude Measurements

Voltage amplitude at any bus is related to the associated

complex bus voltage as

VVV a = Vae
jδa (1)

Consequently, the non-ideally measured voltage amplitude at

bus a is related to the corresponding complex voltage as

VVV a = V meas
a ejδa + εVa

ejδa (2)

where εVa
is the measurement error for bus voltage a. The

phase-angle operator ejδa does not appear in (1) for the slack

bus, whose phase angle is set to zero.

B. SCADA Branch Flow Measurements

Let us consider the complex current through line a-b, which

can be expressed as

III locab

∆
= Iab∡ϕab (3)

where Iab and ϕab are the current amplitude and current phase-

angle (with respect to the complex voltage VVV a), respectively.

These quantities can be obtained by RTUs, and hence (3) can

be rewritten as

III locab = (Imeas
ab + εIab

)∡(ϕcal
ab + εϕab

) (4)

where ϕcal
ab is calculated as follows

ϕcal
ab = tg−1

(

−Qmeas
ab

Pmeas
ab

)

(5)

Imeas
ab , Pmeas

ab and Qmeas
ab are the measured current and active

and reactive power through line a-b (from bus a to bus b),
respectively. If Iab measurement is not communicated by

RTUs it can be calculated by voltage and active and reactive

power measurements as addressed in [31].

With reference to the slack bus, the complex current through

line a-b may be expressed as

IIIab = III locab e
jδa (6)

where δa is the unknown phase-angle of complex voltage at

bus a, with reference to the slack bus. Utilizing the transmis-

sion line pi model shown in Fig. 1, we have



4

    

 

𝒛𝑎𝑏 

Bus b Bus a 𝒁𝑐sinh[𝜸𝑖𝑗𝑙𝑖𝑗 1– 𝑥 ]𝒚𝑎𝑏2  2𝒁𝑐 tanh[𝜸𝑖𝑗𝑙𝑖𝑗 1– 𝑥 2 ]

–

𝒚𝑎𝑏2  𝑰𝑎,𝑖𝑛𝑗  

𝑰𝑎𝑏 

Fig. 1. Illustration of branch current measurement.

III locab e
jδa = (

yab

2
+

1

zab

)VVV a + (− 1

zab

)VVV b (7)

In terms of available measurements, (7) can be rewritten as

(Imeas
ab ∡ϕcal

ab )e
jδa+ eeeIIIab

=(
yab

2
+

1

zab

)VVV a−(
1

zab

)VVV b (8)

where eeeIIIab
is the complex measurement error written as

eeeIIIab
=εIab

∡(ϕcal
ab +δa+εϕab

)+εϕab
Imeas
ab ∡(δa+εϕab

+
π

2
) (9)

C. SCADA Injection Measurements

Fig. 1 shows current injection at bus a. Similar to (8), and

based on the first Kirchhoff’s law, one obtains:

(Imeas
a,inj ∡ϕ

cal
a,inj)+ eeeIIIa

=
∑

b∈La

(
yab

2
+

1

zab

)VVV a−(
1

zab

)VVV b (10)

where Imeas
a,inj and ϕcal

a,inj are the calculated/measured injected

current amplitude and phase angle, respectively, obtained by

RTU measurements. They may be either measured directly or

calculated indirectly from injected active and reactive power

flow measurements similarly to (5). La is the set of branches

connected directly to bus a.

D. PMU Phase-Angle Measurements

PMUs are capable of measuring time-synchronized bus-

voltage phase angles, bus-voltage amplitudes and branch cur-

rent phasors, all with respect to the phase angle of voltage at

the reference bus. Phase-angle measurement of voltage at bus

a can be expressed by first-order Taylor series approximation

of ejδa as

ejδa ≈ ejδ
meas

a + jejδ
meas

a εδa (11)

where δa and δmeas
a are true and measured phase angle of volt-

age phasor at bus a, respectively, and εδa is the measurement

error.

E. PMU Voltage Phasor Measurements

Phasor measurement of voltage at bus a can be written as

VVV meas
a + εεεVVV a

= VVV a (12)

where εεεVVV a
is the complex voltage phasor measurement error

expressed in terms of magnitude and phase-angle measurement

errors as follows.

εεεVVV a
= ejδa(εVa

+ jεδaVa) (13)

F. PMU Current Phasor Measurements

In contrast to RTUs, PMUs can directly measure IIIab [35]

in (8) as

IIImeas
ab + εεεIIIab

= (
yab

2
+

1

zab

)VVV a + (− 1

zab

)VVV b (14)

where εεεIIIab
is the complex current phasor measurement error

expressed as

εεεIIIab
= ejθab(εIab

+ jεθab
Iab) (15)

where Iab and θab are current phasor magnitude and phase

angle, respectively.

