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Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) in China in January 2020 prompted
substantial control measures including social distancing measures, suspension of public transport
and industry, and widespread cordon sanitaires (‘lockdowns’), that have led to a decrease in
industrial activity and air pollution emissions over a prolonged period. We use a 5 year dataset
from China’s air quality monitoring network to assess the impact of control measures on air
pollution. Pollutant concentration time series are decomposed to account for the inter-annual
trend, seasonal cycles and the effect of Lunar New Year, which coincided with the COVID-19
outbreak. Over 2015–2019, there were significant negative trends in particulate matter (PM2.5,
−6% yr−1) and sulphur dioxide (SO2,−12% yr−1) and nitrogen dioxide (NO2,−2.2% yr−1)
whereas there were positive trends in ozone (O3,+ 2.8% yr−1). We quantify the change in air
quality during the LNY holiday week, during which pollutant concentrations increase on LNY’s
day, followed by reduced concentrations in the rest of the week. After accounting for interannual
trends and LNY we find NO2 and PM concentrations were significantly lower during the lockdown
period than would be expected, but there were no significant impacts on O3. Largest reductions
occurred in NO2, with concentrations 27.0% lower on average across China, during the lockdown.
Average concentrations of PM2.5 and PM10 across China were respectively 10.5% and 21.4% lower
during the lockdown period. The largest reductions were in Hubei province, where NO2

concentrations were 50.5% lower than expected during the lockdown. Concentrations of affected
pollutants returned to expected levels during April, after control measures were relaxed.

1. Introduction

The outbreak of Coronavirus Disease 2019 (COVID-
19) began in the megacity of Wuhan (population
11 million) in central China, with cases first being
reported on December 27, 2019. Media reports of
an unknown pneumonia outbreak began to appear
on December 31, with the outbreak officially being
reported to the World Health Organisation (WHO)
on the same day (WHO 2020). The cause of the dis-
ease was confirmed as a novel coronavirus on Janu-
ary 7 2020 (Wu and Mcgoogan 2020). The Chinese
government quickly implemented control measures,
such as isolation, quarantine and social distancing.
Dramatic actions to control the disease were taken,
as entire cities were quarantined across China. This
began with Wuhan being ‘locked-down’ on January

23, followed by another 14 cities in Hubei province
the next day (Kraemer et al 2020). Cases of the dis-
ease were soon reported in China’s other provinces,
with every other province reporting their first case
between January 18 to 25 (Liu et al 2020). Public
transport networks, schools and entertainment ven-
ues were suspended (Tian et al 2020), and the Lunar
New Year (LNY) national holiday was extended, to
delay the return of hundreds of millions to their cities
of work, and citizens were encouraged to work from
home.

The control measures are likely to have resulted
in a substantial decrease in air pollutant emissions
across China. In the industrial sector, widespread
suspensions of production resulted in the largest
ever decrease in the Purchasing Managers Index,
which tracks industrial output in China (CFLP 2020,

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/aba3a2
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aba3a2&domain=pdf&date_stamp=2020-07-28
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0395-0637
https://orcid.org/0000-0002-2214-9338
https://orcid.org/0000-0002-4881-5685
https://orcid.org/0000-0002-7551-4597
mailto:eebjs@leeds.ac.uk


Environ. Res. Lett. 15 (2020) 084021 B Silver et al

Prescott 2020). The monthly growth rate in indus-
trial production, which in 2019 had averaged+ 0.5%,
fell to−2.78% in January 2020 and−26.63% in Feb-
ruary 2020 (National Bureau of Statistics 2020b). In
the power generation sector, electricity generation in
January and February dropped by 8.2%, compared
with 2019. As restrictions began to be eased during
March, the economy started to recover, with March
power generation lower by 4.6% compared with the
previous year (National Bureau of Statistics 2020a).
CO2 emissionsmay have decreased by 25%during the
first few weeks of lockdowns (CarbonBrief 2020).

