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ABSTRACT

A benefit with traditional static analysis approaches to single criti-

cality hard real-time systems is that the uncertainties, and hence

confidence, associated with timing requirements being met are bet-

ter understood than Measurement-Based Timing Analysis (MBTA)

approaches. In brief, failures are mostly accounted for by human

errors or random hardware failures. With the introduction of

measurement-based approaches to timing analysis to help deal

with more advanced processors, the situation is much more com-

plex. �e complexity comes from new sources of epistemic failures:

imperfect timing measurements from the system, approximations

in the analysis, and the conscious decision that parts of the sys-

tem are not always guaranteed to be scheduled in a hard real-time

manner. �e goal of this paper is to establish some understanding

of the uncertainties based on a proposed industrial approach to

MBTA and consequently how confidence in the system’s timing

measures can be managed. More specifically understanding the

epistemic uncertainties associated with measures used for timing

analysis concentrating on whether it could have been foreseen that:

further testing with a given method could have avoided failures;

and deficiencies with the current testing method could have been

predicted.
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1 INTRODUCTION

�ere are a wide variety of models for mixed-criticality scheduling.

A pre-requisite for all of these is that reliable execution times are

available for the So�ware Under Test (SUT) and from these values

forCLo ,CHi can be deduced. CLo is theWorst-Case Execution Time

(WCET) of all jobs in normal mode and CHi may be the WCET for

high-criticality jobs a�er a functional mode change has occurred

into High-Criticality Mode (MCM). As motivated by Graydon [13]

any time a different set of tasks are scheduled, a functional mode
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change is considered to have occurred and the set of tasks that

execute at any given time is a functional mode.

To date, all work that we are aware of has not considered how

the reliability of execution times can be demonstrated, and howCLo
and CHi are determined. �e general academic assumption is CLo
comes from testing and may be optimistic. CHi would then come

from of pessimistic form of analysis. An industrial perspective from

Law [5] is that both CLo and CHi could be obtained by the same

data, however CHi could feature paths through the SUT that are

only executed under exceptional circumstances, e.g. when there

are hardware faults, as well as by the application of pessimistic

WCET analysis to the measurements. However the values are

determined, the confidence in the input data to the process needs

to be understood. �e contributions of this paper are establishing

methods for determining:

(1) how reliable the timing measurements are;

(2) the likelihood of the current testing method determining

new (significant) information;

(3) if infeasible paths might exist that could be used to optimise

hybrid analysis; and

(4) whether there are sufficient measurements to support the

above.

�e contributions are evaluated using an industrially-proven

technique for generating execution time measurements, however

our belief is that the contributions are generally applicable. �e

structure of the paper is as follows. �e paper begins with back-

ground and related work before providing an in-depth description

of the testing method used as a basis for the paper. Section 4 then

investigates whether the outputs of testing give a reliable input to

MBTA.�en, section 5 explores whether the current testing method

is likely to determine new information. Section 6 looks at ways of

determining if the so�waremight have infeasible paths based on the

available test data. Finally the paper concludes with observations of

what can be determined, methods for predicting the observations

that could be determined, and the confidence associated with those

predictions.

2 BACKGROUND AND RELATED WORK

�e related work section is split into the following three parts:

research on static analysis to help understand the main influences

on the WCET of so�ware; methods for generating data as part of

Measurement-Based Timing Analysis; and techniques for arguing

the reliability of so�ware.

2.1 Static Analysis for WCET

�e purpose of this section is not to provide a thorough review of

static analysis for WCET, but instead understand the main inputs to
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the static analysis approaches as thesemay be considered significant

factors affecting the reliability of execution time data. �e initial

work onWCET analysis concentrated on the different paths through

the program [27, 28]. In this work, there were two key influences:

the blocks that were executed and the paths subsequently taken.

�ese were dictated by the decisions taken at branch instructions

and the number of times around a loop.

�e subsequent areas of work analysed a wide variety of pro-

cessor features including pipelines [23], caches [25] and branch

prediction [10]. Whilst all these factors influence the execution

times of so�ware, Khan showed that their influence was much less

significant than the path through the so�ware [16, 17]. A second

reason for not considering these further is the difficulty in obtaining

the measurements on a real target, rather than a cycle-accurate

simulator, and that taking the measurements is likely to introduce

significant measurement noise [21, 22].