V. COVARIANCE MATRIX OF MEASUREMENTS

A. SCADA Measurements

SCADA measurements formulated in this paper consist of

voltage magnitude as well as current local phasor measure-

ments. The variance of voltage measurement introduced in (2)

can be obtained as

σ2
V Re
a

= E{{εVa
cos(δa)}2}−{E{εVa

cos(δa)}}2 = σ2
Va
cos(δa)

2

(16)

And similarly

σ2
V Im
a

= σ2
Va
sin(δa)

2 (17)

The real and imaginary parts of current phasors given in (8)

and (10) have the following variances.

σ2
IRe = (σIcos(ϕ))

2 + σ2
ϕ(Isin(ϕ))

2 (18)

σ2
IIm = (σIsin(ϕ))

2 + σ2
ϕ(Icos(ϕ))

2 (19)

It is assumed that the current amplitude measurement as well

as its associated variance, i.e. σ2
I , is available. The phase

angle of current phasors in (8) and (10) are given by (5).

Accordingly, σϕ in (18) and (19) is obtained in terms of the

associated active and reactive power measurements and their

variances, i.e. σ2
P and σ2

Q, as follows.

σ2
ϕ =

Q2σ2
P + P 2σ2

Q

(Q2 + P 2)2
(20)

B. PMU Measurements

With reference to (11) real and imaginary parts of phase

angle measurements are given by

σ2
δRe = σ2

δsin(δ)
2 (21)

σ2
δIm = σ2

δcos(δ)
2 (22)

where σ2
δ is the known variance of phase angle measurements.

According to (12) the real and imaginary parts of voltage

synchrophasors have the following variances.

σ2
V Re = (σPMU

V cos(δ))2 + σPMU
δ

2
(V PMUsin(δ))2 (23)

σ2
V Im = (σPMU

V sin(δ))2 + σPMU
δ

2
(V PMUcos(δ))2 (24)

where V PMU and δ are respectively the magnitude and

phase angle of the measured voltage synchrophasor. Standard

deviations of these measurements, i.e. σPMU
V and σδ , are

known. Quite similarly for current synchrophasors given in
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(14) the following variances are developed for the real and

imaginary parts.

σ2
IRe = (σPMU

I cos(θ))2 + σPMU
θ

2
(IPMUsin(θ))2 (25)

σ2
IIm = (σPMU

I sin(θ))2 + σPMU
θ

2
(IPMUcos(θ))2 (26)

where IPMU and θ are the magnitude and phase angle of

measured current synchrophasor, respectively. The covariance

matrix of measurement errors for the system of equations (30)

below can therefore be written as

[R] =
diag[σ2

V Re

RTU

, σ2
IRe

RTU

, σ2
δRe , σ

2
V Re

PMU

, σ2
IRe

PMU

σ2
V Im

RTU

, σ2
IIm

RTU

, σ2
δIm

, σ2
V Im

PMU

, σ2
IIm

PMU

]
(27)

VI. GENERALIZED LINEAR FORMULATION UTILIZING

HYBRID SCADA AND PMU MEASUREMENTS

While PMU measurements can be sufficient for power sys-

tem SE if observability is ensured [36], using hybrid SCADA

and PMU measurements are favorable for SE in existing

power systems [37]. The proposed hybrid SE formulation is

developed first by complex variables and next by real variables.

A. Complex Formulation

Equations (2), (8) and (10) show nonlinear relationships

between measurements and system states, i.e. bus voltage

amplitudes and phase angles. The key idea here is to properly

rearrange these equations in order to come up with a new linear

formulation of the problem. To this end, the exponential phase-

angle operators appearing in (1), (7) and (10) are included

in the vector of state variables, together with the complex

voltages.