The control measures and resultant emission
reductions are likely to have influenced China’s air
quality, and impacts have been widely reported in the
media. According to measurements made by NASA’s
TROMPOMI satellite, there was a 20% larger than
previous year’s drop in Nitrogen Dioxide (NO2),
between the period before LNY to the period after
(Liu et al 2020). However, understanding the impacts
of control measures on air quality is complicated
by several compounding factors. The control meas-
ures coincided with the LNY, the largest holiday in
China. The LNY is typically a week long and results in
well-documented impacts on air pollution (Tan et al
2009, Gong et al 2014, Lai and Brimblecombe 2017).
China’s air quality has been changing rapidly in recent
years, with large reductions in SO2 and PM concen-
trations and increased O3 (Van Der A et al 2017, Lu et
al 2018, Silver et al 2018). These trends in pollutants
are due to declining emissions (Zheng et al 2017, Ding
et al 2019, Silver et al 2020), and need to be accoun-
ted for when analyzing any impact of the lockdown
on pollutant concentrations.

Although China’s air quality has improved in
recent years, it continues to suffer a severe health bur-
den caused by indoor and outdoor air pollution, with
12% of deaths in China in 2017 attributable to this
risk factor (James et al 2018). Understanding trends
in air quality is essential to assess the effectiveness of
recent air quality measures and help inform future air
pollution mitigation (Zhao et al 2017). The applica-
tion of control measures during the COVID-19 out-
break provides an opportunity to analyse the poten-
tial air quality improvements resulting from a reduc-
tion in emissions, as well as a ‘natural experiment’
from which theories of chemistry-climate interac-
tions can be tested.

To understand the impact of the control meas-
ures instigated during the COVID-19 outbreak, it
is necessary to compare pollutant concentrations in
2020 with expected concentrations had the COVID-
19 outbreak not occurred. Here, we use time series
of China-wide measurements of key pollutant con-
centrations between January 2015 an April 2020 to
isolate changes that occurred during the COVID-19
lockdown period compared with concentrations that
would otherwise be expected based on recent trends,
seasonality, and the effects of LNY. We do not assess

the relative contribution of emissions and meteoro-
logy to observed changes during the lockdown.

2. Methodology

2.1. Data
We obtained data from China’s national network
of air quality monitoring stations, which is oper-
ated by the China National Environmental Mon-
itoring Center (CNEMC). The network consists
of 1640 automatic measurement stations located
throughout mainland China, which report meas-
urements of particulate matter (PM2.5 and PM10),
nitrogen dioxide (NO2), ozone (O3), sulphur diox-
ide (SO2) and carbon monoxide (CO). The data
was downloaded from https://quotsoft.net/ (formerly
http://beijingair.sinaapp.com/), which aggregates the
real-time data reported on the official website of the
CNEMC. The dataset covers the period from Janu-
ary 2015 to April 2020. For this study, stations with
a timeseries of >58 months and >90% data availab-
ility were used. We used the same data quality meth-
ods as in Silver et al (2018), excluding data with high
proportion of repeat measurements and periods of
very low variability. The number of excluded stations
is provided in the supplementary table 1 (available
online at stacks.iop.org/ERL/15/084021/mmedia).

2.2. Time series decomposition
When comparing the air quality in China during the
lockdown in 2020, to the same period of previous
years, it is necessary to account for several interacting
factors, including interannual trends, seasonal cycle
and the effects of Chinese LNY. LNY is based on the
lunar calendar, so in the Gregorian calendar, the hol-
iday falls on a different date between late January and
late February each year.

The time series are decomposed separately for
each pollutant at each station, using daily data. The
2015–2019 time series are used to calculate the trend,
seasonal cycle and effect of LNY, for each pollut-
ant at each station, and these patterns are applied to
2020. The 2020 residuals are then analysed to assess
the extent to which pollutant concentrations were
affected during the lockdown period.

Figure 1 shows this method for NO2, and the
remaining pollutants are shown in supplementary
figure 1. The data is analysed and visualised using
the Python libraries pandas and matplotlib (Hunter
2007, Mckinney 2010). The trend is calculated using
the method in Silver et al (2018), using the Theil–Sen
estimator to calculate the monotonic, linear trends
(Sen 1968, Carslaw and Ropkins 2012). The trend is
subtracted from the daily mean data, and the result-
ing detrended data is smoothedusing locallyweighted
scatterplot smoothing (LOWESS) using the stats-
models Python library (Cleveland 1979, Seabold and
Perktold 2010). A 30-daywindow for the LOWESS fil-
ter is used to approximate the background seasonal
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concentration. The period between 14 d prior and
21 d after LNY is removed and replaced with interpol-
ated data. Both the seasonal smoothing and LNY data
are averaged across years, to give separate seasonal
cycle and LNY effect timeseries. These time series are
subtracted from the detrended data, to give the resid-
ual time series, which represents departures from the
expected concentration based on the trend, seasonal
cycle, and LNY effect.