2.2 Generation of Execution Time Data

�epurpose of this section is to review the approaches to generating

execution times to support MBTA. �e review is intended to be

independent of how MBTA is performed with the key techniques

being: to take the High WaterMark (HWM) or in other words the

maximum execution time; hybrid analysis where measurements are

combined with results from static analysis [6]; or techniques based

on probabilistic analysis [9]. It is noted that in [11] a number of

concerns from the probabilistic analysis communities were raised

that are likely to be relevant to all approaches to generating the

execution time data.

�e main approaches to generating the test data have been

search-based approaches. Wegener [30] and Tracey [29] both illus-

trate how search algorithms could be used for test data generation,

particularly with regard to applications that require coverage be-

yond statement coverage.

Wegener’s early work [30] presented an investigation into how

genetic algorithms can be used to estimate the minimum and max-

imum execution times of so�ware targeting embedded systems.

Tracey introduced a framework of tools designed to automatically

generate test data to perform dynamic analysis on an SUT. One of

the targeted analyses being the analysis of the WCET. �e frame-

work introduced is primarily based on search algorithms, which

when compared to HWMs observations from system-level testing,

produced good results. However the drawback is the tool had to

achieve path coverage to obtain a sound WCET and path coverage

was not targeted by the search.

Wenzel [31] introduces an MBTA tool designed to calculate safe

WCET bounds of safety-critical so�ware. �e tool uses a combi-

nation of static analysis, and dynamic measurement of the SUT in

order to compute safe WCET bounds. �e tool statically analyses

the feasible paths through the code, then uses search algorithms to

identify test vectors to execute each path. �is is achieved through

a combination of test data reuse, random search, genetic algorithms

and finally model checking [31]. Unfortunately the tool places a

number of restrictions, and assumptions on the code under test,

for example the tool is only capable of analysing acyclic code and

does not allow function calls. So unfortunately the compromises

required to use the tool are significant, and would not be acceptable

in an industrial environment.

Williams [32] proposes a static analysis tool which aims to iden-

tify a test vector to exercise every path through the code under

test. �e WCET can then be read off as the HWM observed during

testing. �is was extended in [33] with an analysis into possible

simplifications that can be made to avoid the analysis requiring

full path coverage. �ese include maximising loop counts, and

assuming branches are always taken. �e paper recognises that

further investigation and justification is required, but it does indi-

cate possible areas where MBTA coverage requirements could be

simplified.

Bünte et al [8] examined the effectiveness of using model check-

ing [15] to produce test suites with enough coverage to provide

reliable WCET estimates. �eir research focuses on identifying

effective coverage metrics to drive a model checking test suite

generator. �is was extended in [7] which combines the results

produced with a genetic algorithm, which then aims to identify

larger execution times. One drawback is that the tool analyses

so�ware that has been simplified to ensure each decision point

relies on only a single variable. �is may not be appropriate to an

industrial program where large amounts of generic code are carried

forward to future programs. Also the tool’s use of model checking

risks the tool’s portability to larger, more complex functionality.

�ese aside, the tool shows some of the most advanced work in the

field of MBTA data generation.

Khan and Bate [16, 17] introduce the idea of incorporating multi-

criteria optimisations into a search based WCET analysis tool. �e

method adopted used a number of fitness function parameters

in order to a�empt to drive the worst case path, these include

advanced processor features known to cause larger WCET values,

such as cache misses, but also focused in on low level so�ware

coverage such as loop iterations. �e paper concludes that no one

fitness function provided be�er results across all test code items,

and that the fitness function chosen should be dependant on the

target environment. However the paper focused on a number of

processor, or so�ware, features that are not necessarily present in

safety-critical systems and also didn’t consider coverage which is

of importance to certification.

More recently, the work of Law [19] has used coverage-based

metrics to ensure the reliability of HWM and hybrid analysis based

on Rapitime, and to be�er support certification. �e work was

then extended in [20] to provide a more scalable approach. As this

approach has been shown to more reliably obtain the WCET the

other approaches discussed in this section, the works fall short

of justifying (with evidence) why it is more reliable and whether

further testing would provide be�er results.

2.3 Justifying the Reliability of So�ware

Most of the work on justifying the reliability of so�ware has been

based on Reliability Growth Models (RGM) with the seminal works

in this area using Bayesian approaches [26]. �e challenge with

these approaches are that they are black box in nature which means

the principal causes of a lack of reliability are not considered and

they assume each fault is independent with respect to the previous

ones. Graydon addresses the first of these issues by producing an
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argument as to how timing is approached for systems that have to

be certified [12]. �is work concentrated on arguments that could

be made without necessarily reviewing the underpinning evidence,

i.e. the actual nature of the data that might be collected based on a

particular testing approach. Finally there is the previous mentioned

work on probabilistic techniques, e.g. [9]. Again this is a black box

approach and these techniques concentrate on analysing the data

rather than the integrity with which it is captured.