By combining SCADA and PMU measurements, one ob-

tains the following system of linear equations:





























[I]

[(

0
−V meas

)]

[Yse][A]+[Ysh]

[(

0
−Imeas

∡ϕcal

)]

[Ybus]

[(

0
−Imeas

inj ∡ϕcal
inj

)]

[0] [I]
[I] [0]

[Yse] [A]+[Ysh] [0]

































V1

VVV
ejδ



+εεε=





























[

V meas
1

0

]

[

Imeas
1 ∡ϕcal

1
0

]

[

Imeas
1,inj ∡ϕ

meas
1,inj

0

]

[

ejδ
meas]

[VVV meas]
[IIImeas]





























(28)

where [(.)] denotes a diagonal matrix consisting of elements

in vector (.). In (28) the last three rows are related to PMU

measurements whereas the other rows are related to SCADA

measurements. In a more compact form, (28) becomes

[HHH]xxx+ εεε = zzz (29)

where [HHH] is the m×(2n−1) state matrix, xxx is the (2n−1)×1
vector of unknown state variables, zzz is the m × 1 vector of

complex measurements and εεε is the m× 1 vector of complex

measurement errors. Both [HHH] and zzz are composed of either

measurements in (2), (8), (10)-(14) or network parameters, and

hence known.

B. Real Formulation

Separating (29) into real and imaginary parts yields

[ [

HR
] [

−HI
]

[

HI
] [

HR
]

] [

xR

xI

]

+

[

εR

εI

]

=

[

zR

zI

]

(30)

where (.)R and (.)I denote the real and imaginary parts of

the complex argument, respectively. In a compact form, this

real-valued system of equations is now written as

[M ]y + e = b (31)

The unknown state variable vector is comprised of

y =
[V1 V2cosδ2 ... Vncosδn cosδ2 ... cosδn

V2sinδ2 ... Vnsinδn sinδ2 ... sinδn]
T (32)

which is obtained by weighted linear least-squares estimation

as follows.

y = (MTR−1M)−1MTR−1b (33)

where R = E{eeT } has been obtained in the previous section.

Since [HHH] in (28) and therefore [M ] is not constant, δ2,...,δn
in (32), which are estimated in (31), are used to transfer all

measurements to the right hand side of (31). If [HHH] in (28)

is partitioned as [HHH] = [[HHH1] [HHH2]], where [HHH1] is a constant

matrix comprising of first n columns of [HHH], then (29) can be

rewritten as

[HHH1]

[

V1

VVV

]

+ εεε = zzz − [HHH2] e
jδ̂ (34)

After separating (34) into real and imaginary parts, a real-

valued system of equations is obtained as

[N ]u+ ǫ = w (35)

where [N ] is constant and unknown vector u is as follows.

u = [V1 V2cosδ2 ... Vncosδn V2sinδ2 ... Vnsinδn]
T (36)

Once (35) is solved by the proposed linear robust M-estimator,

the unknown state variables are attainable from the elements

of u as

V̂i =
√

û2
i + û2

n+i (37)

δ̂i = tg−1 ûn+i

ûn

(38)

VII. ROBUST LINEAR M-ESTIMATOR FOR HYBRID SE

An M-estimator is a generalization of the weighted least-

squares estimator, maximizing a likelihood function. In con-

trast to the WLS estimator, an M-estimator is able to deal with

outliers more effectively [6].
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Fig. 2. Schweppe-type M-Estimator.

A. Background

The objective function of the Schweppe-type M-estimator

is shown in Fig. 2. Mathematically, this objective function is

expressed as

ρ(
ri
γiσi

) =

{

1
2 (

ri
γiσi

)
2

for |( ri
γiσi

)| ≤ c,

c(|( ri
γiσi

)| − 1
2c), otherwise.

(39)

In [24] it is shown that ri ∼ N (0, σ2
i (1−hi)), where ri is the

residual of the ithe measurement and hi is the ithe diagonal

element of hat matrix, i.e. N(NTR−1N)−1NTR−1w in (35).

Accordingly, Schweppe et al. in [24] pick γi =
√
1− hi so

that an outlier whose residual is c times larger than its standard

deviation lies in the linear part of the objective function. The

application of the M-estimator in SE resembles the WLS

algorithm, except that in an iterative process the weights of

measurements are updated based on their associated residuals

in the previous iteration. This approach is known as iterative

reweighted least squares (IRLS) and is traditionally applied to

SCADA-based SE as follows [9], [24].

∆x(k) = (HT (k)
R−1Q(k)H(k))−1HT (k)

R−1Q(k)(z−h(x(k)))
(40)

where HT (k)
=

[

HT
1

(k)
HT

2
(k)

...HT
m

(k)
]

, Hi
(k) = ∂hi

∂x(k) , k

is the iteration number, Q is the diagonal weight matrix and

h(x) is the vector of measurement function.

