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Abstract 17 

Future technologies and systemic innovation are critical for the profound 18 

transformation the food system needs. These innovations range from food production, 19 

land use and emissions, all the way to improved diets and waste management. Here, 20 

we identify these technologies, assess their readiness and propose eight action points 21 

that could accelerate the transition towards a more sustainable food system. We argue 22 

that the speed of innovation could be significantly increased with the appropriate 23 

incentives, regulations and social license.  These, in turn, require constructive 24 

stakeholder dialogue and clear transition pathways. 25 

 26 

 27 

Main 28 

To date, the future sustainability of food systems, the role of changing diets, reducing 29 

waste and increasing agricultural productivity have been mainly studied through the 30 

lens of existing technologies. Regarding the latter, for example, a common research 31 

question concerns what level of yield gain could be achieved through new crop 32 

varieties, livestock breeds, animal feeds, or changes in farming practices and the 33 

diffusion of technologies such as irrigation and improved management7–13. Yet, as 34 

studies have shown, even with wide adoption of existing agricultural technologies, 35 
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full implementation of flexitarian diets and food waste reduction by half, it will be 36 

challenging to feed a growing world population while ensuring planetary 37 

wellbeing14,15.  38 

 39 

So far, few studies have explored the boundaries of what would be feasible if the 40 

world adopted more disruptive, ‘wild’, game-changing options16–18 that could 41 

accelerate progress in many desired dimensions of food systems simultaneously.  42 

Some of these game-changers are no longer in the realms of imagination; they are 43 

already being developed at considerable pace, reshaping what is feasible across 44 

different sectors19. Data on investment in agricultural startups suggests an increasing 45 

portfolio of companies focusing on these technologies20.  46 

 47 

Technologies by themselves are not always transformative, but are often crucial for 48 

innovation in an environment with a multitude of actors, political economy dynamics, 49 

patterns of supply and demand, as well as regulations. How transformational a 50 

technology will be depends on the economic and political context, the needs of the 51 

society and its socio-economic conditions21. Yet, the elements that could catalyse the 52 

transformation of the food system through systemic innovations are rarely examined. 53 

This Perspective contributes to the discussion on how to achieve positive 54 

transformation in food systems by providing insights on emerging technologies and 55 

what is needed to accelerate systemic change for sustainability.  56 

 57 

 58 

Technological innovations  59 

 60 

Since Neolithic times, technology has played a considerable role in achieving 61 

progress in many metrics of human well-being, including poverty, life expectancy and 62 

disease control22. Table S1 in the supplementary information presents a detailed list of 63 

many past technological innovations in the food system. Despite the benefits to 64 

humanity of these innovations in food and agriculture, deterioration of some 65 

environmental and health metrics has also been observed, especially in recent times. 66 

For example, land conversion into cropland or pastures, increasing agricultural 67 

greenhouse gas emissions and water use, and application of reactive nitrogen and 68 

phosphorus have increased several-fold even as their intensities per unit of product 69 
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have tended to decrease over time23–25. Noncommunicable diseases and inequalities 70 

are also growing in many societies26,27 despite rapid technological advances. The 71 

development of inexpensive, fast or discretionary foods has also contributed to 72 

significant malnutrition in many parts of the world26. 73 

 74 

Food systems technologies are being developed at an unprecedented rate, some of 75 

which could be deployed in the next decade and significantly transform the food 76 

system. We present an inventory of near-ready and future technologies that could 77 

accelerate progress towards achieving food system sustainability from extensive 78 

literature reviews. We classified each technology according to its position in the value 79 

chain (i.e. production, processing, distribution, consumption and waste) and its 80 

‘readiness score’. The latter, developed by the US National Aeronautics and Space 81 

Administration (NASA), is a systematic measurement system that supports 82 

assessments of the maturity of a particular technology (see the supplementary 83 

information for full details)54-56. It consists of nine levels, from basic research, 84 

principles observed and technology prototypes deployed, all the way to the proven 85 

implementation of a technology under real-world conditions54-56.  86 

 87 

A few conclusions emerge from this exercise. The first is that technological 88 

innovations span the entire food system, from food production, processing and 89 

consumption to waste stream management (Figure 1). Hence, an arsenal of 90 

technological options can be tailor-made to address different food system challenges 91 

in a range of institutional and political contexts. This diverse pipeline, including 92 

consumer-ready artificial meat, intelligent packaging, nano-drones, 3D printing and 93 

vertical agriculture, to name a few, presents a real opportunity for systemic change. 94 