3 THE EXAMPLE TESTING METHOD

�e purpose of this section is to introduce the search algorithm

used and then the platform on which the so�ware operates. Details

of the so�ware are not provided as it is industrial so�ware from an

aircra� engine control system, however it is a similar example to

those used in [19]

3.1 Search-Based Test case Generation Used

�e TACO framework relies on a derivative of a simulated anneal-

ing (SA) algorithm [1], outlined in Algorithm 1 for the search. �e

algorithm starts from a random solution, i.e. a valid test (or input)

vector for the function under analysis (line 2). A new solution

is generated on each iteration by altering one randomly selected

input in the current test vector (l.7). Both operations, generation

and mutation, respect the type range constraints of the input vector.

�e SUT is then executed using the new solution while collecting

information on its execution path and timing behaviour (l.8). �e

new solution is accepted as the new baseline one (l.13) if there is

an improvement. �is relies on the evaluation of the solution?s

fitness according to its execution against that of previous solutions.

A solution may also be pseudo-randomly accepted (l.12) to ensure

the search does not get stuck in a local minima especially in early

stages of the search. As the test progresses the pseudo-random

selection of poor solutions will decrease, as controlled by the de-

creasing temperature parameter (l.22). �e search stops (l.23) a�er a

minimum number of iterations, if no solutions have been accepted

for a few iterations, or the temperature hits a specified lower bound.

Additional steps (l.20), such has reheating [18], are taken to prevent

the algorithm being caught in a local minima. �e key configura-

tion points for the Algorithm and related fitness function are given

in Table 1.

3.1.1 BCHLr Fitness Function. �e BCHLr fitness function is a

coverage-based heuristic to evaluate the fitness of a solution against

it predecessors during the search. �e fitness of a solution combines

three factors:

• Branch Coverage (BC) - Accept solutions which cover new

branches to increase path coverage through the code.

• Branch History (H) - Revert to a previous solution that

reaches unexplored paths to execute all branches through

the code.

• Maximum Loop Counts (Lr) - Accept solutions which im-

prove on the observed loop iterations count to maximise

the number of iterations of each loop through the code, as

proposed by Khan [17].

BranchCoverage (BC) computes the average fitness of the branches

traversed during the execution of a solution. A branch fitness is

Algorithm 1 Simulated Annealing

t empe ra tu r e : = INITIAL TEMPERATURE

cu r r S o l : = RandomSolut ion ( )

currTemp := temp

r e j S o l s : = 0

do

−− Gen e r a t e and e v a l u a t e new s o l u t i o n

newSol : = Mutate ( c u r r S o l )

newSta t s : = C a l l F un c t i o n ( newSol )

newF i tne s s : = E v a l u a t e F i t n e s s ( newSta t s )

−− Acc ep t o r r e j e c t s o l u t i o n

i f AccSol ( newFi tness , temp , rand ( 0 . . 1 ) )

c u r r So l , currTemp := newSol , temp

r e j S o l s : = 0

e l se

r e j S o l s : = r e j S o l s + 1

−− Update s e a r c h t emp e r a t u r e

i f r e j S o l s > HISTORY TEMPERATURE SIZE :

t empe ra tu r e : = currTemp

e l se

temp = temp x COOLING

loop while not S topAlgor i thm ( )

Parameter Configuration

Temperature Initial temperature 1.0

Minimum temperature 0.0001

Temperature cooling 0.9999

History History temperature 1000

History input 10

History delay 1000

Iterations Minimum iterations N.A.

