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Abstract The solubility of cellulose has been stud-

ied as a function of composition in the binary mixture

of 1,1,3,3-tetramethylguanidine and propionic acid. In

amine-rich compositions, greater quantities of cellu-

lose can be dissolved than in the equimolar compo-

sition, a.k.a. the protic ionic liquid [TMGH][OPr]. By

applying a methodology of a short period of heating

followed by cooling, similar concentrations of cellu-

lose can be achieved in a much shorter time period.

Finally, regeneration of cellulose from solution can be

achieved by altering the acid:amine molar ratio. In

comparison to cellulose regenerated from these solu-

tions using water as an antisolvent, cellulose regener-

ated with propionic acid exhibit a lower crystallinity as

inferred from x-ray diffractometry, but a greater

average molecular weight as inferred from gel

permeation chromatography.

Keywords Cellulose � Solubility � Protic ionic

liquids � Binary mixtures � Solvent effects � XRD
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Introduction

Ionic liquids (ILs) are a class of materials broadly

described as salts which have melting points below

100 �C (Plechkova and Seddon 2008; Hallett and

Welton 2011; Austen Angell et al. 2012; Greaves and

Drummond 2015). By varying the anion and cation

structure, a wide range of properties can be obtained

which have led to a number of different applications.

Of particular interest is their use as solvents for

cellulose processing, as they have been demonstrated

to readily dissolve high concentrations of cellulose

(Swatloski et al. 2002; Kosan et al. 2008; Wang et al.

2012; Verma et al. 2019). Of the ILs known to dissolve

cellulose there are two distinct groups: ‘‘aprotic’’ ILs

(AILs) formed of discreet ionic species such as

1-butyl-3-methylimidazolium chloride ([BMIm][Cl])

(Pinkert et al. 2009; Hallett and Welton 2011;

Petkovic et al. 2011) and ‘‘protic’’ ILs (PILs) formed

from the proton transfer reaction between a Brønsted

acid and base such as 1,1,3,3-tetramethylguanidinium

propionate ([TMGH][OPr]).(Walker 2004; King et al.

2011; Hauru et al. 2012; Greaves and Drummond

2015; Meenatchi et al. 2017; Becherini et al. 2019).

Ionic liquids in mixtures with dipolar aprotic solvents

such as dimethyl sulfoxide, c-valerolactone and

1-methylimidazole have also been shown to solubilize

cellulose quite readily (Xu et al. 2013; Zhao et al.

2013; Gale et al. 2016; Holding et al. 2017), which has

greatly enabled the spinning of cellulose fibers using

ionic liquids (Hauru et al. 2014; Sixta et al. 2015; Ma

et al. 2019). Spinning of fibres requires extrusion of

highly viscous cellulose solution into a coagulant bath

(Hauru et al. 2014, 2016; Sixta et al. 2015). There the

cellulose undergoes regeneration (Medronho and

Lindman 2015), which uses antisolvent to induce

precipitation (Lindman et al. 2017). Hence, solvents

mix with anti-solvent in the process.

The reality of an industrial application of an IL as a

solvent for cellulose processing is greatly limited by

certain obstacles, typically (1) the number of synthesis

steps and ultimately the cost to manufacture the IL

(Clark and Tavener 2007; Jessop 2011; George et al.

2015), (2) the potential hazards to both operators and

the environment posed by the IL such as toxicity,

biodegradability and mutagenicity (Docherty et al.

2006; Jordan and Gathergood 2015; Reid et al. 2015;

Clarke et al. 2018) and (3) the purification of the IL

from its mixtures with other solvents, such as

antisolvents used to regenerate cellulose from its

solution (Seddon et al. 2000). In general, PILs address

the first of these points as they can be prepared for

much lower costs than AILs due to their straightfor-

ward preparation (George et al. 2015). Paired with the

suggested low microbial toxicity and biodegradability

of PILs with the 1,1,3,3-tetramethylguanadinium

cation (Pratap Singh et al. 2017) and carboxylic

anions (Reid et al. 2018) the use of PIL systems such

as [TMGH][OPr] for cellulose processing has clear

advantages over their AIL counterparts.