B. Comments on Previous Research

1) Leverage Measurements: The problem of leverage mea-

surements arises in the foregoing formulation with γi =√
1− hi. Leverage measurements, by definition are those with

the property of hi → 1. Therefore ith leverage measurement

with even a gross error ei may not lie in the linear part of the

ρ function. The reason is as follows.

ri = zi − ẑi =
m
∑

k=1

Sikek ≈ Siiei = (1− hi)ei (41)

where S is the residual covariance matrix. It can be seen that

the argument of ρ function in (39) will be

ri
γiσi

=

√
1− hi

σi

ei (42)

Therefore, a bad leverage measurement still lies in the

quadratic part of the objective function as hi → 1. This

problem has been discussed in [38]. However, alternative

weights, i.e, γi in (39), used in the literature are too time-

consuming to compute, in particular for large-scale networks

with lots of measurements.

2) Updating H(k) and h(x(k)) in (40): Although the prob-

lem of leverage measurements in [24] is addressed in [9],

computational burden is still an issue in both of them. The

reason is the need for updating the Jacobian matrix H(k)

and measurement function h(x(k)) at each iteration k. For

example a 10,000-bus network with measurement redundancy

of 2 will have a Jacobian matrix of the size 40,000*20,000 and

40,000 measurement functions. Based on various conditions,

including the amount of bad data, the number of iterations is

variable, but is reported to have an average number of 10 [6,

p.187].

C. Proposed Method

Thus far, we have presented a generalized linear formu-

lation for SE consisting of either SCADA or PMU or hybrid

SCADA/PMU measurements and determined the measurement

weights.

The linear formulation in this paper aims to address the

two technical difficulties mentioned. To effectively deal with

leverage measurements, one needs to be cautious about mea-

surements with hi > 0.5 as recommended in [6]. Accordingly,

we modify the weights of residuals in (39) as follows.

γi =

{√
1− hi for hi < 0.5,

1− hi otherwise.
(43)

It should be noted that given 0 ≤ hi ≤ 1 [3], we choose

smaller values of γi for leverage measurements. Also, ac-

cording to (42), we expect that bad leverage measurements

lie in the linear part of the ρ function. It should be noted

that there is a trade-off between re-weighting and not re-

weighting the leverage measurements. The downside is that

by decreasing their weight, their ability to identify other bad

data is compromised. However, if the measurement set is

large enough, as assumed here and is the case in practice,

this will not be a problem. Moreover, with high redundancy

level, re-weighting bad leverage measurements help identify

and suppress them in the SE algorithm, which is our goal.

Regarding the second issue above, the linear formulation in

this paper leads to the following system of equations in

contrast to (40).

u(k) = (NTR−1Q(k)N)−1NTR−1Q(k)w (44)

where Q is a diagonal matrix whose ithe element is 1 if

|ri/(σiγi)| ≤ c and c(σiγi/ri).sign(ri/(σiγi)) otherwise. In

comparison with (40), at each iteration k there is no need

to update Jacobian matrix H(k) and measurement function

h(x(k)). This expedites the algorithm for large-scale networks.

The IRLS algorithm is adopted to determine the updated

elements of Q(k) based on the value of r
(k−1)
i . The iteration

begins with conventional WLS, where Q is the identity matrix.

It should be noted that observability is a requirement for

the proposed method. When facing inadequate measurements
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TABLE II
AVERAGE RMSE FOR DIFFERENT SYSTEMS (NOISY AND ERRONEOUS

MEASUREMENTS)

System WLS IRLS

14-bus 0.0057 0.0048

30-bus 0.0074 0.0066

57-bus 0.0089 0.0081

118-bus 0.0046 0.0036

300-bus 0.0109 0.0099

1354-bus 0.0046 0.0043

9241-bus 0.0041 0.0036

we may resort to pseudo-measurements with lower accuracy

(larger variance) levels [1]. However, measurement redun-

dancy is large enough in today’s systems. For example, in

[39] it is reported that the redundancy level (number of

measurements divided by number of states) for the Spanish

system is 3.6.

VIII. CASE STUDIES

In this section, the proposed linear M-estimator is compared

with the linear WLS estimator introduced in [31] as well

as the conventional Gauss-Newton-based algorithm [3] . The

performance index used for comparison was the root-mean-

square error (RMSE) defined as

RMSE =

√

∑n
i=1 |V̂VV i − VVV i|2

n
. (45)

where V̂îVîVi = V̂ie
jδ̂i is the estimated complex voltage at bus

i obtained by (37) and (38). In practice, the true complex

voltages VVV i are never known. This is not the case in a

simulation environment, where true VVV i values are simulated

as the output of the load flow function in MATPOWER [40].