Maximum iterations 50000

Input Input change rate ±5% of Value Range

Repetition Window Size 5

Window error 5%

Table 1: Simulated annealing search parameters

the ratio between the number of unexplored edges out of a branch

over the number of edges out of the branch:

FBC (p) =
1

|Bp |
×

∑

b ∈Bp

(

|{e | e ∈ Eb ∧ ¬Cov(e)}|

|Eb |

)

(1)

Where Bp is the set of branches traversed by execution path p,

Eb denotes the set of outgoing edges from branch b, and Cov(e)

captures whether edge e was covered by p or by prior iterations of

the search.
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Algorithm 2 Simulated Annealing - Modifications for Branch His-

tory

−− Acc ep t o r r e j e c t s o l u t i o n

[ . . . ]

−− Save s o l u t i o n a g a i n s t r ea ched ,

−− un c o v e r e d b r an c h e s

for branch in Branches ( newSta t s . pa th ) :

i f Al lEdgesCovered ( branch )

RemoveFrom ( h i s t o r y , branch )

e l se i f branch not in h i s t o r y

h i s t o r y [ branch ] : = newSol

−− R e s e t s o l u t i o n t o r e a c h

−− un c o v e r e d branch

i f r e j S o l s > HISTORY INPUTS SIZE

branch : = PickRandom ( h i s t o r y )

newSol : = h i s t o r y [ branch ]

−− Update s e a r c h t emp e r a t u r e

[ . . . ]

Between two solutions, one that reaches a branch with yet un-

seen outgoing edges will be favoured over one that only covers

fully-explored branches. A given solution may further have a differ-

ent fitness based on the history of explored solutions and branches,

and it will decrease in fitness as the search progresses.

�e Branch History (H) resets the search to solutions reaching

branches with unseen outgoing edges. As each branch executed

through a solution is analysed, the history keeps track of the solu-

tion and it is stored against that branch. If a branch has unexplored

outgoing edges, the stored solution can thus be used as a starting

point to reach unobserved outgoing edges. �e history triggers

when a sufficient number of new solutions has been rejected, and a

new matching branch is chosen at random. �e input vector stored

against this branch is then adopted as the current solution. �is

is designed to a�empt to li� the algorithm from poor solutions

and focus the algorithm on the area around branches that have

only been partially executed. Algorithm 2 outlines the changes to

the simulated annealing algorithm, presented in Algorithm 1, to

account for the history.

Maximum Loop Counts (Lr) calculates the average fitness of the

loops traversed by a solution as the ratio between the number of

iterations across all loops on the path and the maximum number of

iterations previously encountered. No prior knowledge is assumed

on the maximum iterations of a loop, and it is solely based on the

maximum observed count. Like for BC, the fitness of the same

solution may thus vary during the search. �e algorithm is based

on previous work by Khan [17]:

FLr (p) =

∑

lo∈Loops(p)
(CountIterations(lo,p))

MaxIterations
(2)

Where Loops(p) captures the set of loops covered by execution

path p, CountIterations(lo,p) denotes the number of iterations

through loop lo on execution path p, and MaxIterations records

the maximum number of iterations encountered in a path during

the search (initialised to 1). All iterations through lo from succes-

sive executions of the loop, as an example if lo is nested in another

loop, count towards the same total; CountIterations(lo,p) does not

distinguish between different contexts for loop lo.

�e BCHLr heuristic combines the two fitness functions BC and

Lr to produce a fitness function that begins by trying to identify

unseen blocks, but evolves as the search progresses to favour longer

paths through higher loop counts. �e two metrics are combined

using a weighted sum, with weightsWLr andWBC respectively for

Lr and BC:

FitnessBCHLr (p) =WLr × FLr (p) +WBC × FBC (p) (3)

As the test progresses, and the branch coverage obtained in-

creases, then the loop fitness Lr weighting (WLr ) increases (and

WBC accordingly decreases). �is change in weights alters the focus

of the fitness function as the analysis progresses from discovering

new paths to longer ones.

3.1.2 ET Fitness Function. �e ET heuristic a�empts to max-

imise the observed execution time during the search. As each new

solution is executed, the execution time of the analysed item is col-

lected as part of the execution statistics, newStats in Algorithm 1.

�is execution time is compared to that of the current solution,

the last accepted solution, such that any increase in the current

execution time will result in the acceptance of the new solution.

Only strict improvements are considered; an identical execution

time does not guarantee the new solution is accepted.

FitnessET =
ET (newSol) − ET (currSol) − 1

ET (Time)
(4)

Where ET (S) is the execution time of solution S explored by the

simulated annealing outlined in Algorithm 1.

3.2 Platform Configuration used

In [19], so�ware tasks were used from a Rolls-Royce aircra� engine

controller running on a deterministic processor. In this paper, the

same search algorithm and fitness function is used, however this

time a Raspberry PI3B is used as the processor platform. �e Rasp-

berry PI3B have been configured using Linux in such a way that

measurement noise is reduced. �is is preferred over versions of

Linux with the real-time preemptive patches as the measurement

noise was reduced. �e use of Linux over real-time versions of

Linux has previously been followed by others for similar reasons

[2].