Depending on the level of socio-economic development of a country or region and 95 

other institutional and political constraints, the mix of technologies could vary widely. 96 

 97 

Figure 1 about here 98 

 99 

Second, technologies vary widely in their readiness for implementation (Figure 2). 100 

Despite considerable spread across technology groups, those related to digital 101 

agriculture and replacement of food and feed for livestock and fish are associated with 102 

a relatively large number of near-ready and mature technologies. This is not 103 
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surprising considering the speed of innovation and cost reduction of digital 104 

technologies, followed by their widespread adoption across low, middle and high-105 

income countries alike. Similarly, efforts are under way to reduce the demand for 106 

livestock products by providing alternative protein sources, and to reduce its 107 

environmental impact by decoupling animal production from land via alternative, 108 

circular feeds. Meeting a growing demand for fish depends on reducing the share of 109 

total fish capture used as feed for livestock, currently around 12%5.  110 

 111 

Third, a number of near-ready technologies have high potential to be adopted, 112 

rendering investments in their dissemination and implementation strategic. Research 113 

is urgently needed on how to make options available in current food systems with 114 

minimal disruption, as well as better understanding of what might affect their uptake 115 

to scales that transform. This also highlights the potential contribution of the private 116 

sector in driving the uptake of these technologies and the need to establish regulatory 117 

frameworks and market structures to ensure that these advances are well aligned with 118 

the aims of public policy. It is essential that, at least in the medium term, affordability 119 

of these novel options increases, which is more likely to happen as demand size 120 

becomes clearer, and the manufacturing processes and supply chains are better 121 

established.  122 

 123 

Figure 2 about here 124 

 125 

Fourth, the simultaneous implementation of several of these technologies could 126 

significantly accelerate progress towards achieving more sustainable food systems. 127 

This could lead to simultaneous improvements in sustainable food production and 128 

waste reduction while improving human well-being and creating new local business 129 

opportunities as resources are revalued as part of the process. Moreover, this is in line 130 

with current local efforts for energising the bioeconomy in many parts of the world28–
131 

34 132 

 133 

Transformation accelerators 134 

 135 

The transformation of the food system will not be purely technological21.  At the heart 136 

of this process is a form of innovation involving deep changes in the component parts 137 
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of the food system (technologies, infrastructure and skills and capability) and a 138 

fundamental reformatting of the values, regulations, policies, markets and governance 139 

surrounding it. This view of transformation as a complex and systemic process 140 

implies that novel technologies alone are not sufficient to drive food system 141 

transformations; instead, they must be accompanied by a wide range of social and 142 

institutional factors that enable their deployment.  143 

 144 

Transformation is also a deeply political process with winners and losers, which 145 

involves choices, consensus as well as compromise about new directions and 146 

pathways. Powerful players within food systems have strong incentives to maintain 147 

the status quo and their current market share. In contrast, new entrants have much 148 

greater potential to act as disrupters of the system and to use this as a way of creating 149 

new products and/or value (meat substitutes, are an example). As a result, efforts to 150 

accelerate desirable technical change and transformation need to be in line with the 151 

social and political processes that either impede or catalyse system innovation.  In 152 

practice, this means building alliances, dialogue and trust around food systems 153 

development pathways and ensuring governance and regulator regimes to safeguard 154 

desired food system outcomes – all of which are essential conditions for the 155 

deployment of new technology. Examples of emerging technologies that have 156 

benefited from such changes are insect-based food/feed, plant-based meat 157 

alternatives, circularity in food systems, and vertical agriculture.   158 

 159 

In addition, the role of technology in transformation is ambiguous and diverse. 160 

Technology may catalyse transformation by triggering regulator shifts (e.g. 161 

circularity, drones), new market demands (e.g. seaweed) and other system innovations 162 