The separation of antisolvent from IL remains a

common problem in both PIL and AIL based cellulose

dissolution processes. For example, small quantities of

water significantly reduces the ability for AILs and

PILs to dissolve cellulose (Mazza et al. 2009; Hauru

et al. 2012). The complete separation of water from

ILs is very challenging, due in a large part to water

becoming more and more discrete at diminishing

concentrations in ILs (Reid et al. 2017b). Additionally,

it has recently been shown that many superbases

including TMG are susceptible to hydrolysis in

aqueous mixtures, raising concern over the applica-

bility of water as an antisolvent for TMG-based

cellulose/PIL solutions (Hyde et al. 2019). The use of

alternative antisolvents such as compressed CO2 show

a potentially facile separation of antisolvent from IL,

yet the processing costs of high pressure CO2 in

general make their applicability less feasible (Sun

et al. 2014). A range of molecular solvents including

(but not limited to) acetone, ethanol and dimethyl

sulfoxide, have also been employed to regenerate

cellulose from ionic liquid solutions (Gupta et al.

2013; Huo et al. 2013; Holding et al. 2014, 2017).

One potential solution to antisolvent separation

from a PIL may lie in exploiting the nature of PILs as

binary mixtures of a Brønsted acid and base. We have

recently shown that changing the stoichiometry in a

binary mixture of acetic acid and N,N-dimethyletha-

nolamine has a profound effect on the apparent

solvent–solute interactions (Reid et al. 2019). Apply-

ing that same methodology to the system of propionic

acid (HOPr) and 1,1,3,3-tetramethylguanidine

(TMG), we show how changing the composition can

lead to an increase in cellulose solubility, as well as a

means of regenerating cellulose from solution without

the need of a dedicated antisolvent.

123

Cellulose



Results and discussion

Viscosity of binary mixtures of 1,1,3,3-

tetramethylguanidine and propionic acid

Prior to performing the trials of cellulose dissolution,

we wanted to characterise the viscosity of the

mixtures, as it is an important property for their

application as solvents (Marcus 1998; Reid et al.

2017a). Unfortunately, due to the highmelting point of

the equimolar PIL, we were unable to accurately

measure its viscosity within the operating tempera-

tures of our equipment. For all other mixtures and the

pure TMG and PrOH we successfully recorded the

viscosity as a function of temperature between

298.15 K and 318.15 K (Fig. 1). Generally speaking,

we find that the acid-rich compositions have greater

viscosities than the corresponding amine rich mix-

tures, with the 0.4 Amine mole fraction mixture

exhibiting the highest viscosities of all the mixtures

studied in this temperature range.

Dissolution of cellulose

The solubility of cellulose in a binary mixture of HOPr

and TMG is significantly affected by the solvent

mixture composition. We have found that microcrys-

talline cellulose (MCC) is completely insoluble in all

acid rich compositions of these mixtures, as well as the

pure precursor materials. Dissolution was confirmed

using microscopy to observe any undissolved crystals

of the cellulose which could not be observed by the

human eye. Surprisingly, the solubility of cellulose

was greater in the 60:40 molar ratio mixture of TMG

and HOPr (12.5 wt%) than in the equimolar system (10

wt%). Furthermore, the 70:30 molar ratio mixture

could dissolve a large concentration of MCC (7.5

wt%) but higher molar ratios of TMG to HOPr could

not dissolve MCC.

That an amine-rich composition of TMG-HOPr can

dissolve a greater quantity of cellulose than the

equimolar composition is likely due to the increased

hydrogen bond basicity of the binary mixture. Cer-

tainly, it is well understood that a balance of hydrogen

bond basicity and hydrogen bond acidity plays an

active role in cellulose solubility (Hauru et al. 2012;

Parviainen et al. 2013). It is likely that a combination

of the propionate anion and neutral TMG result in an

increase in cellulose solubility. To explore this

hypothesis further, the temperature dependence of

cellulose solubility was also studied, as varying the

temperature can significantly affect the proton transfer

equilibrium in acid–base binary mixtures (Abbott et al.

2018).

We found that cellulose solubility under isothermal

conditions is also highly dependent on temperature as

well as on composition (Fig. 2). By raising the

temperature from 20 �C to 120 �C, we find the

optimum temperature to be 80 �C for all systems.

Above this temperature, cellulose solubility decreases

due probably to a shift in the proton transfer equilib-

rium, resulting in the formation of neutral species with

subsequently lower hydrogen bond basicity (Reid

et al. 2017a).