An illustration of a typical execution profile from a run is shown

in Figure 1. �e figure illustrates that: the profile is multi-modal in

nature, i.e. there are a number of significant distinct peaks; and the

range of execution times is approximately the same as the minimum

execution time, i.e. the HWM is approximately double the Low

WaterMark.
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Figure 1: Density Plot Illustrating a Typical Execution Time

Profile

4 ENSURING THE RELIABILITY OF TIMING

MEASUREMENTS

In this paper, a timing measurement is considered reliable if the

same test vector is applied to the SUT a number of times then the

variability is bounded and acceptable. Bounding the variability

means that subsequent analysis can compensate for it as well as the

impact of confounding factors are understood. Confounding factors

are those that make the comparison of groups difficult. In WCET

analysis terms this means if we say test vector X leads to a longer

execution time than test vector Y, then there is no other significant

factor (e.g. another so�ware task contending for a shared resource

that the SUT is accessing) than the test vector that would lead to

the hypothesis being refuted.

�e usual confounding factors for timing measures are uncon-

trolled variables which can be the state of the SUT or the state

of the processor. It is noted here that timing measurements are

normally performed with the cache flushed so this should not be

factor, however the methods presented would include the effects of

imperfect cache flushing. �e approach advocated in this paper is

not an unusual one. Each iteration is repeatedly executed a number

of times and the variance in the execution time studied. It is noted

that across the repeated executions a check is made that the same

path is taken. �is was repeated 100 times with each of these trials

being for a different path.

Figure 2 presents an example of one set of results represented

as a density plot. �e y-axis is the frequency and the x-axis the

standard deviation, σi , of ti where ti is the set of execution times

for iteration i . Equation (6) shows how σi is calculated. �is clearly

shows a variance in the approximate range of 48,000 to 52,000

which is a range of less than 10%. Next a statistical analysis was

performed across all 100 trials. Figure 3 presents another density

plot, however this time across the set of 100 trials where the x-axis

is calculated according to Equation (7). �e x-axis represents the

Coefficient of Variation, i.e. the standard deviation divided by the

mean from each trial as a percentage. �is figures shows that the

vast majority of trials have a standard deviation of less than 5%

with respect to their mean. It does show a very small number of

trials are higher.

µi =
∑

∀t ∈T

t

n
(5)

σi =
∑

∀t ∈T

√

(t − µi )2

n − 1
(6)

CoVi =
σi

µi
(7)

where Ti = {t(i,0)...t(i,n)} is the set of n results from trial i

σi is the standard deviation of the results Ti
µi is the mean of the results Ti
CoVi is the Coefficient of Variation of the results Ti

Figure 2: Measurement Noise for an Individual Trial

Figure 3: Measurement Noise Across 100 Trials

In summary, the trials presented in this section show that both

the execution path and execution time are classed as repeatable. In
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the case of the execution time, the variance is typically less than

5%. Five percentage is considered an acceptable level [].

5 ESTABLISHING THAT THE CURRENT

TESTING METHOD IS UNLIKELY TO

DETERMINE NEW INFORMATION

�e aim of this paper is not to claim the testing method presented

is the best approach, instead the aims are to show confidence in

the approach and convergence. Confidence is based the coverage

across significant factors which are based on those highlighted

in section 2.1. �is is considered in section 5.2. �is section will

consider convergence which is whether the testing method is likely

to determine further significant information.

A simple option is just to consider the maximum execution times

(or any other measurement) and whether an increased (significant)

value has been found in recent history. �ere are three key issues

with this approach. Firstly the maximum value might not be chang-

ing but the general distribution of values may be. Secondly a value

such as execution time is only one indicator of whether further

information is being learned. For example in Law [19] other param-

eters were used in the fitness function of the search algorithm as

they helped guide the search more reliably. �e other parameters,

e.g. block coverage and loop counts, are also significant factors

affecting the execution times of the SUT. �erefore the distribution

of these factors is important. Finally semantic understanding of

the significant factors may suggest that more significant values for

the execution times may be found, e.g. a single iteration hasn’t

maximised all the loops at the same time which raises the possibility

a single test vector could do this. Each of these three issues are

considered in turn in the following sub-sections.

5.1 Convergence of WCET

�ere are two stages to judging whether convergence has occurred.

�e first is to look at the data and make a subjective assessment of

whether the results are changing. �e second stage uses statistical

analysis techniques to provide a more quantitative assessment of

convergence. �ese are explored in the following sub-sections.