The residual concentrations are used to assess
how much the concentration of pollutants deviated
from their expected concentration, based on long-
term trends, seasonality and LNY impacts. At each
station, we apply a 7 day centered rolling mean to
the residual time series, giving a time series of 7 d
mean residuals (7DMR). We express this in relat-
ive terms (%) by dividing the residual timeseries by
the sum of the trend, seasonal and LNY compon-
ents. Taking the median during the lockdown period
(defined below) allows for comparison between dif-
ferent pollutants and regions. The 7DMR represents
a longer-term deviation from the expected concen-
tration, averaging out day-to-day variability. Supple-
mentary figure 3 the effects of using different aver-
aging periods.

To analyze the influence of the COVID-19 control
measures, we define the ‘lockdown period’ as January
23 toMarch 31, 2020. The lockdown was officially lif-
ted in Wuhan on April 8th, though restrictions were
eased in other parts of China earlier than this, and
some social distancing measures have remained in
place. Generally, restrictions were lifted gradually, so
it is likely that emissions will gradually return to nor-
mal. We analyse data at the national level and for
the following regions: the Mid-Yangtze Basin (MYB)
in central China (which includes Hubei province);
the North China Plain (NCP) which includes the
capital Beijing, as well as Tianjin municipality and
Hebei province; the Yangtze River Delta (YRD) which
includes Shanghai; the Sichuan Basin (SCB) which
includes Chengdu and Chongqing; the Fenwei Plain
(FWP) which includes Xi’an; and the Pearl River
Delta (PRD), which includes Guangzhou and Shen-
zhen.

3. Results

3.1. Inter-annual trends
There are significant inter-annual trends in air pol-
lutant concentrations. Our previous work, Silver et al
(2018) found that during 2015–2017 across much of
China, there were significant negative trends in PM2.5

and SO2, whereas for O3, there were widespread sig-
nificant positive trends. Here we show that significant
trends have continued across much of China.

Figure 2 shows the 2015–2019 trends in air pol-
lutants across China. SO2 has the strongest negat-
ive trend, with 89% of stations reporting significant
reductions and a median trend of −12.0% yr−1 or

−2.6 µg m−3 yr−1. For PM2.5, 81% of stations report
a significant reduction, with amedian trend of−6.0%
yr−1 or−3.0 µg m−3 yr−1. For NO2, 44% of stations
report a significant reduction, with a median trend of
−2.2% yr−1 or −0.7 µg m−3 yr−1. Unlike the other
pollutants, O3 concentrations have increased, with
47% of stations reporting a significant positive trend,
and a median trend of 2.8% yr−1 or 1.6 µg m−3 yr−1.
Changes in air pollutant concentrations are pervasive,
with all analysed regions showing increased O3 and
decreased PM2.5 and SO2.

The variability of the magnitude and direction of
trends highlights the importance of accounting for
the inter-annual trend at each station individually, as
we do here. For example, at a station with a positive
trend, we might expect a decrease in concentration
during the outbreak to be moderated, while at one
with a negative trend, we account for the fact that the
concentration likely would have been reduced under
normal circumstances.

3.2. Seasonal cycle
Figure 3 shows the mean seasonal cycle of pollutant
concentrations during 2015 to 2019. In general, the
pollutants concentrations peak in the winter, except
for O3, which peaks in early summer. The effect of
LNY is visible for some pollutants, especially NO2.
However, since this is not caused by seasonal changes
and does not occur on the same date each year, we
extract this signal from the seasonal cycle (shown as
the red dotted line) and analyse separately.