Typically, the PIL [TMGH][OPr] has a melting

point of around 63 �C (King et al. 2011), yet the

solvent appeared stable even at 40 �C with gradual

cooling, demonstrating supercooling common in PILs

(Angell et al. 2007). However the amine-rich mix-

tures, which were liquid at all temperatures studied,

were able to dissolve more cellulose at lower temper-

atures as well (Fig. 2).

We also explored the solubility of cellulose in the

55% and 65% molar percentage of TMG mixtures and

find a smooth trend in composition dependence on

cellulose solubility, with 60% molar percentage of

TMG having the greatest cellulose solubility (Fig. 2).

When held under isothermal conditions at 80 �C for

15 h, the maximum concentration of MCC we could

obtain was 17.5 wt%.

A chance discovery during this work was that after

a short period of heating, followed by subsequent

Fig. 1 Viscosity of binary mixtures of HOPr and TMG as a

function of amine mole fraction at 298 and 318 K. The full set of

experimental data can be found in the supporting information
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cooling to room temperature, it was possible to obtain

cellulose solutions in a much shorter period of time

than previously believed. From this, we pursued a

systematic study on heating systems at two tempera-

tures (80 �C and 100 �C) for a set period of time (2 h),

followed by removing from the vial block to cool to

room temperature (Table 1). As a control, samples of

each TMG-HOPr mixture screened were heated for

2 h at 100 �C and analysed using 1H NMR to confirm

that the compositions of each mixture had not changed

during the solubility screening tests (See supporting

information Figures S1 to S8).

This method of cellulose dissolution resulted in a

greater solubility of cellulose in each of the four

compositions (50%, 55%, 60% and 65% TMG) at

either temperature compared to isothermal conditions

over 15 h (Table 1). For the 50%, 55% and 65% TMG

systems, a greater amount of cellulose could be

dissolved when heated at 80 �C compared to 100 �C,

with the 65% TMG system having the same maximum

observed cellulose solubility under both conditions.

The maximum concentration of MCC obtained using

this method, 20 wt%, was achieved using the 55% and

60% TMG mixtures after a total time of 3 h. As

expected, these high concentration cellulose solutions

had an appearance that was more gel-like as opposed

to a free flowing solution; with better mixing technol-

ogy it may even be possible to obtain greater cellulose

solubilities in the 55% and 60% TMGmixtures. While

there was the development of a yellow colour to some

cellulose solutions in both methods of dissolution,

there was no discernible trend on the formation of this

solution colour with cellulose concentration, acid–

amine ratio or duration of the heating condition.

Why this cooling step, along with the temperature

of heating, is important towards cellulose solubilisa-

tion is not straightforward. While the ionic nature

certainly plays an important role in the mechanism of

cellulose solubilisation, the thermodynamics and

kinetics of this heat/cool dissolution process when

compared to isothermal conditions requires further

experimental and theoretical investigation, which is

currently underway in our laboratory.

The increase in solubility with temperature can be

explained through the temperature dependence of

cellulose disentanglement and decrystallisation (Gha-

semi et al. 2017a). Free energy of mixing is touted as

an overarching driving force of dissolution (Lindman

et al. 2017). The physical processes within the

cellulose dissolution mechanism that most closely

correspond to this driving force are solvent diffusivity

and chain disentanglement (Ghasemi et al. 2017a, b).

Ghasemi et al. have shown that solvent diffusivity and

chain disentanglement predominantly affect swelling

and dissolution, respectively. In order for cellulose

molecules to remain in solution after disentanglement,

they must be stabilised in solution. In cellobiose and

other short chain cellulose molecules, the molecular

interactions which provide this stabilisation consist of

‘‘charging up’’ caused by ion accumulation around the

molecule in solution (Medronho and Lindman 2015;

Bialik et al. 2016; Nicol et al. 2017). These molecular

interactions could be present in cellulose. In fact, ion

accumulation has been observed in simulation studies

of ILs; [Bmim]Cl shows anion accumulation around

Fig. 2 Dependence of composition and temperature in the TMG-HOPr binary mixture on the solubility of cellulose after 15 h under

isothermal conditions
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cellulose as a stabilisation interaction within the IL

(Gross et al. 2011). By lowering the temperature of the

system, the proton exchange equilibrium will be

shifted towards ionic species over neutral species,

which in turn would promote greater ion accumulation

around cellulose and thus stabilise the cellulose in

solution (Reid et al. 2017a; Abbott et al. 2018).

