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 
Abstract—Pneumatic artificial muscles (PAMs) have 

been widely used in actuation of medical devices due to 
their intrinsic compliance and high power to weight ratio 
features. However, the nonlinearity and time-varying nature 
of PAMs makes it challenging to maintain high- 
performance tracking control. In this paper, a High-Order 
Pseudo-Partial Derivative based Model-Free Adaptive 
Iterative Learning Controller (HOPPD-MFAILC) is proposed 
to achieve fast convergence speed. The dynamics of PAM 
is converted into a dynamic linearization model during 
iterations, meanwhile, a high-order estimation algorithm is 
designed to estimate the pseudo-partial derivative 
component of the linearization model by only utilizing the 
input and output data in previous iterations. The stability 
and convergence performance of the controller is verified 
through theoretical analysis. Simulation and experimental 
results on PAM demonstrate that the proposed HOPPD- 
MFAILC can track the desired trajectory with improved 
convergence and tracking performance.  
 

Index Terms—Pneumatic artificial muscle, model-free 
adaptive control, iterative learning control, convergence. 

I. INTRODUCTION 
NEUMATIC artificial muscle (PAM) is a tube-like actuator 
that largely mimics biological human muscle functions [1]. 
Compared to traditional electrical motors and hydraulic 

actuators, the lightweight, high compliance and high 
power-to-weight ratio of PAMs [2] have fueled their popularity 
among assistive exoskeletons and rehabilitation robots, such as 
the upper limb exoskeleton series RUPERT [3] and the lower 
limb orthotics KAFO [4]. However, unlike the conventional 
actuators adopted in Lokomat [5] and ArmeoPower [6], the 
nonlinear and time-varying nature of PAMs may cause 
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difficulties in modeling the robot dynamics [7]. It is thus 
challenging to maintain high control accuracy of PAMs- driven 
robots. This work aims to improve the control performance of 
the PAMs, and the study on single muscle is considered as a 
prior for actuating the ankle rehabilitation robot [8]. 

In the past decade, there are amended work on model-based 
control strategies for PAMs. For instance, Yao et al. proposed a 
novel empirical model of PAM and designed a self-organizing 
fuzzy controller with model compensation [9]. Zang et al. 
developed a modified Prandtl- Ishlinskii model for reproducing 
the length/pressure hysteresis of PAM, and higher trajectory 
tracking accuracy has been achieved by a simplex proportional 
controller with the model-based cascade compensation [10]. In 
these studies, different mathematical models of PAM and 
control schemes were established. However, these models are 
roughly an approximation of the PAM behaviors and tend to 
miss the dynamic components, so a compensator must be added. 
In addition, the PAM models include time-varying parameters 
and nonlinear structures, which will increase the complexity of 
controller design and analysis. While model-based control 
schemes have been established, their accuracy and applicability 
might be limited under different interactive environments or 
collaboration of multiple PAMs. Therefore, it is imperative to 
introduce model-free methods for decreasing the PAMs-driven 
system’s sensitivity to dynamic uncertainties in practice [11]. 
Data-driven model-free control approaches have shown great 
potential in recent studies [12, 13]. In data-driven schemes, the 
controller does not have to model the system, instead, only the 
input and output data will be used [14]. Compared with 
model-based methods, the data-driven control is more versatile 
by avoiding the dynamics modelling complexity.  

From the recommended rehabilitation strategies, the tasks 
are often performed in a repetitive manner [15], so the PAM 
actuators also perform repeated operation modes. This supports 
the implementation of some form of iterative learning control 
(ILC), which is well suited for rehabilitation. ILC is a typical 
data-driven method for controlling repetitively running object, 
which improves the tracking performance by introducing error 
data for updating the input of subsequent iterations [16]. 
However, the unstable function approximation and limited 
calculation speed of many ILCs make it impractical for 
PAMs-driven rehabilitation systems [17]. Recently, model- 
free adaptive control (MFAC) is proposed on the basis of 
dynamic linearization method, which builds an equivalent data 
model to replace the original nonlinear model by introducing 
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the pseudo-partial derivative (PPD) [18]. Different from other 
data-driven control methods, MFAC is completely model-free, 
in which the controller parameters can be adaptively adjusted 
according to the time-varying PPD. A model-free adaptive 
iterative learning controller (MFAILC) based on iterative 
dynamic linearization was proposed in [19], where the ILC 
parameters were updated by previous iteration data. MFAILC 
has a better suitability to the time-varying systems compared 
with traditional ILC with fixed gains. Furthermore, the initial 
condition of MFAILC is not as strict as many ILC methods, 
which makes it suitable for PAMs-actuated systems.  

In repetitive control practice, especially for rehabilitation 
devices driven by pneumatic muscles, convergence speed is a 
critical index for iterative learning control [20]. However, 
current work on improving the convergence is limited [21], so 
one motivation of this paper is to enhance the convergence 
performance of MFAILC. In fact, the convergence speed of 
MFAILC particularly relies on the initial PPD. Without proper 
selection of initial PPD, it requires multiple attempts to find out 
the appropriate value [22], which means inappropriate PPD will 
lead to a slow convergence during the control iterations [23]. In 
this paper, a high-order pseudo-partial derivative based 
model-free adaptive iterative learning controller (HOPPD- 
MFAILC) is proposed which can quickly tune the parameters 
without large affects from the initial PPD and thus has an 
enhanced convergence performance.  

To our best knowledge, the controller design for PAM based 
on high-order PPD estimation has not been reported yet. Main 
contributions of this paper include: 1) By using the high-order 
PPD estimation scheme based on previous input and output 
data, the HOPPD-MFAILC method is developed to achieve the 
high-performance repetitive control of nonlinear time-varying 
systems such as PAM. Convergence property of the proposed 
control scheme is independent of the selection of PPDs. 
However, the existing MFAILC methods will be greatly 
affected by the initial PPD. 2) This is the first time that a 
HOPPD-MFAILC is developed for the PAM system with 
enhanced convergence. The mathematical proof, simulation 
and experimental results demonstrate that the proposed 
controller can accelerate the convergence rate compared with 
existing MFAILC methods. 3) The implementation of HOPPD- 
MFAILC is completely data-based and model-free, which 
retains the robustness of closed-loop system in time domain and 
achieve the convergence of tracking error in iteration domain, 
even with certain external load interferences. Though the 
HOPPD-MFAILC is developed under the consideration of 
PAM, it is also applicable to other nonlinear systems.  