(e.g. personalised nutrition, molecular printing, biodegradable coatings). 163 

Alternatively, it may change/evolve in response to system innovations arising from 164 

broader societal and political shifts driving transformation21,34 (e.g. growing demand 165 

for sustainably-sourced produce). Technology may also enhance undesirable lock-ins 166 

(e.g. a farmer specialised and heavily invested in grain production cannot easily 167 

switch to diversified agriculture40). Identifying pathways of change for preventing 168 

these lock-ins is essential. 169 

 170 
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Based on this broader understanding of transformation, we propose eight key, largely 171 

interconnected action points to accelerate technological change and systemic 172 

innovation in food systems (Figure 3): 173 

 174 

1. Building trust amongst the actors of the food system: Transformation requires 175 

consensus and support for the new development pathways being pursued. This 176 

involves not only technological choices but also broad-based collaboration and a set 177 

of shared values about the desirability of different food system outcomes – e.g. 178 

sustainability, provenance, and socioeconomic benefit. Building trust sits centre-stage 179 

in this process. All the actors within the food system (whether farmers, consumers or 180 

food companies) are highly interconnected through economic and social networks. 181 

For systemic change and technological uptake to occur, there often needs to be an 182 

iterative process: private industries identify a business opportunity; governments 183 

identify the need for systemic change to achieve prosperity and well-being; a dialogue 184 

is initiated with citizens to enable attitudinal change; and finally innovations in policy, 185 

institutions and public investment encourage market shifts21,36. The Green Revolution 186 

in Asia provides a good example of these systemic changes at play, as it enabled crop 187 

yields to increase rapidly, consumption to increase and undernutrition to diminish in a 188 

bit more than a decade21.  189 

 190 

Given that governments may need to play a leading role in facilitating and 191 

communicating “why” and “how” to innovate to citizens, high-level agreement about 192 

new directions is key. For future food systems, this agreement is critical because of 193 

the environmental and ethical concerns around food production and consumption. 194 

Such agreement, based on solid and transparent science targets, and dialogue and 195 

consensus between public and/or private actors, can legitimise efforts to develop 196 

transition pathways, new products, business plans, policies and incentives. Good 197 

examples of these are the Sustainable Development Goals and the Paris Agreement 198 

greenhouse emissions targets, which are at the centre of the strategies of many 199 

national and international public sector departments and private companies. 200 

 201 

Managing expectations of different stakeholders can be essential to gain legitimacy 202 

and trust. The optimal behaviour from an individual’s point of view may strongly 203 

depend on the behaviour expected from others. If the benefit of adopting a certain 204 
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behaviour (e.g., using and/or investing in a specific technology) is perceived as a 205 

function of that behaviour’s popularity among others, vicious or virtuous cycles of 206 

self-fulfilling expectations may arise37, ultimately accelerating or retarding change. 207 

Once again, the Green Revolution of the 1960s provides a good example: the success 208 

of a technology depends on its adoption at scale; if an individual does not expect 209 

others to adopt it, then this individual’s response may be not to do it either. In cases 210 

like this, temporary subsidies and other incentives may help tip the system38.  211 

 212 

2. Transforming mindsets: The transformation of agriculture requires a learning 213 

mindset by the actors of the food system. A similar attitude to monitoring, review and 214 

knowledge generation is needed amongst the various levels of decision-makers. 215 

People have deeply engrained biological, psychological (particularly around 216 

“naturalness”39) and cultural relationships to food40, so development of an effective 217 

technology is no guarantee of social acceptance, as this is not purely determined by 218 

factors like price and safety. There is a tripartite relationship between people’s 219 

attitudes to technology, regulation that can change the structure of the market, and 220 

market actors that play out within a regulatory framework. The need to better 221 

understand a technology and to transform mindsets arises particularly in the case of 222 

technologies whose advantages and disadvantages are still largely unknown (e.g. gene 223 

editing, reconfiguring photosynthesis, novel nitrogen-fixing crops).  224 

 225 

3. Enabling social license and stakeholder dialogue: Public investment in technology 226 

development and uptake should be tied to social licence and technology acceptability. 227 