Regeneration of cellulose

The nil solubility of cellulose in the acid-rich compo-

sitions of the TMG-HOPr systems inspires the use of

propionic acid as an alternative antisolvent (AS) to

water which is commonly used for the same purpose.

The separation of excess HOPr from an acid-rich

composition of TMG-HOPr is expected to be more

straightforward than the separation of water from the

PIL, due to the non-zero volatility of the binary

mixtures in this study. The equimolar protic ionic

liquid, [TMGH][OPr] has already been shown to be

readily distillable using high temperature and high

vacuum.(King et al. 2011) We attempted to distil an

acid-rich mixture of TMG and HOPr and found that

we were able to distil pure propionic acid from this

acid-rich mixture, indicating the practical applicabil-

ity of this method. However, we soon realised that to

properly assess the feasibility of solvent recovery from

this mixture will require a more in-depth study of the

vapour-liquid equilibria of this binary mixture, which

is beyond the scope of this paper. We hope to address

this topic in a future publication.

We have demonstrated that propionic acid can

indeed act as an effective antisolvent for cellulose. By

injecting a 15 wt% solution of cellulose at 80 �C into a

precipitation bath at the same temperature using a

homogenizer, we were successful in regenerating

cellulose as a white, granular powder. The material

was then subsequently washed further using the same

antisolvent, before being dried using acetone to

remove residual TMG and HOPr. When comparing

cellulose solutions using 50 mol% TMG and 60 mol%

TMG, the regeneration process was effectively iden-

tical. To compare on the quality of regenerated

cellulose, water was used as a reference antisolvent.

To verify the effects of our regeneration process on

the molecular weight and polydispersity of cellulose,

we performed gel permeation chromatography (GPC),

X-ray diffractometry (XRD), thermogravimetric anal-

ysis (TGA) and infrared spectroscopy (FT-IR).

From GPC measurements, we have found that all

regenerated samples have reduced degree of poly-

merisation, DPn and DPw, than the reference MCC.

Furthermore, samples regenerated from 50% TMG

solutions exhibited lower polydispersity, D, and a

greater DPn and DPw than from the 60% TMG

solutions (Table 2). Also, regenerating cellulose using

PrOH results in higher DPn and DPw than compared to

using H2O, however the polydispersity of regenerated

cellulose increases regardless of the regeneration

solvent used. (Table 2). From this, we can see that

both the stoichiometry of the dissolutionmedia and the

choice of antisolvent can have an impact on the

properties of the regenerated cellulose polymer chain

lengths. Regarding antisolvent, it is well known that

Table 1 Solubility of cellulose (displayed in weight percentage

of cellulose in final solution) as a result of heating at 80 �C

(blue) and 100 �C (orange) for 2 h followed by subsequent

cooling
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cellulose can undergo hydrolysis in water, most often

in acidic conditions.(Vanhatalo and Dahl 2014) It is

therefore likely that by combining water with this

cellulose solution during regeneration, hydrolysis of

the cellulose takes place. By using PrOH in place of

water as the antisolvent, this mechanism of cellulose

molecular weight reduction is avoided, hence the

observed trends in DPn and DPw.

These differences due to the choice of antisolvent

also affect the thermal degradation behaviour. TGA

analysis initially showed that the choice of antisolvent

resulted in a slightly different decomposition of

cellulose (Fig. 3), which is more apparent when

considering the differential of thermogravimetric

(DTG) curve (Fig. 4). The DTG curves of each sample

showed a maxima rate of loss for volatiles for all

regenerated samples at approximately 75 �C. This

temperature region is consistent with the boiling point

of acetone (56 �C) as oppose to 1,1,3,3-tetramethyl-

guanidine (160–162 �C) or propionic acid (141 �C).

The DTG curve showed the maxima rate of mass loss

on decomposition to be dependent on the regeneration

solvent and not the composition of the dissolution

solvent. Furthermore, all regenerated cellulose mate-

rials underwent decomposition at lower temperatures

than the reference MCC material. This is most likely

due to a change in the crystalline allomorph and

crystallinity of the cellulose as a result of dissolution

and regeneration.(Kilpeläinen et al. 2007; Wang et al.