The rest of this paper is organized as follows. Section II 
introduces the problem formulation and the HOPPD-MFAILC 
controller design then the enhanced convergence is analyzed 
theoretically. Some simulation and PAM control experiments 
for validation and comparison are demonstrated in Section III 
and discussion and conclusion are given in Section IV. 

II. CONTROL STRATEGY 

A. Model-Free Adaptive Iterative Learning Control 
MFAILC is a completely model-free method. Basically, the 

method aims to establish a dynamic linearization (DL) model of 
the system between any two adjacent iterations, and then to 

derive the controller structure and parameter using the model. 
Three commonly used DL models include compact-form DL 
(CFDL), partial-form DL (PFDL) and full-form DL (FFDL) 
[24]. The proposed method is based on CFDL model. 

Considering the following repeatable nonlinear discrete-time 
SISO (single input, single output) system: 
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where ( )ku t  and ( )ky t  denote the control input and output of 
the system at time t  of the k-th iteration. =0,1,2 , 1t T   , and 
T  is the endpoint of the finite time interval. n  and n  are two 
unknown positive integers representing the system order. ( )f 
is an unknown nonlinear function. For system (1), the aim of 
this controller is to find out a suitable sequence of bounded 
control input ( )ku t such that the system output sequence ( )ky t  
is able to track the given desired trajectory ( )dy t . 

The following assumptions for system (1) are given to make 
the discussion rigorous [19]. 

Assumption 1: The partial derivative of the nonlinear 
function ( )f   with respect to the input ( )ku t  is continuous. 

Assumption 2: System (1) is generalized Lipschitz, that is, 
for all =0,1,2 , 1t T    and =0,1,2k    , if   0ku t  , then 
the system (1) satisfies the following condition: 
    1k ky t b u t     (2) 

where 1( 1) ( 1) ( 1)k k ky t y t y t      , 1( ) ( ) ( )k k ku t u t u t   , 
and b  is a positive constant. 

Assumption 1 is typical in general nonlinear system control. 
Assumption 2 gives the relationship between the incremental 
input and the incremental output along the iterative axis at any 
time. The constant b is determined by trials for qualitative 
analysis, which means a finite input change will result in a 
finite output change and it is reasonable for general systems. 

Based on the above two assumptions, the following Lemma 
[19] can be achieved: 

Lemma 1: Considering system (1) satisfies Assumption 1&2, 
for all ( ) 0ku t  , there exists a function ( )k t such that the 
system can be converted into the following CFDL data: 
 ( 1) ( ) ( )k k ky t t u t     (3) 
where ( )k t is called pseudo-partial derivative which satisfies

( )k t b  . The detailed proof can be found in [19]. 
Define the following criteria function: 

 2 2
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where   is a weighting coefficient. Substituting (3) into the 
criterion function (4), we can get: 
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Then we have the derivation of (5) as below: 
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To get the optimal solution for minimizing (5) [20, 25] with 
respect to ( )ku t , we solve ( ( )) / ( ) 0k kJ u t u t   , gives: 
 2
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Thus, ( )ku t  can be expressed by (10): 
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where ,k t  is a step factor designed to make the controller be 
more universal [21], and 1 1( 1) ( 1) ( 1)k d ke t y t y t       is 
the tracking error. Since ( )k t  is unknown, the following 
criteria function with the estimated parameter is defined: 
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where   is the weighting coefficient and ˆ ( )k t is the estimated 
value of ( )k t . Eq. (11) indicates that the target constrained 
input should be as small as possible while the tracking error is 
minimized, which means ˆ ( )k t will converge to ( )k t . 

Based on the derivation of (11) as below and ˆ ˆ( ( ))/ ( ) 0k kJ t t    , 
the estimation algorithm is expressed by (12):  
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where ,k t is the step factor. 
To ensure that the iterative dynamic linearization model is 

always true, and to make compensation to the time-varying 
parameter, the following reset algorithm is applied:  
 0

ˆ ˆ( )= ( )k t t  , if ˆ ( )k t   or ( )ku t    (13) 
where  is a positive constant, and 0̂ ( )t  is the initial value of 
ˆ ( )k t . So, the MFAILC-based CFDL data model is constructed 

by the iterative learning law (10), the estimation algorithm (12), 
and the reset algorithm (13). It is a data-driven method that only 
utilizes the input and output data of the system. Compared with 
traditional ILCs, the gain parameter composed of ˆ ( )k t is not 
fixed, instead, it will be updated iteratively. 

B. High-Order PPD Estimation Algorithm 
The estimation algorithm (12) in original MFAILC scheme 

runs along the iterative axis, which can be regarded as a kind of 
parameter tuning law. Differently in our method, to achieve a 
faster convergence, a high-order iterative learning law (14) is 
designed based on previous iterations [25]. 
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In criterion function (11), 1 1
ˆ( 1) ( ) ( )k k ky t t u t      represents 

the model error of the iterative dynamic linearization model (3) 
in which ( )k t is replaced by ˆ ( )k t as the input. A high-order 
parameter estimation algorithm for PPD is proposed here by 
updating the criterion function (11) as follows: 
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where m is the order, i  is weighting coefficient with 
1

=1
m

i
i



 .  

So the high-order estimation algorithm is expressed by (16) 
based on the derivation of (15) below and ˆ ˆ( ( )) / ( ) 0k kJ t t    : 
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The forms of iterative learning law and the reset algorithm 
remain the same as MFAILC, with the PPD being estimated by 
the high-order algorithm. Therefore, the overall control scheme 
of the proposed HOPPD-MFAILC is described as (17)-(19), 
and the controller diagram is illustrated in Fig. 1. 
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Fig. 1. Block diagram of the proposed HOPPD-MFAILC. 

Remark 1: Different from those high-order algorithms using 
control input [26] and tracking error terms [27] from previous 
iterations to improve the learning control law, the high-order 
estimation algorithm applied here as in (16) contributes to 
improvement of the controller parameters themselves. 