These, in turn, require greater consideration of responsible innovation principles and 228 

extensive public dialogue51. Rising public awareness of the issues may create pressure 229 

from consumers, employees, investors, and government itself, to push innovation in 230 

different directions (e.g. meat substitutes, nanopesticides). Without engaging these 231 

actors in responsible innovation, potentially powerful technologies may not be 232 

adopted (e.g. genome editing). The transformation necessary to tackle society’s grand 233 

challenges as embodied in global food systems might be constrained by those who 234 

trade on a business-as-usual basis. Technological uptake also involves the know-how 235 

to use a technology effectively. Higher knowledge-intensive systems often involve 236 

more ‘learning by doing’41,42 and might disadvantage food systems actors with less 237 

education such as smallholders or vendors in low-income countries. 238 
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  239 

4. Guaranteeing changes in policies and regulations: Expectations about future 240 

policies are essential for both public and private investments in technological change. 241 

For example, investing in research and development of low-carbon technologies is 242 

more attractive for private investors if they believe that carbon emissions will have a 243 

somewhat stable and attractive price in the future. Once new low-carbon technologies 244 

are in place, carbon policies (including pricing) may involve lower social costs, thus 245 

being more likely to be implemented. However, if no one expects this to happen, it 246 

will probably not happen since few people will find it worthwhile to invest in the 247 

technology. As with action point 1, vicious or virtuous cycles of self-fulfilling 248 

expectations may arise37, in which case, policies can help steer expectations in a 249 

desired direction53 –particularly through subsidies or direct investment in low-carbon 250 

technologies43,44. 251 

 252 

5. Designing market incentives: The appropriateness of measures and incentives and 253 

the factors which are critical to the success of transformational innovations are often 254 

context- and technology-specific. The barriers to innovation and diffusion also differ. 255 

In competitive markets (such as food and energy), companies often underspend on 256 

research and development relative to what would be the optimal expenditure level 257 

from a society’s perspective, since they typically cover all the costs but are not the 258 

sole beneficiaries of the knowledge generated along the process. Historically, 259 

governments have sought to correct this market failure by rewarding innovative 260 

efforts, including ‘market pull’ measures – like granting innovators (temporary) 261 

monopoly rents through patent protection, complemented by other inducements and 262 

subsidies for under-funded priorities (e.g., orphan diseases) – and ‘market push’ 263 

incentives – e.g. tax credits, public procurement, or pricing of externalities. Making 264 

these incentives accessible to new entrants is critical, as it is unclear whether 265 

transformative innovation will emerge from established industry players45. Innovation 266 

incubators and accelerators often play a key role in bringing novel solutions to 267 

market52. This has been the case with many technologies on our list (Fig. 1) across all 268 

technology groups (drones, algae for feed, plant-based meat substitutes, 269 

nanoenhancers, personalised food). Incentives that drive innovation also differ from 270 

those that encourage diffusion.  271 

 272 
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6. Safeguarding against indirect, undesirable effects: There are real challenges in 273 

designing policy and investment frameworks to harness the transformational potential 274 

of new technology. Unintended consequences may be overlooked, especially  where 275 

public acceptance and the regulatory landscape remains to be determined 20,46–48. For 276 

instance, circular economy strategies in the food system must comply with strict 277 

regulations from Europe and North America concerning the re-use of organic waste as 278 

animal feed (adopted after bovine spongiform encephalopathy and foot-and-mouth 279 

diseases outbreaks49). A broader public dialogue and consultation is likely to 280 

legitimise wider support and/or identify the potential for unexpected impacts. Such 281 

broader dialogue can also highlight the complexity behind the science and the trade-282 

offs between adoption/non-adoption, and avoid the lack of social license simply 283 

because relevant issues are not sufficiently understood. Yet, as noted above, even 284 

when these issues are well understood, a technology may not be socially acceptable if 285 

it is thought to go against “naturalness” or existing cultural biases39-41. 286 

 287 

7. Ensuring stable finance: Technologies associated with food and agriculture often 288 

involve a physical product which is subject to production seasonality and complex 289 

regulations. This poses an additional challenge to their diffusion, especially because 290 

the financial environment does not reward the “fail fast and re-start/iterate” model 291 