5.1.1 Would the Search Algorithm Performing More Iterations

Improve the Results? �e first step in the examination of the data is

whether the execution time of the SUT is changing. �is can be in

two dimensions, between iterations and runs. �roughout section

5.1, the experimental approach taken is to randomly take X% of the

data (either iterations or runs) and compare it with a different X%

of the data. �is was repeated 20 times for each value of X.

Examining the number of iterations used provides an argument

that running the same test for longer does not have an effect. Figure

4 presents how the average HWM changes (y-axis) over a number

of iterations (x-axis), where each iteration is for 100 runs. In this

case, a�er 45,000 runs the rate of change in the average HWM is

insignificant.

Testing the number of runs determines the effect of different

starting conditions on the results of the testing method and whether

these effects have converged. More specifically if multiple runs

are performed with each run having a different starting position,

then how do the results change and when do those changes become

less significant. Figure 5 presents how the average HWM changes

(y-axis) over a number of runs (x-axis), where each run has 10,000

iterations. �e results clearly show that as the number of runs

increases the average HWM becomes less variable. A�er 25 runs

the average HWM starts to converge, and achieves a consistent

value. However, it is also worth noting that all the runs are within

5% which is within the previously established level of measurement

noise.

Overall, the results suggest that the rate of change in observa-

tions above 50,000 iterations is slow enough that resources would

be be�er spent performing additional runs of the algorithm. �ese

results also suggest that at 10,000 iterations, 25 runs are sufficient,

although even at 10 runs it is possible to be within the acceptable

5% error bound. However, using a smaller number of iterations or

runs may cause a mis-assessment of the confidence of the result,

especially when evaluating a low-probability such as exceeding the

observed HWM. Hence the rest of section 5.1 focuses on performing

a more detailed analysis.

Figure 4: HWM across iterations

5.1.2 Statistical Assessment of Convergence. �ere are two ap-

proaches to examining the convergence: whether the distributions

are similar, and how different the distributions are. To assess similar-

ity the Kolmogorov-Smirnov (KS) test is an o�en applied approach

as it does not make assumptions about the nature of the data [24].

A Goodness of Fit (GoF), also referred to as the p-value, of 0.95 is

judged as the two samples are drawn from the same distribution.

�e Earth Movers Distance (EMD) test is o�en used to assess dif-

ferences. �erefore in this paper both of these will be used. For the

EMD test, there is no accepted definition of significance threshold.

Instead a judgement is made when the distance is not changing as

the size of the initial training set increases.

Given appropriate tests of similarity and differences, the ex-

perimental approach is to perform cross-fold validation, i.e. for

a number of times compare different percentages of an original

test set with a revised test set with more results. It is noted the

revised test set does not include results from the original test set.

For example, the first 10% of the available iterations are compared

with different percentages of iterations within a run.
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Figure 5: HWM across iterations

Figures 6 and 7 show the results for the EMD’s test and the p-

value from the ks-test respectively. �e Figures clearly show that

both of these metrics stabilise, i.e. do not change by as much, a�er

about 50% of the runs. However, Figure 7 shows that as the number

of runs increases, we increase the probability that the experiments

are determined to be drawn from the same distribution. However,

even when comparing against 50% of the data, there is a significant

probability that the KS-test will state that the results are drawn

from different distributions and thus the experiment has not yet

converged. Taken in conjunction with Figure 6 showing that the

distributions of results become more similar the more data is used,

this affect is most likely due to extreme results being more likely

to be observed the more data is used and causing the KS-test to

determine the distributions are different.

Figure 6: EMD for HWM

5.2 Convergence of the Significant Factors

In this section, a similar approach to section 5.1 is taken of exam-

ining similarities and differences as the number of iterations and

Figure 7: GoF for HWM

runs increases. �e EMD test is used on the significant factors

instead of the p-value from the ks-test as the p-value tended to be

zero. �e only exception is the HWM as shown in Figure 7. A zero

value indicates that the distributions are different, indicating that

convergence has not occurred. An alternative reason though is the

ks-test is known to be mis-leading when a lot of data is used [].

Figures are shown for the significant contributing factors: exe-

cution times (in Figure 8), path length (in Figure 9), loop bounds

(in Figure 10), and iPoints covered (in Figure 11). Loop bounds is

the number of times each loop in the code is executed in an itera-

tion. Path length is the number of iPoints covered in an iteration.

iPoints is the number of different iPoints covered in an iteration.