Remark 2: In the first two iterations, initial values need to be 
assigned to 0

ˆ ( )t and 1̂ ( )t . Since ˆ ( )k t  is calculated based on 
the previous m iterations, it can only be obtained when k m , 
so the high-order estimation algorithm (16) is applied under 
k m . However, when 2 k m  , i.e., no previous iterations are 
available,  the original estimation algorithm (12) is used. 
Remark 3: The usage of weighting coefficients i  in the 
high-order estimation algorithm (16) is similar to the forgetting 



 

factor in the general ILC schemes. Therefore, they can be set as
1 2 m     . 

C. Convergence Analysis 

Assumption 3: For all {0,1,2 }k  and {0,1, 2, , 1}t T     , 
( )k t satisfies ( ) 0k t   (or ( ) 0k t  ), and ( ) 0k t = is only 

established at a finite point. 
Assumption 3 is inspired by [19]. In our system, with the 

increase of air input, PAM will contract and the displacement 
will increase. Such change of displacement and control input 
satisfies the positive correlation described in Assumption 3. 
Then the following theorem can be obtained: 

Theorem 1: For system (1), if Assumption 3 holds, the 
HOPPD-MFAILC scheme has the following properties:  
i) for {0,1, 2 }k    and {0,1, 2, , 1}t T     , ˆ ( )k t is bounded; 

ii) when k  , the tracking error converges to zero; 
iii) for {0,1, 2 }k    and {0,1, 2, , 1}t T     , ( )ku t  is bounded. 

Proof 
When ˆ ( )k t   or ( )ku t   , 0

ˆ ˆ( )= ( )k t t  , 0̂ ( )t  is bounded. 
In other case, when 2 k m  , subtract ( )k t  from both sides 

of (17), and let ˆ( )= ( ) ( )k k kt t t   , we have: 
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Let 1( )= ( ) ( )k k kt t t     , substituting (3) into (20), and take 
the absolute value at both sides, we have: 
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Since m is a bounded order which is manually set during the 
control process, ( )k t is bounded as long as 10 1  . Since

( ) 0ku t  , there exist suitable ,k t and  such that 10 1  . 
So, we get ( )k t is bounded. According to Lemma 1, we have 
that ( )k t is bounded, and that ˆ ( )k t is also bounded. 

When ( )ku t   and k m , we have from (17) that: 
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Substituting (3) into equation above and taking the absolute 
value at both sides, we can have (22).  
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According to Lemma 1, we can get that ( )k t is bounded, so 
1| ( )|m t   is bounded. Since the boundedness of k̂ 1  when 

2 k m  has been proved, 
1
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Therefore, ˆ ( )k t  is bounded. Then we prove the convergence of 
tracking error and the boundedness of control input as follows.  

According to Lemma 1 and (19), we have: 
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In traditional model-free adaptive iterative learning control 
schemes, the PPD estimation algorithm (12) operates along the 
iteration axis, which can be regarded as a kind of parameter 
tuning law. The general learning law is basically composed of 
control input and tracking error terms, while using high-order 
method, the form of learning law can be written as below.  
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Compared with traditional control schemes, the proposed 
higher-order iterative learning law can make use of the data in 
previous iterations and would achieve faster error convergence 
[28]. Taking norms on both sides of (23), yields: 
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where    
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Obviously, if 20 1d  , it can guarantee that the tracking 
error ( 1)ke t   converges to zero when k. 

Since ( )k t  and ( )k̂ t  are both bounded, from Assumption 3, 
(17) and (18), we can get ( ) ( ) 0ˆ

k kt t   . 

Solving the inequality equation ,
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From above analysis, ( )k t  and ( )k̂ t  are bounded and ( )k̂ t  
converges to ( )k t . The boundary of ( )k t  is ( )k t b  . We 
know 0  , it gets 2 2ˆ ˆ ˆ ˆ2( ( ) ) ( ) ( ) 2 ( ) ( ) ( )k k k k k kt t t t t t        , 
which equals to 2 within iterations. Selecting appropriate   
and ,k t , e.g., ,0 2k t  , to satisfy (25) guarantees that for 
all  0,1, 2k     and  0,1,2 , 1t T   , , 20 1d   always holds. 
Such that, the inequality (24) also follows and the stability of 
the closed loop system can be guaranteed. 

Consequently, the tracking error will converge to zero.  
According to (19), we have: 
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As ˆ ( )k t is bounded, there must exist a constant N 
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such that 
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According to (23), (27) and (28), we have: 

 

1 2

0 0

2
0 0

2

( ) ( 1) ( 1)

        ( 1) ( )

        ( 1) ( )
1

k k ku t N e t N e t

N e t u t

d
N e t u t

d

     

  

  




 (29) 

Both 0 ( )u t  and 0 ( 1)e t   can be set initially bounded, from 
(29) it follows that for all  0,1, 2k    and  0,1, 2, , 1t T    , 

( )ku t  is bounded. Thus (16) is the high-order estimation of 
pseudo-partial derivatives and ,k t  is the step size factor.   

For control scheme (17), the term 1 1
ˆ( 1) ( ) ( )k k ky t t u t      

represents the estimation error of the dynamic linearization 
model (3) when PPD estimation is adopted, and ˆ ( )k t  is 
equivalent to the model input. Therefore, (15) can be regarded 
as a criterion function similar to (4). Higher order form of input 
and estimation can improve the estimation speed of PPDs and 
this has been proved with faster convergence [26]. From (24) 
we obtain the exponential convergence of the output error in 
iteration domain with a faster convergence speed. Furthermore, 
the high-order estimation algorithm makes use of the PPDs in 
the previous m iterations, so the current PPD can learn more 
from the past data, thus achieving enhanced convergence. This 
will also be verified by the simulation and experiments. 