A. SCADA-Only State Estimation

The proposed M-estimator is tested on the IEEE 118-bus

test system [41]. Voltage and current measurement errors are

assumed to be non-correlated Gaussian zero-mean noise with

standard deviations (STD) of 0.001 and 0.002 pu, respectively.

Standard deviations of active and reactive power measurements

are 0.002 pu. To generate bad data, 20% of randomly chosen

branch currents have been polluted by non-correlated Gaussian

zero-mean noise with a standard deviation of 0.1 pu. The

detection threshold is set to c=3 [3]. Fig. 3 reflects the results

of 100 Monte Carlo simulations. In this figure, it is assumed

that branch currents from both ends of each line are available.

Table II summarizes the estimation results for other IEEE

test systems as well as two large-scale systems. It can be

observed that similarly to Fig. 3, the proposed M-estimator

outperforms the WLS estimator in presence of bad data.

Figs. 4 and 5 present the RMSE statistics associated with

conventional Gauss-Newton-based nonlinear WLS and the

proposed linear WLS, respectively. The conventional SE algo-

rithm is available in doSE.m in MATPOWER toolbox [40].

For large-scale networks the algorithm has been modified by

defining all large matrices as sparse matrices to avoid memory

problem faced in the original code. The maximum tolerance
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Fig. 3. IRLS versus WLS estimator for the IEEE 118-bus system.
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Fig. 4. RMSE statistics for conventional nonlinear WLS (No gross error).

for convergence was set to 1e-6 and the algorithm converges

in 5 iterations.

The measurement set includes voltage measurements from

all buses and flow measurements from both ends of every line.

The measurement set does not include any gross error so that

the two algorithms can be compared fairly based on the RMSE

index. It can be observed that the accuracy of the proposed

algorithm is comparable to the conventional algorithm for

different case studies in Figs. 4 and 5. It should be noted

that WLS is the best linear unbiased estimator. However, the

conventional SE algorithm based on nonlinear WLS is not

guaranteed to be the best estimator as can be seen from Figs.

4 and 5.

Fig. 6 shows the impact of a gross error on WLS- and

proposed M-Estimator. The system under study is the IEEE

14-bus network and the measurement configuration is taken

from [9]. The studied leverage measurement is the injection

at bus 6 whose corresponding hat value is h = 0.75 as shown

in Fig. 6. This injection measurement is multiplied by 0.8, 0.9,

1.1 and 1.2 to model the gross error in the measurement set.
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Fig. 6. Impact of gross error on WLS- and proposed M-Estimator (Gross
error is injection measurement at bus 6 in IEEE 14 bus network)

It can be seen that in all cases, the normalized residual related

to this measurement defined by (42) lies below threshold

3, causing the largest normalized residual test [3] in WLS-

estimator to fail. However, ri
γiσi

where γi is defined by (43)

in the proposed algorithms lies above the threshold, making

this measurement down-weighted by the factor calculated in

matrix Q. In order to compare the proposed algorithm with

conventional IRLS, the injection at bus 6 is multiplied by

1.25 to simulate a gross error. As shown in Table III, this

is a leverage measurement. The weights for measurements

for the conventional and proposed algorithms are reflected in

Tables IV and V, respectively. It is evident from (43) that the

proposed method suppresses this bad data more severely than

the conventional IRLS.

Note that not all leverage measurements are down-weighted,

while non-leverage measurements may be down-weighted due

to interaction with bad data at the first iteration. However,

as the iterations proceed and the actual bad data is severely

suppressed, other measurements will not be down-weighted

eventually.

TABLE III
LEVERAGE MEASUREMENTS IN 14-BUS NETWORK

Leverage Measurement Hat matrix value (hi)

I5−4 0.6212

Inj2 0.7357

Inj4 0.7784

Inj6 0.7552

Inj10 0.5982

Inj11 0.6635

Inj12 0.6053

Inj13 0.7586

Inj14 0.6016

TABLE IV
MEASUREMENT WEIGHTS IN THE CONVENTIONAL IRLS [24]

iter. I5−6 Inj1 Inj6 Inj11 Inj12 Inj13

1 0.85 0.976 0.49 0.69 0.65 0.60

2 0.83 0.982 0.58 0.75 0.72 0.68

3 1.00 0.969 0.39 0.73 0.67 0.58

4 0.94 0.975 0.50 0.71 0.68 0.62

5 1.00 0.968 0.34 0.80 0.71 0.60

6 1.00 0.972 0.48 0.69 0.66 0.58

RMSE 9.8161e-04

Table VI compares the proposed and conventional state

estimation in terms of computation time. For each studied

system, an average time of 100 Monte-Carlo simulations is re-

ported. Moreover, as both approaches need diagonal elements

of the hat matrix, the associated computation times that are

far larger than those of the estimators, are reported separately.