3.3. Lunar New Year
Figure 4 shows the impact of LNY on pollutant con-
centrations. PM, CO, and SO2 concentrations all
increase on the first day of LNY, likely caused by emis-
sions from fireworks (Jiang et al 2015, Feng et al 2016,
Lai and Brimblecombe 2017). On this day, PM2.5 and
PM10 concentrations are on average 46 and 53µgm−3

higher, respectively. During the remainder of LNY,
concentrations of all pollutants except O3 are lower
than usual. PM2.5 and PM10 concentrations are 6.7
and 15.2 µg m−3 lower respectively. NO2 is on aver-
age 14.5 µg m−3 lower during the LNY holiday. O3

concentrations are higher during LNY, and are neg-
atively correlated with NO2. This likely demonstrates
a reduction in the NOx (NO2 + NO) titration effect,
where O3 is removed in the presence of high concen-
trations of NO.

The effects of LNY mean that simply compar-
ing monthly averages between different years during
this period could be misleading. In some years LNY
occurs in January whereas in other years it occurs in
February. Controlling for the LNY effect is important,
as it allows comparison across years.

3.4. Residual analysis
Figure 5 shows the anomaly in pollutant concentra-
tions after the inter-annual trend, seasonal cycle and
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Figure 1. Average of the NO2 (µg m−3) time series (blue), decomposed into its the trend (yellow), seasonal cycle (green), Lunar
New Year (LNY) effect (red) and residual (purple) components. The time series show the average concentration across all stations
included in the study from the China National Environmental Monitoring Centre network. A 30-day rolling mean has been
applied to smooth the data.

LNY effect have been removed. Results before, during
and after the lockdown period, are displayed as the
7DMR concentration. Full results for each province
and city are attached as csv files in the supplement.

3.4.1. NO2

For NO2, 46.0% stations across China record their
lowest 7DMR during the lockdown period (table 1).
During the lockdown period, themedian 7DMR con-
centration was −27.0% (−8.0 µg m−3) (table 2),
with a maximum difference of −56.2% occurring on
February 16. The median z-score of the 7DMR dur-
ing lockdown is −2.3, and falls below −5 (figure
6). The minimum z-score during the lockdown was
lower than for any previous time over the period ana-
lysed (supplementary figure 2), indicating that the
lockdown resulted in an unusually extreme negative
anomaly. A decrease in NO2 during lockdown was
observed across China, ranging from −25.9% in the
YRD to−30.5% in the SCB. The most negative resid-
uals occurred in Hubei (−50.5%, figure 7). Here, the
end of LNY was changed to March 10, extending it
for 5 weeks (Chen et al 2020), whereas in the rest of
China it was extended for 1 week.

3.4.2. Particulate matter
A median negative residual in PM concentration
acrossChina occurred during the lockdown, although
it is not as extreme as that for NO2. For PM2.5, 26.8%
of stations recorded their minimum 7DMR concen-
tration. During the lockdown period, the median

7DMR concentration was −10.5% (−3.7 µg m−3)
(table 2), with a maximum difference of −39.4%
occurring on February 18. Across different regions,
the decrease in PM2.5 during the lockdown is quite
variable, ranging from−17.2% in the PRD, to−2.0%
in the NCP.

The median z-score of the 7DMR during lock-
down is −0.7 (table 2), with a minimum of −2.7.

This indicates that during most of the lockdown
period, PM2.5 concentrations were low, but not to
the same extent as NO2. However, when compar-

ing the lockdown period to other periods of the
same length (69 d), the lockdown period exper-
ienced the most negative average residual recor-
ded in the last 5 years (supplementary figure 2).
The PM10 residual timeseries shows a similar tem-
poral pattern to that of PM2.5, but its relative
residual concentration is around twice as extreme
as PM2.5.

PM concentrations recover to normal levels
earlier than NO2 (figure 5), though the initial reduc-
tion in concentrations is of similar magnitude to NO2

in some regions, with the PM in the YRD, PRD and
MYB being ~60% lower in mid-February.

Prior to lockdown, during in mid-January, PM2.5

residual concentrations are unusually high in some

regions of China, with the FWP, YRD and NCP
all reaching a z-score of over + 2 during January,
and concentrations ~50%–100% above the trend-
adjusted seasonal mean. Figure 7 shows that some
stations, mostly in north-Eastern China, experi-

enced high positive anomalies during lockdown
of >40%.