III. SIMULATION AND EXPERIMENTS 

A. Simulation Validation 
To verify effectiveness of the proposed HOPPD-MFAILC, 

simulation experiments are conducted on a time-varying 
model, followed by the control on actual PAM. The system (30) 
contains time-varying parameters and repetitive interferences 
[19], which can reflect the PAM’s nonlinear features and is thus 
introduced as the controlled object. 
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where ( ) 0.1* ( / 50)t round t   is the time-varying parameter of 
the system. Define the desired trajectory as: 
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Both MFAILC and HOPPD-MFAILC are used to control the 
system (30) in simulation tests. For MFAILC, the controller 
parameters are =0.6 , , =1k t , =0.1 and , =0.6k t . For HOPPD- 
MFAILC, the order of high-order estimation is set to 3m , the 
weighting coefficients are 1 0.4  , 2 0.4  , 3 0.2  , and the 
high-order estimation algorithm starts from the 4th iteration. 
The initial PPD is set as 0̂ 10   for both controllers.  

Fig. 2 shows the tracking results of the MFAILC and the 
HOPPD-MFAILC, where the red solid line denotes the desired 
trajectory and the dotted lines denote the actual trajectories in 
different iterations. Results from the 2nd, 3rd, 4th iteration to the 
20th, 40th iteration indicate that the actual trajectory can 
gradually approach the desired one and completely track it in a 
finite number of iterations. HOPPD-MFAILC possesses a 
better trajectory tracking performance than MFAILC within 20 
and 40 iterations. Though the object cannot be controlled with 
good performance in the first several iterations due to the lack 
of initial operations, it can still converge to the desired 
trajectory within several iterations. The tracking errors in the 
first several iterations are within a controllable range [21], 
which will not happen in real-life testing, as the first two 
operations will be predefined in actual experiments [17]. This 
can also be proved by the following PAM experiments. 

 
Fig. 2. Trajectory tracking results of the model in simulation controlled by 
(a) MFAILC and (b) HOPPD-MFAILC with 0̂ 10  . 

Since the initial PPD will have a great influence on the 
convergence speed of the algorithm, comparative experiments 
of different initial PPDs are conducted. We set the same initial 

(a)

(b)



 

value for HOPPD-MFAILC and MFAILC to compare their 
performance starting from the same condition. The maximum 
error convergence curves of MFAILC and HOPPD-MFAILC 
with different initial PPDs are shown in Fig. 3. We can see that 
the change of initial PPD has greatly affected the convergence 
speed of MFAILC method, while HOPPD-MFAILC scheme 
demonstrates a better control performance and high robustness. 
HOPPD-MFAILC is able to improve the convergence speed of 
the maximum tracking error, and the less appropriate the initial 
PPD is, the more obvious improvement of the convergence 
performance can be seen. Results show that HOPPD-MFAILC 
scheme can always achieve a faster convergence speed whether 
the initial PPD is properly selected or not. 

 
Fig. 3. Comparison of maximum tracking error convergence between 
MAFILC and HOPPD-MFAILC with different initial PPDs. (a), (b), (c), (d) 
represent the convergence curves with 0̂ 1,5,10, 20  , respectively. 

To further investigate the effect of PPDs, Fig. 4 shows the 
variation of PPD along the time axis and that along the iterative 
axis with 0̂ 10   for MFAILC and HOPPD-MFAILC. From the 
change of ˆ( , )k t along the iterative axis at each sample time, 
we confirm that the HOPPD-MFAILC can converge with less 
iterations than MFAILC. Meanwhile, it can be seen that the 
HOPPD-MFAILC scheme converges to the same value as 
MFAILC, which means that HOPPD-MFAILC can improve the 
convergence speed of MFAILC but still maintain the control 
capacity of MFAILC to achieve the similar accuracy. 

Meanwhile, the high-order estimation algorithm starts from 
which iteration also has an influence on the convergence. Fig. 5 
shows the comparison of error convergence results when using 
HOPPD-MFAILC starting from different iterations, and 0k is 
the start iteration. It can be seen that the earlier high-order 
parameter estimation algorithm is used along the iterative axis, 
the faster the tracking error converges. It also indicates that the 
proposed HOPPD-MFAILC is indeed superior to the MFAILC 
method in terms of convergence performance. 

MFAILC HOPPD-MFAILC  
Fig. 4. Variation of PPD ˆ( , )k t in MFACILC and HOPPD-MFAILC. 

 
Fig. 5. Maximum tracking error convergence of HOPPD-MFAILC when 
start using high-order estimation algorithm from different iterations. 

B. PAM Control Experiments 
To verify the performance of HOPPD-MFAILC in practical 

nonlinear and dynamic system control, we developed a PAM 
control testing platform, as shown in Fig. 6. One end of the 
PAM (FESTO MAS-20-400N) is suspended on a rigid frame 
and the other end is free-moving. The control system is 
implemented on LabVIEW. The resulted controller output is 
sent to the proportional valve (VPPM-6L-G18-0L6H) through 
NI roboRIO. The valve regulates the air pressure inside the 
PAM to realize trajectory tracking control. Displacement of the 
PAM is measured by a position sensor (MLO POT-225-TLF) 
linked with the muscle free-moving end and will be feedback to 
the control program in real time via NI roboRIO.  

 

Fig. 6. Experiment setup for controller tests on PAM. 

The desired trajectory of PAM is set to 2.3 2sin( )dy t  . 
For comparison study, both MFAILC and HOPPD-MFAILC 
schemes are used to control the PAM system successively. The 
controller parameters of MFAILC are set as =1 , , =5k t , =1  
and , =0.6k t . For HOPPD-MFAILC, the order of the estimation 
algorithm is set to 3m  , weighting coefficients are 1 0.5  , 

2 0.3  , 3 0.2  , and the iteration that the high-order estimation 
algorithm starts is set to 4. The initial PPD for both schemes is 

0̂ 40  , with all other parameters unchanged.  
The tracking results of both methods are shown in Fig. 7, 

where the red solid line denotes the desired trajectory, and the 
dotted lines denote the actual trajectories in different iterations. 
It indicates that the actual trajectory of PAM is able to gradually 
follow the desired trajectory with iterations. The final trajectory 
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tracking error is maintained under 2mm, which is acceptable in 
practice due to some inevitable measurement errors or external 
disturbances. Compared with the results of MFAILC in Fig. 
7(a), it can be obviously seen from Fig. 7(b) that the proposed 
HOPPD-MFAILC method can track the desired trajectory more 
efficiently, for example, it can reach a satisfactory accuracy 
within 9 iterations, while the MFAILC method cannot achieve 
this level until the 15th iteration. 