2013).

The change of cellulose crystalline allomorph as it

undergoes dissolution and regeneration is a well-

understood phenomena (Kilpeläinen et al. 2007;

Ciolacu et al. 2011). By performing XRD analysis of

the regenerated cellulose materials and the precursor

microcrystalline cellulose, we demonstrate that cellu-

lose has undergone a change in crystalline allomorph

from cellulose I to II through our process steps

(Fig. 5). Specifically, the presence of major peaks at a

2h scattering angle of approximately 15�, 20� and

22.5� in the MCC sample, consistent with the crystal

structure of cellulose I (Nishiyama et al. 2002; French

2014; Liu et al. 2015), are absent in all of the

regenerated cellulose samples, regardless of the

regeneration antisolvent used. The types of antisolvent

had a great impact on the crystallinity of the regen-

erated materials. The cellulose materials regenerated

with water showed typical profiles of cellulose II

(Langan et al. 2001; Ciolacu et al. 2011; French 2014;

Liu et al. 2015), whereas regeneration using propionic

acid results in amorphous structure as evidenced by

the absence of clear peaks in the scattering profiles.

This picture is consistent with the observed differ-

ences in the DTG and TGA curves.

Infrared spectroscopy is often employed as a

complementary technique for XRD analysis. The

change in crystalline allomorph and crystallinity can

be captured with the peak shape and position in the FT-

IR spectra due to the difference in hydrogen bonding

network between cellulose I and II, specifically in the

3000–3500 cm-1 region, where the information on the

O–H groups are included (Marrinan and Mann 1956;

Carrillo et al. 2004; Makarem et al. 2019). The MCC

showed typical spectra of cellulose I as evidenced by

the two sharp peaks at 3400 and 3350 cm-1 (Marrinan

and Mann 1956; Carrillo et al. 2004; Makarem et al.

2019). The samples regenerated by water showed two

striking peaks at 3490 and 3450 cm-1 that correspond

to the intramolecular hydrogen bonds in cellulose II

crystal (Marrinan and Mann 1956; Carrillo et al. 2004;

Makarem et al. 2019), indicating that the samples

regenerated by water had crystalline cellulose II

structure. However, these peaks were not observed

in the samples regenerated from propionic acid,

Table 2 Gel Permeation Chromatography (GPC) analysis of the regenerated cellulose materials and the reference starting material,

MCC

Sample Polydispersity (D) DPn DPw

Reference MCC 1.41 97 ± 5 137 ± 10

50% TMG, PrOH AS 1.58 82 ± 5 135 ± 10

60% TMG, PrOH AS 1.75 71 ± 4 124 ± 8

50% TMG, H2O AS 1.56 77 ± 4 120 ± 9

60% TMG, H2O AS 1.68 58 ± 5 94 ± 8
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reflecting the amorphous structure. This results further

reinforces the structural difference observed in XRD

analysis. Additionally, there is a noticeable additional

peak around 1600 cm-1 for the regenerated cellulose

samples which is not present in the MCC sample. This

is most likely due to residual acetone on each

regenerated sample as shown by the DTG data (Figs. 4,

6).

Conclusions

To summarise, the dissolution of cellulose has been

shown to not be limited to the equimolar composition

of 1,1,3,3-tetramethylguanidine and propionic acid;

we have found new maximum solubilities of micro-

crystalline cellulose in a 60:40 molar ratio of the

Brønsted base and acid, respectively. By employing a

short heating period with a gradual cooling period, up

to 20 wt%MCC solution can be obtained within 3 h of

processing. In addition, exploiting the antisolvent

nature of propionic acid, cellulose can be regenerated

from these solutions by altering the acid–base ratio

towards an acid-rich composition, making additional

antisolvent such as water entirely redundant. Thus, our

novel solvent media, dissolution conditions and the

choice of antisolvent provides a new strategy towards

the processing of cellulose in acid–base binary

mixtures.

Experimental section

Propionic acid (HOPr), 1,1,3,3-tetramethylguanidine

(TMG) and microcrystalline cellulose (MCC) were

purchased from Sigma Aldrich and used without

further purification.