It can be seen that the computation time of both estimators

are comparable. The proposed linear estimator is shown to

be faster than the conventional nonlinear one for all cases.

It is well-known that the computation burden for calculating

diagonal elements of the hat matrix is the most challenging in

the SE. It should be noted that the figures reported in Table VI

in this regard aim to make a comparison between the proposed

and conventional algorithms. They can, however, be optimized

for example by sparse inverse method [3].

B. Hybrid SCADA-PMU State Estimation

Fig. 7 shows the effect of including additional PMUs

into the SCADA-based state estimation. For any number of

PMUs considered, an optimization problem is run to determine

the optimal locations of PMUs in terms of maximizing the

observability. Two cases for measurements are studied, where

the first case contains no erroneous measurements while in the

second case 20 % of measurements are polluted with gaussian

noise with standard deviation of 0.1 pu. Fig. 7 demonstrates the

advantage the M-estimator over WLS-estimator. For the case

of no erroneous measurement, both WLS- and M-estimator

give the same result. However, with gross errors in mea-

surements, the M-estimator results in more accurate estimates

compared to the WLS-estimator. As expected, the more the

number of PMUs in the system, the more accurate the state

estimation. It should be noted that The saturation effect of

additional PMUs on the accuracy of the estimation [18] is

also evident in this figure.
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TABLE V
MEASUREMENT WEIGHTS IN THE PROPOSED IRLS

iter. I5−6 Inj6 Inj11 Inj12 Inj13 Inj14

1 0.79 0.29 0.62 0.54 0.37 0.92

2 1.00 0.18 0.77 0.64 0.32 1.00

3 1.00 0.13 1.00 0.87 0.35 1.00

4 1.00 0.11 1.00 1.00 0.44 1.00

5 1.00 0.10 1.00 1.00 0.57 1.00

6 1.00 0.09 1.00 1.00 0.74 1.00

7 1.00 0.09 1.00 1.00 0.94 1.00

8 1.00 0.09 1.00 1.00 1.00 1.00

RMSE 4.6067e-04

TABLE VI
COMPARISON BETWEEN COMPUTATION TIME OF THE CONVENTIONAL

NONLINEAR AND PROPOSED LINEAR STATE ESTIMATION

Network
Estimator Computation (s) Hat Matrix Computation (s)
Conventional Proposed Conventional Proposed

118-Bus 0.0079 0.0022 0.4538 0.1924

300-Bus 0.0139 0.0042 2.751 0.9383

1354-Bus 0.0560 0.0180 69.201 40.3445

9241-Bus 1.0174 0.1680 4992.9 3158.3

13659-Bus 1.5365 0.2171 8919.3 5578.8

25000-Bus 2.9926 0.5891 27161.4 17074.3
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Fig. 7. Influence of additional PMUs on RMSE of the 118-bus system.

IX. CONCLUSION

In this paper a robust hybrid linear state estimator, dealing

with bad data in power system state estimation, has been

presented. In contrast to previous robust state estimators, the

proposed algorithm is generalized in the sense that it can make

use of SCADA data, PMU data and a combination of these

two as input data. The proposed estimator is linear with no

approximations, resolving the problem of convergence to local

minima in state estimators formulated in a non-linear form.

Moreover, the proposed algorithm deals with a constant matrix

in the iterative reweighted least squares method while the

conventional method requires building a new Jacobian matrix

in each iteration. These two features of the proposed method

distinguish it from the conventional robust state estimation. An

extension of the proposed method can include zero injections

as equality constraints by the Lagrangian method. This will

still keep the formulation linear and would be an area for

further research.

Simulation results show that the proposed robust estimator

and the conventional WLS estimator are comparable in terms

of accuracy and computational burden. In presence of gross

measurement errors, the proposed method outperforms the

WLS algorithm by reweighting the outliers and therefore

decreasing their impact.

Hybrid PMU/SCADA formulation has also been tested with

different number of PMUs in the system. The improvement in

the accuracy of the results is significant after adding a few

PMUs while the improvement slows down as the number of

PMUs increases. As today’s power are flooded with various

SCADA and PMU measurements, the proposed robust esti-

mator can be an effective tool to enhance the accuracy of SE

without sacrificing the speed of the process.
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