 

Fig. 7. Trajectory tracking results of the PAM in practice controlled by (a) 
MFAILC and (b) HOPPD-MFAILC with 0̂ 40  . 

 

Fig. 8. Convergence curves of maximum tracking error in MFAILC and 
HOPPD-MFAILC with different initial PPDs when controlling a PAM. 

The convergence curves of the maximum tracking errors of 
MFAILC and HOPPD-MFAILC with different initial PPDs are 
shown in Fig. 8. We can conclude similarly with the simulation 
test that the initial PPD affects the convergence speed. In case 
of 0̂ 10  , MFAILC method can achieve a fast convergence of 
the maximum tracking error, and HOPPD-MFAILC method 
maintains a similar performance. With the variation of PPD 
from 20 to 30 and 40, HOPPD- MFAILC method demonstrates 
more tracking improvements and better superior convergence 
performance over MFAILC. Specifically, HOPPD-MFAILC 
method can reduce the time cost of about 2, 5 and 8 iterations 
when 0̂ 20  , 0̂ 30  and 0̂ 40  , respectively. 

To further validate the proposed controller’s performance, 
the comparison of results under three different frequencies 
(0.5Hz, 2.5 Hz and 5Hz) and 0̂ 40   while other parameters 
unchanged is shown in Fig. 9, where the resulted trajectories 
and the maximum error convergence curves at different 
frequencies are presented. Except for some error differences in 

the first several iterations, the maximum tracking errors can 
converge to a low value quickly. The control performance of 
the proposed method does not change much over frequencies 
and is still satisfactory even at higher frequencies. 

 

Fig. 9. Tracking results and maximum error convergence of PAM 
controlled by HOPPD-MFAILC at different frequencies ( 0̂ 40  ). 

To illustrate the effect of high-order estimation algorithm on 
the convergence speed, a longitudinal comparison experiment 
is performed under condition that other controller parameters 
unchanged. The comparison study is to apply the high-order 
estimation algorithm to PPD starting from different iterations. 
Fig. 10 illustrates the convergence curves of the maximum 
tracking error starting from the 4th, the 8th, and the 12th iteration. 
It is clear that once applying the high-order estimation 
algorithm to PPD, the convergence performance will be greatly 
enhanced immediately, which means the HOPPD-MFAILC 
scheme is able to increase the convergence speed. This 
conclusion is also in consistent with the simulation. 

 

Fig. 10. Maximum tracking error convergence of PAM controlled by 
HOPPD-MFAILC using high-order estimation from different iterations. 

Robustness performance of the HOPPD-MFAILC is also 
investigated, as the PAMs-driven rehabilitation robot will be 
finally controlled with human interactions. Compared with 
non-load operation of the robot, the load of the affected limb 
during rehabilitation will inevitably cause interferences to the 
robot, and the tracking accuracy will be affected. In order to 
verify the controller’s capacity in disturbance tolerance, two 
types of load interferences are added to the PAM: the load 
along the time axis ( 0.5 0.5sin( )d t  ) and the random load 
interference along the iteration axis, as shown in Fig. 11. The 
tracking results of HOPPD-MFAILC are shown in Fig. 12, 
where (a) is the tracking results after adding load interference 
along the time axis, and (b) is the tracking results after adding 
load interference along the iteration axis. All other control 
parameters maintain consistent with the HOPPD-MFAILC 
above. Comparing Fig. 12 with Fig. 7(b), there is no significant 
difference on the tracking results between the two cases, which 
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indicates the HOPPD-MFAILC’s good robustness and superior 
capacity in handling external load interferences and these make 
it suitable for human robot interactive applications. 

 

Fig. 11. The sine wave load interference added to PAM along the time 
axis and the random load interference along the iteration axis. 

 

Fig. 12. Tracking results of PAM controlled by HOPPD-MFAILC with 
load interferences along (a) the time axis and (b) the iteration axis. 

Fig. 13 further presents the comparison of the convergence 
performance of HOPPD-MFAILC with and without load 
interference in PAM control when 0̂ 30  . The left shows the 
comparison of maximum tracking error between PAM controls 
with and without load interference along time axis, and the right 
shows the comparison between controls with and without load 
interference along iteration axis. From Fig. 13, we can conclude 
that the HOPPD-MFAILC’s convergence performance will not 
be greatly influenced by the load interferences, which means 
the HOPPD-MFAILC still maintains a superior convergence 
performance even with certain random load interferences. 

 

Fig. 13. Comparison of maximum tracking errors of HOPPD-MFAILC 
with load-free and load-added along time axis or iteration axis. 

Finally, experiments on tracking the desired trajectory in 
simulation are conducted to make the calculation result and 
experimental result correspond with each other. The desired 
trajectory of PAM is set to be the same as the simulation 
trajectory in (31). Fig. 14 shows the tracking result of PAM 
controlled by MFAILC and HOPPD-MFAILC with 0̂ 40  . It 
reveals that with the increase of iterations, the actual trajectory 
of the PAM gradually approaches the desired one, though there 
are certain unavoidable overshoots in real-world due to the step 
response. Comparing (a) with (b) in Fig. 14, it is obvious that 
the HOPPD-MFAILC method can track the desired trajectory 
more quickly within 9 iterations. We can conclude that the 
PAM controlled by HOPPD-MFAILC is able to track the 
desired trajectory in better performance after several iterations 
and this is in consistent with the theory and the simulation. 
Though there are some delays in practical tests due to the 
memory-based scheme, the control signals of previous trials 
can be manipulated at a time ahead of the current instance, 
which means we can compensate the process or time delay. 

 

Fig. 14. Tracking results of PAM controlled by (a) MFAILC and (b) 
HOPPD-MFAILC with 0̂ 40   for the trajectory in simulation. 