3.4.3. O3

For O3, 1.5% of stations recorded their min-
imum 7DMR concentration during the lockdown
period, while 1.5% recorded their maximum. These
proportions are much lower than for NO2 or
PM, indicating that that O3 residual concentra-
tions were less extreme. Across China the median
O3 7DMR during the lockdown was + 0.2 %,
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Figure 2. Trends in concentrations of (a), (b) PM2.5, (c), (d) O3, (e), (f) NO2, (g), (h) SO2 across China during 2015–2019.
Left-hand panels (a), (c), (e), (g) show the spatial distribution of the trend and mean concentration (size of circle). Right hand
panels (b), (d), (f), (h) show the frequency of stations against the relative trends. The points on the map are coloured by the same
scale as the histogram. The median relative and absolute trend as well as the percentage of stations with significant trends is shown
beside the histograms. The percentage of trends that are negative (blue) or positive (red) are also shown. The black dotted line
shows the median trend across all sites. Triangles show the median trend for the regional domains shown in the left-hand panels:
Pearl River Delta (PRD), Yangtze River Delta (YRD), North China Plain (NCP), Sichuan Basin (SCB), and Fenwei Plain (FWP).

with a range of −2.4 to 5.1% between the six
regions.

It should be noted that unlike the other pollut-
ants, winter is the seasonal minimum for O3 concen-
trations across much of China (figure 3) (Gao et al

2020). During winter, O3 production across much of
China may be primarily volatile organic compound
(VOC)-limited, while during spring and summer,
more regions become NOx limited (Jin and Hollo-
way 2015). Formation regimes of O3 also vary across
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Figure 3. Comparison of the detrended concentrations for (a) NO2, (b) PM2.5, (c) PM10, (d) O3, (e) SO2 and (f) CO. The data is
smoothed using a LOWESS filter. The 2015–2019 average is shown as a solid red line, the dotted line shows data after the Lunar
New Year effect has been removed and replaced with interpolated data. Individual years are shown as shades of red and 2020 is
shown as a black line.

Figure 4. Average 2015–2019 detrended concentrations of (a) NO2, (b) PM2.5, (c) PM10, (d) O3, (e) SO2 and (f) CO during Lunar
New Year (LNY). Concentrations are presented relative to the start date of LNY, from 14 d before the first day of LNY till 21 d
after. Average detrended concentrations (blue line) and 25th and 75th percentiles (blue shading) are shown.

the country based on both emissions of precursors
and climate (Wang et al 2020). The spatial and tem-
poral heterogeneity of O3 production regimes, and
the array of precursors involved in O3 formation,
results in a complex response of O3 to the change in
emissions during lockdown.

3.4.4. CO
A median negative residual in CO is also recorded
during the lockdown period, although it is not as

Table 1. The proportion of stations that record their minimum
and maximum 7 day mean residual during the lockdown period.

minimum (% of stations) maximum (% of stations)

NO2 46.0 0.4
PM2.5 26.8 1.2
PM10 40.2 0.1
SO2 18.5 0.2
O3 1.5 1.5
CO 14.8 1.4
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Figure 5. Time series of the relative anomaly (%) during 2020 in the 7 d residual mean concentration of (a) NO2, (b) PM2.5, (c)
PM10 and (d) O3. This is calculated by dividing the 7 d mean of the residual component of by the sum of the seasonal, trend and
Lunar New Year components. The black line shows the median across all stations, with the coloured lines showing the medians
across regions. The ‘lockdown period,’ defined as 23 January to 31 March, is shaded.

extreme as that for NO2. For CO, 14.8% of sta-
tions recorded their minimum 7DMR concentra-
tion. During the lockdown period, themedian 7DMR
concentration was −12.1% (table 2), with a max-
imum difference of −28.5% occurring on Febru-
ary 20. Across different regions, the decrease in CO
during the lockdown is quite variable, ranging from

−16.5% in the FWP to −7.8% in the NCP. The CO
time series are shown in supplementary figures 5
and 6.

3.4.5. SO2

Rapid reductions in SO2 during 2015–2019 (figure 2,
−12% yr−1) result in reduced amplitude of seasonal
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Figure 6. Time series of z-score during 2020 for (a) NO2, (b) PM2.5, (c) PM10 and (d) O3. The black line shows the median across
all stations, with the coloured lines showing the medians across regions. The ‘lockdown period,’ which is defined as 23 January to
31 March, is shaded.

cycle (figure 3). This rapid change in seasonal cycle
means that extracting the average 2015–2019 seasonal
cycle impacts the residuals calculated in 2020. There-
fore, although the residual concentration remains
negative throughout the lockdown period, it cannot
be shown that this was an unusual departure from the
expected concentration based the interannual-trend

and seasonal cycle. The SO2 time series are shown in
supplementary figures 5 and 6.