Typical cellulose solubility experiments the

required amount of TMG was charged into a 20 ml

scintillation vial, with propionic acid being slowly

titrated into the vial with stirring within a fume

cupboard to produce the binary mixture. The mixture

is sealed in the vial and placed onto a heating block,

ensuring there are no cold spots on the reaction vial.

The mixture is then brought to temperature and MCC

is added, producing a final mass of solution of 10 g.

Dissolution is confirmed by 1) visual inspection of the

solution turbidity and 2) microscope image at

40 9 magnification of the cellulose solution to

Fig. 3 TGA thermograms of the recovered cellulose materials

and reference microcrystalline cellulose. Individual thermo-

grams of each sample can be located in the supporting

information

Fig. 4 DTG thermograms of the recovered cellulose materials

and reference microcrystalline cellulose. Individual thermo-

grams of each sample can be located in the supporting

information

Fig. 5 XRD scattering of the recovered cellulose materials and

reference microcrystalline cellulose with assignment of peaks to

their corresponding polymorph of cellulose (Langan et al. 2001;

Nishiyama et al. 2002)
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confirm whether any undissolved MCC can be

observed. Cellulose solubility was tested in intervals

of 2.5 wt% of the total solution.

Typical regeneration experiment cellulose solution

(approximately 8 g) at 80 �C was transferred to a

20 ml syringe, where it was then injected into a

precipitation solution (approximately 25 g) at 80 �C

with constant high shear mixing from a homogenizer.

Once all cellulose solution has been injected, the

solution was homogenized for 10 min to ensure

complete precipitation has taken place, producing a

suspension of cellulose in acid-rich binary mixture/

acid–amine-water tertiary mixture. The solution was

then vacuum filtered and washed with a further

2 9 25 g of antisolvent before being left to dry under

vacuum for 1 h. Samples were then suspended in

acetone (approximately 20 g) at room temperature

before being dried under vacuum for a further 2 h.

Gel permeation chromatography The method out-

lined is similar to the method used by Silbermann.(Sil-

bermann et al. 2017) The sample, (approximately

0.03 g) was swollen overnight in DMSO. The solvent

was then exchanged for DMAc by rinsing 9 3 with

the solvent over vacuum. The solvent-wet sample was

placed in 3 ml of 8.7 w/v% DMAc/LiCl and stirred

overnight at room temperature. 0.2 ml of the sample

was diluted with 1.9 ml pure DMAc and filtered

through a 0.2 lm PTFE syringe filter into an autosam-

pler vial, prior to injection. The GPC samples were run

on a PSS SECurity system (Agilent 1260 Infinity II)

with a SLS 7100MALLS detector and RI detection for

determination of slice concentration, with 2 9 PSS

GRAM Columns and 1 Pre-Column. Flow rate was

1.0 ml/min, injection volume was 20 lL and the

resulting MMD was calculated using the PSS Injected

Mass method in WinGPC, using the accurate concen-

tration and on-line determination of dn/dc, assuming

that the entire sample mass had eluted. Results are an

average of 3 injections, with the standard deviation of

the values used to represent the margin of error in the

samples.

Thermogravimetric analysis Samples were anal-

ysed using a PerkinElmer TGA4000 instrument.

Approximately 10 mg of material was used for each

analysis. Each sample was heated at 20 �C min-1

from 30 �C to 600 �C under air. Differential of the

thermogravimetric curve was calculated using Pyris

software.

X-Ray Diffraction Sample measurements were

performed using a Samples measurements were car-

ried out by the use of a flat-plate vacuum camera

mounted on a rotating anode X-ray generator (Rigaku

MircoMax-007HF). The diffraction patterns were

recorded at room temperature with Ni-filtered Cu Ka

radiation source (k = 1.5432 Å, 40 kV, 30 mA) and

Fuji imaging plates (IPs). The sample-to-IP distance

was calibrated by the use of NaF powder

(d = 0.23166 nm).

Infrared Spectroscopy Samples were analysed

using a PerkinElmer Spectrum 2 FT-IR Spectrometer

with an ATR attachment. All samples were measured

at 293 K. Spectra recorded are the average of 16 scans

in the region 4000 – 800 cm-1.
1H NMR Spectroscopy: Samples were analysed in

D2O using a Bruker 400 MHz Ultrashield Plus

spectrometer with a BBFO probe. All samples were

measured at 298.2 K.
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