(designed to stop flawed operations and then restart differently). Nonetheless, 292 

transformative change is likely to be unpredictable and its impacts variable, so 293 

technology exploration and piloting under real world conditions are important to test 294 

effectiveness. More creative investment solutions like increased deployment of 295 

accelerators or special finance for diffusion, and more steady and longer-term finance 296 

for technology development may be needed to drive transformational shifts50, as the 297 

research, development and implementation cycles can be long for a broad range of 298 

technologies (e.g. reconfiguring photosynthesis, novel nitrogen-fixing plants and/or 299 

perennials, new vaccines, GM-assisted breeding technologies, etc.).  Nevertheless, the 300 

digitalisation of agriculture and some other technologies could provide ample 301 

opportunities to spread and scale transformative solutions, just as mobile banking did 302 

on the back of the mobile phone revolution in the 2000s.  303 

 304 

8. Developing transition pathways: Most analyses of the future of food systems 305 

anticipate the impacts of alternative scenarios and the roles of different strategies (e.g. 306 
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diet changes, waste reduction, increased food production)5, 7, 10-16, 27. However, these 307 

studies rarely shed light on how to implement the desired changes. The ‘how’ of 308 

achieving planned and actionable change is critical towards realising these 309 

transformations and is what we call ‘transition pathways’. Transition pathways 310 

include the necessary understanding of technologies and their impact, desired science 311 

targets, transition costs, identification of winners and losers, strategies to minimise 312 

adverse effects (socially, economically and environmentally), gradual steps to be 313 

taken by different actors, major aspects of institutional reframing (public and private), 314 

as well as the systemic innovation required to achieve the expected transformation. In 315 

essence, the accelerators proposed here provide critical information for building these 316 

pathways.  317 

  318 

Figure 3 about here  319 

 320 

Conclusions 321 

 322 

Food systems currently pose enormous challenges. Technological innovation will 323 

surely have a major role to play in the future of food systems, just as society is 324 

undergoing immense, transformative advances in telecommunications and renewable 325 

energy use. The list of potential food system-related technologies is long. 326 

Nevertheless, more robust analyses of the feasibility of technological innovations and 327 

their potential impacts are urgently needed.  Such studies are technically complex, 328 

particularly with respect to uncertainty and the identification of options to pilot new 329 

investment streams for funding and research organisations. It is crucial that these 330 

studies are designed with a multicultural and socio-political lens to ensure rapid 331 

innovation where it matters most, with equity and embracing diversity of thought. 332 

 333 

Food system innovations will depend on adequate investment in basic research and 334 

development to keep the pipeline flowing, given that many of the technologies 335 

identified here may contribute little to the global food system over the next two 336 

decades. We also see a great need to bypass the bottlenecks of the enabling 337 

environment, especially in lower-income countries where the potential impacts (both 338 

positive and negative) of technological innovation may be relatively larger. History 339 

shows clearly that innovation produces winners and losers. We need to ensure that 340 
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social sustainability becomes a higher agenda item, in the short and long term, to 341 

address the sectors of society at risk of being left behind.   342 

 343 

Finally, and perhaps most importantly, accelerating food systems transitions towards 344 

positive, desired states will have to involve societal dialogue. Of the eight elements 345 

identified in Fig. 3 for accelerating the systemic transformation of food systems, at 346 

least five revolve around building trust, changing mindsets, enabling social licence, 347 

developing transition pathways and safeguarding against undesirable effects. Success 348 

in all these actions will result in better health, wealth and environmental outcomes; 349 

failure will result in much more than a lack of food. 350 

 351 
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Figure captions. 538 

 539 

 540 

Figure 1. Future technologies with transformation potential. The technologies are 541 

classified under ten groups and span the entire food system. A complete description of 542 

each technology is presented in Table S2 of the supplementary information. 543 

 544 

Figure 2. Technological readiness of future food system technologies. The 545 

technological readiness score is a 9-stage systematic measurement system that 546 

supports the assessment of the maturity of a particular technology. Details on each 547 

stage, score calculation and technology groups are shown in Table S2 of the 548 

supplementary information. 549 

 550 

Figure 3. Essential elements for accelerating the systemic transformation of food 551 

systems. These accelerators help achieve healthy and sustainable diets, productive 552 

agri-food systems and improved waste management - three outcomes necessary to 553 

attain sustainable food systems.  554 
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