To statistically compare the different experiments mentioned 
above, the maximum tracking errors and the root mean square 
(RMS) errors of MFAILC and HOPPD-MFAILC schemes 
under different PPDs are calculated. The maximum tracking 
error and RMS error of HOPPD-MFAILC method at different 
frequencies and different starting iterations are also obtained 
respectively. Finally, the results are compared between controls 
without and with loads added along the time axis and along the 
iteration axis. The calculated results are shown in Table I. 
Statistical results show that different initial PPDs will greatly 
affect the convergence of MFAILC, while HOPPD-MFAILC 
can always maintain a good performance. For example, the 
maximum tracking error of HOPPD-MFAILC is about 0.2 at 
the 9th iteration, while the maximum errors of MFAILC are 
greatly affected by the initial PPDs, resulting 0.1830, 0.2357, 
0.3602, and 0.5051, respectively with different PPDs. Control 
performance of the proposed method does not change much at 
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different frequencies and with or without load interferences, 
which validate its good robustness. The convergence speed is 
quite different when start using the high-order estimation 
algorithm from different iterations, which means the earlier we 
use it the better convergence we can achieve. For example, the 
maximum tracking error of the ninth iteration is 0.1474 when 
the higher order estimation algorithm is used from the fourth 
iteration, and 0.3196 and 0.4866 when the algorithm is used 
from the eighth and the twelfth iteration, respectively. These all 
prove that the proposed method can improve the convergence 
rate and obtain an overall better control performance. 

TABLE I 
QUANTITATIVE COMPARISON OF EXPERIMENTAL RESULTS 

IV. DISCUSSION AND CONCLUSION 
In this paper, a high-order parameter estimation based 

model-free adaptive iterative learning controller is proposed for 
PAM. HOPPD-MFAILC is a completely model-free adaptive 
method that just utilizes input and output data of the nonlinear 
system. The dynamic linearization method is introduced to 
establish the data model along the iteration axis, in which the 
PPD is determined by the improved high-order estimation 
algorithm. The main advantage of HOPPD- MFAILC relies on 
its ability to use the data in previous iterations, speed up the 
estimation of parameters, and improve the convergence while 
ensuring the control accuracy. Both simulation and PAM 
control experiment results show that the proposed HOPPD- 
MFAILC has a faster convergence speed than MFAILC and is 
more suitable for nonlinear systems. The tracking errors of the 
proposed method did not show significant improvement over 
MFAILC or some other iterative learning control methods such 
as [29-31]. In these studies, the maximum errors ranged from 6% 
to 10% [29-31], while the error of the proposed method is about 
7% after tuned. One reason is that most of the current 
controllers were implemented on rigid motors, as we know the 
PAM has compliant features but the drawback is its control 
accuracy, so the results in this work are fairly satisfactory. Even 
so, the main contribution of our work is to propose a HOPPD- 
MFAILC method with faster convergence speed. From Fig. 4, 
Fig. 11, and Fig. 14, we can see that both methods can converge 
to a low error level, but the convergence of the proposed 
method is more efficient, which shows its superior convergence 

performance over MFAILC and other methods, since it can 
reach the stable state within 7 or 8 iterations while other control 
approaches need more times, such as 15 iterations in [30], and 
over 20 iterations in [29, 31]. Consequently, the theoretical 
proof, simulation and experiment results all prove that the 
proposed method has a faster convergence speed. 

For real-time issues, ILC is a memory-based mechanism and 
the memory devices are extremely cheap and easily accessible 
with the present technology [32]. Our work is to propose a 
high-order pseudo-partial derivative based model-free adaptive 
ILC, which fully utilizes the input/output data in previous 
iterations during the control process. Though the learning 
control methods require a memory to store the data, since the 
feedback configuration can give additional advantages such as 
enhanced convergence rate [33], they in turn make the control 
straightforwardly. Moreover, the record of data in several 
previous iterations will not affect the real-time performance as 
the current technology is able to handle the data of this level 
almost in real-time [34]. From the experiment results, we can 
also confirm that the proposed controller can be optimized in an 
almost real-time fashion during operations, and the real-time 
performance is improved as compared with other gradient- 
descent-type methods such as iterative feedback tuning that 
may suffer from the drawback of slow convergence [15]. 

In the future, the proposed method will be implemented on 
the PAMs-driven ankle rehabilitation robot and new tuning 
methods will be investigated to further improve the adaptability 
and robustness of the controller for human robot interaction. 
Further, the human voluntary movement is not the only factor 
that may affect the rehabilitation performance, muscle fatigue, 
emotion and other factors also play important roles during the 
rehabilitation [6]. Patient’s recovery can be comprehensively 
evaluated from the recorded physiological data, based on which 
more reasonable adjustment of the robot assistance will be 
proposed to improve the rehabilitation effectiveness [35].  

REFERENCES 
[1] G. Andrikopoulos, G. Nikolakopoulos, I. Arvanitakis, and S. Manesis, 

"Piecewise affine modeling and constrained optimal control for a 
pneumatic artificial muscle," IEEE Trans. Ind. Electron., vol. 61, pp. 
904-916, 2013. 

[2] D. Zhang, X. Zhao, and J. Han, "Active model based control for 
pneumatic artificial muscle," IEEE Trans. Ind. Electron., vol. 64, pp. 
1686-1695, 2017. 

[3] J. Huang, X. Tu, and J. He, "Design and evaluation of the RUPERT 
wearable upper extremity exoskeleton robot for clinical and in-home 
therapies," IEEE Trans. Syst. Man Cybern., vol. 46, pp. 926-935, 2016. 

[4] G. Sawicki and D. Ferris, "A pneumatically powered knee-ankle-foot 
orthosis (KAFO) with myoelectric activation and inhibition," J. Neuroeng. 
Rehabil., vol. 6 (23), pp. 1-16, 2009. 

[5] K. Knaepen, A. Mierau, E. Swinnen, H. F. Tellez, M. Michielsen, E. 
Kerckhofs, et al., "Human-robot interaction: does robotic guidance force 
affect gait-related brain dynamics during robot-assisted treadmill 
walking?," PLoS One, vol. 10, p. e0140626, 2015. 

[6] V. Klamroth-Marganska, J. Blanco, K. Campen, A. Curt, V. Dietz, T. 
Ettlin, et al., "Three-dimensional, task-specific robot therapy of the arm 
after stroke: a multicentre, parallel-group randomised trial," Lancet 
Neurol., vol. 13, pp. 159-166, 2014. 