As discussed in section 2.1, other significant factors, e.g. number of

cache misses, would be difficult to measure without being obtrusive

and are arguably subsumed in the measures already made, e.g. the

number of instruction cache misses is affected by the path taken

which is related to the path length. An iPoint is an instrumentation

point placed at the start of each block in the code in order to record

the blocks executed and the times at which each block’s execution

is started.

It should be noted that the EMD metric is not comparable across

different graphs, due to the underlying statistics being incomparable

(for example, loop counts and execution times use different units

and thus cannot be compared directly). However, it is possible to

compare the trends. In this case, each of Figures 8-10 show a degree

of convergence, but still exhibit some variability. �is is expected as

BCHLr is a search based algorithm which does not explore the full

state-space, and so complete convergence is statistically unlikely.

�e similarity in pa�erns suggest that the impact of using more

data is similar for each of the significant factors.

Given that the set of measurements seem to have converged, it

is now valid to consider the other contributions of the paper.

5.3 Semantic Examination of the Results

By casting the hypothesis “�e current set of iterations causes

the worst-case execution scenario” and trying to refute it, it is

possible to argue for or against additional testing. In this section,
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Figure 8: EMD for Execution Times

Figure 9: EMD for Path Lengths

an approach for trying to refute this hypothesis is presented. �e

basic approach is to consider the significant factors and consider

which of these have been maximised in the same iteration. For

example, if the loops in the SUT have maximum observed bounds

of L1, L2, ··, LN however not in the same iteration. It is noted

previous works, i.e. [3, 4], would allow the maximal loop bounds

to be determined given sufficient measurements of the right type.

�e work in this paper complements this as it helps identify when

the current testing approach is unlike to generate new information,

i.e. measurements of the right type.

�e approach taken in this paper is to consider whether, within

a single iteration across all runs of a testing approach all the sig-

nificant factors are maximised. �e significant factors established

earlier in section 5.2 are used. �at is, loop bounds, path length,

and number of iPoints. However, this presented some interesting

results: while Path Length was strongly correlated with execution

time, Loop Bounds and Maximisation of Ipoints were not, despite

Figure 10: EMD for a Loop Count

Figure 11: EMD for IPoints

many observations of these factors being maximised. Further, while

these factors were maximised individuallly with a relatively high

frequency, as shown in Figure 12, there were very few observations

of these factors being maximised simultaneously. Inspection of the

SUT confirmed that this was due to the exact paths that maximised

these factors being exceedingly rare within the space containing

all paths. �is caused the BCHLr algorithm to find these paths and

then promptly explore similar paths which did not maximise these

properties, which is expected behaviour.

While the fact that the BCHLr does not conduct extensive test-

ing on paths which maximise the significant factors might cause

concern, it should be noted that this is entirely within expectations

as BCHLr a�empts to maximise coverage rather than execution

time. However, such testing should be reserved for factors which do

indeed maximise execution time, and of the three factors selected

for analysis, only path length correlates strongly with execution

time. �is can be seen in Figure 13, which shows a clear correlation
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Figure 12: Histogram for iPoints and Path Length Max-

imised

between Path Length and Execution Time - although some variabil-

ity is observed, likely due to uncontrolled factors on the Raspberry

Pi 3 platform. By contrast, while Loop Iterations does not show a

high degree of correlation; indeed some of the highest execution

times are achieved with some of the lowest loop iterations.

�e fact that execution times do not correlate strongly with the

number of loop iterations likely comes about due to rarely taken

long paths of sequential code (i.e. error handlers) which do not

cause a high number of loop iterations. �is leads us onto the next

section, which investigates how potential infeasible paths can be

determined.

Figure 13: Scatter Plot for the Significant Factors

6 GUIDING THE USER TOWARDS

INFEASIBLE PATHS

Given a good understanding of CLo and CHi based purely on mea-

surements, the next stage is to recognise that engineers may wish

to feed the data into hybrid analysis. A key issue with the results

of hybrid analysis is the potential pessimism caused by infeasible

paths [14]. An infeasible path is defined as a path containing groups

of basic blocks that cannot be executed a�er another group of basic

blocks has executed. Previous works to determine infeasible paths

by static analysis, e.g. [14] place significant restrictions on develop-

ers such as the use of bespoke compilers. �e two conditions for

infeasible paths are as follows:

(1) Two basic blocks never being executed in the same itera-

tion; or

(2) All loop bounds not being maximised in the same iteration.