4. Discussion and conclusions

We analysed air pollutant concentrations from
China’s air quality network to examine the impact
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Figure 7. Spatial distribution of the median residual anomaly (%) during the lockdown period (23 January 2020–31 March 2020)
in (a) NO2 (b) PM2.5, (c) PM10 and (d) O3. Hubei province is shaded.

of the COVID-19 control measures on air quality. We
show that quantifying the impact of the lock down
requires careful consideration of interacting factors,
including interannual trends, seasonal cycle and the
LNY.

Large changes in air pollutant concentrations
have occurred in China in recent years. We show
strong reductions in PM2.5, PM10, SO2 and NO2 and
increased in O3 concentrations during 2015–2019.
These long-term changes in air pollutants continue
previously identified trends during 2015–2017 (Sil-
ver et al 2018). These long-term changes in pollutant
concentrations are largely driven by changes in emis-
sions (Zheng et al 2017, Ding et al 2019, Silver et al
2020).

We show that LNY holiday results in consist-
ent changes in pollutant concentrations across China
during 2015–2019, with all pollutant concentrations
except O3 are lower than normal. Similar effects
have been reported for Nanjing (Kong et al 2015)
and Taiwan (Tan et al 2009). Gong et al (2014)
reported a 9% reduction in PM10 concentrations
during LNY across 323 stations in eastern China.
Reductions in PM, SO2 and NO2 concentrations are
attributed to lower emissions from traffic and coal

combustion, and increased O3 due to NOx titra-
tion. The coincidence of LNY and COVID-19 con-
trol measures means it is important to account for
LNY impacts when assessing the impacts of control
measures.

We estimated that COVID-19 control measures
resulted in reductions in NO2, PM and CO concen-
trations during the lockdown period, defined here
as January 23 to March 31, 2020. After account-
ing for the long-term trend, seasonal cycle and
LNY, we estimated that China-wide concentrations
in major air pollutants were reduced, with NO2

reduced by 27.0%, PM2.5 by 10.5%, PM10 by 21.4%
and CO by 12.1%. We found little change in O3

concentrations.
By comparing the residual concentrations dur-

ing the lockdown period in 2020 to those during the
previous five years, we show that unusual air pollu-
tion concentrations occurred during the lockdown.
It is likely that these unusual concentrations, most
notably for NO2, were caused by emissions changes
rather than unusual meteorological events, due to
the extended duration (NO2 stays below −2 z-score
for a month), the consistency of the result across
most of China, reports of substantially decreased

10
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activity in emissions sectors, and the co-occurrence
of unusual concentrations with the enforcement and
lifting of the lockdown. A full assessment of the role of
meteorology is now needed to clarify the relative con-
tributions of emissions and meteorology to observed
concentrations during the lockdown.

Chinese NOx emissions are dominated by trans-
port (35%), industry (35%), and power generation
(19%) (Zheng et al 2018), all of which are likely to
have been affected by the lockdown. Reduction in
emission from these dominant sectors and short life-
time together explain the larger reduction in NO2

compared to other pollutants. PM2.5 concentrations
in China are heavily influenced by residential emis-
sions (Reddington et al 2019), which are likely to have
been less influenced by the control measures. The lar-
ger relative reductions in PM10 and CO compared to
PM2.5, may be due to a greater reduction in primary
emission sources and the greater contribution of sec-
ondary aerosol to PM2.5. Reductions in emissions of
VOC and NOx combined with changes in PM con-
centrations result in little overall change in O3 con-
centrations.

Despite decreases in pollutant concentrations
during the last 10 years, China continues to suffer
from poor air quality and a large disease burden
resulting from air pollution (Zhao et al 2018). The
control measures and associated emissions reduc-
tions during the COVID-19 outbreak provide a use-
ful natural experiment. Analysing the change in pol-
lutant concentrations during this period can help us
understand the impacts of emission reductions on
air quality. Future work quantifying emission reduc-
tions and simulating atmospheric chemistry during
this period, will help elucidate how emissions reduc-
tions change PM composition and radical chemistry,
as well examining the influence of meteorology.
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