[7] Q. Ai, C. Zhu, J. Zuo, W. Meng, Q. Liu, et al., "Disturbance-estimated 
adaptive backstepping sliding mode control of a pneumatic muscles- 
driven ankle rehabilitation robot," Sens., vol. 18(66), pp. 1-21, 2018. 

[8] M. Zhang, S. Q. Xie, X. Li, G. Zhu, W. Meng, X. Huang, and A. J. Veale, 
"Adaptive patient-cooperative control of a compliant ankle rehabilitation 
robot (CARR) with enhanced training safety," IEEE Trans. Ind. Electron., 
vol. 65, pp.1398-1407, 2018.  

 Maximum tracking error RMS error 
Iteration number 3 5 9 3 5 9 

MFACILC  
(f ൌ0.5Hz) 

߶෠଴ ൌ ͳͲ 1.1080 0.2581 0.1830 0.6671 0.1046 0.0683߶෠଴ ൌ ʹͲ 2.0540 0.4954 0.2375 1.1140 0.3127 0.0686߶෠଴ ൌ ͵Ͳ 2.4860 0.9972 0.3602 1.3460 0.5773 0.1678߶෠଴ ൌ ͶͲ 2.7470 1.4510 0.5051 1.4960 0.8157 0.2838

HOPPD- 
MFAILC  

(f ൌ0.5Hz) 

߶෠଴ ൌ ͳͲ 1.1080 0.2633 0.1811 0.6671 0.1296 0.0633߶෠଴ ൌ ʹͲ 2.0090 0.3635 0.2033 1.1010 0.2011 0.0634߶෠଴ ൌ ͵Ͳ 2.4220 0.4795 0.2054 1.3170 0.2846 0.0697߶෠଴ ൌ ͶͲ 2.6440 0.8222 0.2066 1.4380 0.4937 0.0713

HOPPD- 
MFAILC 
(߶෠଴ ൌ ͶͲ) 

f ൌ0.5Hz 2.6440 0.8222 0.2066 1.4380 0.4937 0.0713f ൌ2.5Hz 2.5410 0.8207 0.1524 1.3880 0.4770 0.0402f ൌ5Hz 2.6050 0.8276 0.1867 1.4230 0.4871 0.0619

HOPPD- 
MFAILC 
(߶෠଴ ൌ ͶͲ) 

k ൌ4 2.4860 0.7659 0.1474 1.3600 0.4774 0.0421k ൌ8 2.3800 1.3350 0.3196 1.3250 0.7682 0.1725k ൌ12 2.4600 1.3460 0.4866 1.3490 0.7740 0.2720

HOPPD- 
MFAILC 
with loads 

in time axis 2.3850 0.5545 0.1974 1.3810 0.3480 0.1008

in iterations 2.3850 0.5831 0.1973 1.3020 0.3385 0.0781



 

[9] B. Yao, Z. Zhou, Q. Liu, and Q. Ai, "Empirical modeling and position 
control of single pneumatic artificial muscle," Control Eng. Appl. Inf., vol. 
18, pp. 86-94, 2016. 

[10] X. Zang, Y. Liu, S. Heng, Z. Lin, and J. Zhao, "Position control of a single 
pneumatic artificial muscle with hysteresis compensation based on 
modified Prandtl-Ishlinskii model," Bio-Med. Mater. Eng., vol. 28, pp. 
131-140, 2017. 

[11] S. Chakraborty and N. Zabaras, "Efficient data-driven reduced-order 
models for high-dimensional multiscale dynamical systems," Comput. 
Phys. Commun., vol. 230, pp. 70-88, 2018. 

[12] Y. Xie, X. Tang, W. Meng, B. Ye, B. Song, J. Tao, et al., "Iterative 
data-driven fractional model reference control of industrial robot for 
repetitive precise speed-tracking," IEEE/ASME Trans. Mechatron., vol. 
99, pp. 1-12, 2019. 

[13] F. Song, Y. Liu, J. Xu, X. Yang, and Q. Zhu, "Data-driven iterative 
feedforward tuning for a wafer stage: A high-order approach based on 
instrumental variables," IEEE Trans. Ind. Electron., vol. 66, pp. 
3106-3116, 2018. 

[14] Z. Hou and S. Jin, Model Free Adaptive Control: Theory and 
Applications, CRC Press, Boca Raton, 2013. 

[15] W. Meng, S. Xie, Q. Liu, C. Lu, and Q. S. Ai, "Robust iterative feedback 
tuning control of a compliant rehabilitation robot for repetitive ankle 
training," IEEE/ASME Trans. Mechatron., vol. 22, pp. 173-184, 2017. 

[16] D. Ke, Q. Ai, W. Meng, C. Zhang, and Q. Liu, "Fuzzy PD-type iterative 
learning control of a single pneumatic muscle actuator," in Int. Conf. 
Intell. Rob. Appl., vol. 10463, Wuhan, China, pp. 812-822, 2017. 

[17] Y. Cui, T. Matsubara, and K. Sugimoto, "Pneumatic artificial 
muscle-driven robot control using local update reinforcement learning," 
Adv. Rob., vol. 31, pp. 397-412, 2017. 

[18] Z. Hou, R. Chi, and H. Gao, "An overview of dynamic linearization based 
data-driven control and applications," IEEE Trans. Ind. Electron., vol. 64, 
pp. 4076-4090, 2017. 

[19] R. Chi, Adaptive Iterative Learning Control for Nonlinear Discrete-Time 
Systems and Its Applications, Beijing Jiaotong University, 2006. 

[20] R. Chi, Z. Hou, S. Jin, and B. Huang, "Computationally efficient 
data-driven higher order optimal iterative learning control," IEEE Trans. 
Neural Networks Learn. Syst., vol. 29, pp. 5971-5980, 2018. 

[21] X. Bu, Q. Yu, Z. Hou, and W. Qian, "Model free adaptive iterative 
learning consensus tracking control for a class of nonlinear multiagent 
systems," IEEE Trans. Syst. Man Cybern., vol. 49, pp. 677-686, 2017. 