Algorithm � presents a simple example where basic block B

would not be executed a�er basic block A. Algorithm � presents a

more complex example. �e reason the example is more complex

is if either X or Y is altered during the execution of basic block A,

then both basic block A and B would be executed. Analysis cannot

also just rely on inspecting whether basic block A manipulated

variables X or Y as, for example, the the code in Algorithm� could

be preempted and another function could alter the value of X and

Y .

Algorithm 3 Simple Example of an Infeasible Path

if X == Y then

basic block A

else

basic block B

Algorithm 4 More Complex Example of an Infeasible Path

if X == Y then

basic block A

if X != Y then

basic block B

As with the detection of outliers, testing and measurement can

provide no guarantee of anything. �erefore the approach is again

the automatic identification of infeasible paths but providing the

human guidance of how to validate the identification. �e identifi-

cation process is described in Algorithm �, where NEI is the set

of iPoints not executed in every iteration.

Algorithm 5 Identification of Infeasible Paths

Determine the set NEI

for each iPoint (i) in NEI

for all other iPoints (j) in NEI

Check if i and j are ever executed in the same iteration

If not then store pair of i , j in set NT

Organise iPoints in set NT into contiguous ranges

Determine frequencies of iPoints in NT

Determine execution reduction allowing for NT

�e basis for the identification is to identify sets of pairs of

iPoints that are never executed during the same iteration within
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an individual run. �at is, within a run it made be identified

that the following set of pairs are not executed in the iteration

- (iPointi , iPointj ), (iPointm , iPointn ). For the example, within an

individual run iPointi and iPointj are never executed in the same

iteration. �ese are referred to as an infeasible iPoint pair. �e same

is true for iPointm and iPointn . Two figures are presented. Figure

14 how many infeasible iPoint pairs Only 29 runs are presented as

at that was sufficient runs to show there were no infeasible iPoint

pairs in the SUT. �is does not means the piece of so�ware defi-

nitely has no infeasible paths as the testing failed to find a single

test vector that resulted in all the loop bounds being maximised.

Figure 15 takes the results for the 29 runs and presents a his-

togram of how many infeasible iPoint pairs remain for each indi-

vidual run. �e results show a wide range of values but also that

the best a single run does in terms of finding infeasible iPoint pairs

is 200 remaining. �e overall results strongly suggest many runs

and iterations are needed to determine that the so�ware does not

have any infeasible paths.

Figure 14: Interesting iPoints Remaining A�er Each Run

7 CONCLUSIONS

�is paper sought to demonstrate a method which identifies when

testing is not yielding new information and apply this to a complex

platform, the Raspberry Pi 3+. A variety of methods were examined

to achieve this. It was shown that a number of metrics which are

commonly assumed to be correlated to the execution time of a pro-

gram were not guaranteed to be, such as loop iterations. However,

other metrics, such as path length, were shown to be correlated

with execution time, albeit with some variability due to the complex

nature of the platform used.

�e BCHLr testing algorithm was examined in depth using this

method, and this paper found that BCHLr does not reliably find

the WCET of the SUT on the Raspberry Pi 3+ platform. (It is noted

trials with the other fitness functions used in [19] showed BCHLr

was still significantly more reliable than them, however for reasons

of space they are not included in this paper.) �is is evidenced by

the fact that the HWM of BCHLr does not reliably converge over

runs using 50,000 iterations, primarily due to complex nature of the

Figure 15: Histogram for Interesting iPoints Remaining Af-

ter Each Run

so�ware (which is designed with real-time applications in mind)

and the hardware platform (which is not a traditional real-time

platform). However, this is somewhat expected; BCHLr does not

seek to maximise execution time, only coverage, and hence the fact

that it does not repeatedly test the longest path found is its primary

design objective. �erefore BCHLr is judged as successful. �is

result points to using BCHLr to identify candidates for the path

yielding the longest execution and then using another algorithm to

investigate these further. Future work can explore this idea, and in

general how to change the testing approach once further testing

is determined to not yield additional information. In Rolls-Royce,

RapiTime is used so the soundness of the WCET can be argued in

certification [19].

Finally, this paper examined how these results may be used in

hybrid-analysis, and methods to highlight potential infeasible paths

which otherwise could cause pessimism in hybrid-analysis methods.

�is approach allows a subset of the program to be presented to

an engineer to determine if the potential infeasible paths are truly

infeasible, rather than having to examine the entire SUT.
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