[22] B. Luo, H. N. Wu, and T. Huang, "Optimal output regulation for 
model-free Quanser helicopter with multistep Q-learning," IEEE Trans. 
Ind. Electron., vol. 65, pp. 4953-4961, 2017. 

[23] Z. Hou and Y. Zhu, "Controller-dynamic-linearization-based model free 
adaptive control for discrete-time nonlinear systems," IEEE Trans. Ind. 
Inf., vol. 9, pp. 2301-2309, 2013. 

[24] Z. Hou, J. Xu, "On data-driven control theory: the state of the art and 
perspective," Acta Autom. Sin., vol. 35, pp. 650-667, 2009. 

[25] B. Chu, D. H. Owens, and C. T. Freeman, "Iterative learning control with 
predictive trial information: convergence, robustness, and experimental 
verification," IEEE Trans. Control Syst. Technol., vol. 24, pp. 1101-1108, 
2015. 

[26] R. Chi, B. Huang, Z. Hou, and S. Jin, "Data-driven high-order terminal 
iterative learning control with a faster convergence speed," Int. J. Robust 
Nonlinear Control, vol. 28, pp. 103-119, 2017. 

[27] R. Chi, Y. Liu, Z. Hou, and S. Jin, "Data-driven terminal iterative learning 
control with high-order learning law for a class of non-linear 
discrete-time multiple-input–multiple output systems," IET Control 
Theory Appl., vol. 9, pp. 1075-1082, 2015. 

[28] X. Wang, B. Chu, and E. Rogers, "Repetitive process based higher-order 
iterative learning control law design," in 2016 Am. Control Conf. (ACC), 
pp. 378-383, 2016. 

[29] X. Zhu, J. Wang, and X. Wang, "Nonlinear iterative learning control of 5 
DOF upper-limb rehabilitation robot," in IEEE Int. Conf. Rob. 
Biomimetics, Zhuhai, China, pp. 793-798, 2015. 

[30] C. Guo, S. Guo, J. Ji, and F. Xi, "Iterative learning impedance for lower 
limb rehabilitation robot," J. Healthcare Eng., vol. 2017, pp. 1-9, 2017. 

[31] P. Sampson, C. Freeman, S. Coote, S. Demain, et al., "Using functional 
electrical stimulation mediated by iterative learning control and robotics 
to improve arm movement for people with multiple sclerosis," IEEE 
Trans. Neural Syst. Rehabil. Eng., vol. 24, pp. 235-248, 2016. 

[32] J. X. Xu, S. K. Panda, and T. H. Lee, Real-Time Iterative Learning 
Control: Design and Applications: Springer-Verlag London, 2009. 

[33] I. Chin, S. J. Qin, K. S. Lee, and M. Cho, "A two-stage iterative learning 
control technique combined with real-time feedback for independent 
disturbance rejection," Autom., vol. 40, pp. 1913-1922, 2004. 

[34] T. W. Chow and Y. Fang, "A recurrent neural-network-based real-time 
learning control strategy applying to nonlinear systems with unknown 
dynamics," IEEE Trans. Ind. Electron., vol. 45, pp. 151-161, 1998. 

[35] C. Shirota, J. Jansa, J. Diaz, S. Balasubramanian, S. Mazzoleni, N. A. 
Borghese, et al., "On the assessment of coordination between upper 
extremities: towards a common language between rehabilitation 
engineers, clinicians and neuroscientists," J. NeuroEng. Rehabil., vol. 13 
(80), pp. 1-14, 2016. 

 
Qingsong Ai (M’19) received the Ph.D. degree in 
information engineering from Wuhan University of 
Technology, China, in 2008. He was a visiting 
researcher at the University of Auckland, New 
Zealand (2006-2007) and at the University of 
Leeds, UK (2017-2018). He is currently a full 
Professor at the Wuhan University of Technology. 
Prof. Ai is the project leader of 12 national, 
ministerial or provincial projects with the total 
amount of 13M RMB. He has published over 70 

international journal papers, book chapters and conference papers. 
 
Da Ke and Jie Zuo are a Master student and a Ph.D. student at School 
of Information Engineering, Wuhan University of Technology.  
 

Wei Meng (M’17) received the Ph.D. degree in 
information and mechatronics engineering jointly 
trained by Wuhan University of Technology, China 
and the University of Auckland, New Zealand in 
2016. He is currently with the School of Information 
Engineering, Wuhan University of Technology, 
China and a Research Fellow at the School of 
Electronic and Electrical Engineering, University of 
Leeds, UK. He has authored/co-authored 3 books 

and over 50 peer-reviewed papers in rehabilitation robotics and control.  
 

Quan Liu received the Ph.D. degree in mechanical 
engineering in 2003 from Wuhan University of 
Technology, China, where she is currently a Chair 
Professor in information science. She has authored 
over 100 academic papers and books and directed 
over 20 research projects. Her research interests 
include signal processing, embedded systems, 
robots and electronics. Prof. Liu obtained 2 national 
awards and 3 provincial and ministerial awards. 
She is the Council Member of Chinese Association 

of Electromagnetic Compatibility and the Hubei Institute of Electronics. 
 

Zhiqiang Zhang is a University Academic Fellow 
(UAF) in body sensor networks for healthcare and 
robotic control at the University of Leeds. He has 
pioneered research into human kinematics, 
musculoskeletal modeling and machine learning. 
He has >50 papers in peer reviewed publications, 
and has been nominated for the best paper awards 
at the International Conference on Body Sensor 
Networks (BSN) in 2010, 2011 and 2014.  
 
Sheng Q. Xie (SM’11) received the Ph.D. degree 
in mechanical engineering from the University of 
Canterbury, New Zealand, in 2002. He joined the 
University of Auckland in 2003 and became a 
Chair Professor in (bio)mechatronics in 2011. 
Since 2017 he has been the Chair in Robotics and 
Autonomous Systems at the University of Leeds. 
He has authored or coauthored 8 books, 15 book 
chapters, and over 400 international journal and 
conference papers. His current research interests 
are medical and rehabilitation robots, advanced 

robot control. Prof. Xie is an elected Fellow of The Institution of 
Professional Engineers New Zealand (FIPENZ).  


