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Abstract

Morphological convergence is an intensely studied macroevolutionary phenomenon. It

refers to the morphological resemblance between phylogenetically distant taxa. Currently

available methods to explore evolutionary convergence either: rely on the analysis of

the phenotypic resemblance between sister clades as compared to their ancestor, fit differ-

ent evolutionary regimes to different parts of the tree to see whether the same regime

explains phenotypic evolution in phylogenetically distant clades, or assess deviations

from the congruence between phylogenetic and phenotypic distances. We introduce a

new test for morphological convergence working directly with non-ultrametric (i.e.

paleontological) as well as ultrametric phylogenies and multivariate data. The method

(developed as the function search.conv within the R package RRphylo) tests whether

unrelated clades are morphologically more similar to each other than expected by their

phylogenetic distance. It additionally permits using known phenotypes as the most recent

common ancestors of clades, taking full advantage of fossil information. We assessed

the power of search.conv and the incidence of false positives by means of simulations,

and then applied it to three well-known and long-discussed cases of (purported) morpho-

logical convergence: the evolution of grazing adaptation in the mandible of ungulates with

high-crowned molars, the evolution of mandibular shape in sabertooth cats, and the evolu-

tion of discrete ecomorphs among anoles of Caribbean islands. The search.convmethod

was found to be powerful, correctly identifying simulated cases of convergent morphologi-

cal evolution in 95% of the cases. Type I error rate is as low as 4–6%. We found search.

conv is some three orders of magnitude faster than a competing method for testing

convergence.
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Introduction

A species’ phenotype depends on its ancestral state and the responses to selection or drift it

experiences since that state. Selection towards similar optima in different parts of a tree (which

could be described by the Ornstein–Uhlenbeck (OU) mode of evolution [1,2]) generates a

pattern of evolutionary convergence [3–6]. Convergence is an intensely studied macroevolu-

tionary pattern [7–11]. Evolutionary convergence is often invoked to explain instances of

morphological resemblance between phylogenetically distant clades. Well-known examples

include the evolution of wings in bats and birds [12,13], neck elongation in sauropods and

giraffes [14], bone cracking ability in percrocutids, borophagine canids and hyaenids [15],

hypsodont molars in grazing ‘ungulates’ [16,17], or the repeated occupation of specific eco-

morphs by unrelated Anolis species in different Caribbean islands [18,19]. Examples of

repeated convergence within a clade, known as iterative evolution, include the evolution of

trenchant-heeled lower molar talonids in several canid lineages [12] and elongated and lat-

erally-compressed upper canines within the cat family, Felidae [20]. This by no means exhaus-

tive list just represents a brief account of a diffuse, widely occurring evolutionary pattern [21].

Current methods to address patterns of morphological convergence [22] rely on either: i)

the phenotypic analysis of groups of species falling in some pre-selected state (i.e. qualitative

categorization) as compared to their ancestors [23]; ii) fitting several OUmodels to different

clades in the phylogenetic tree to see if they evolve towards the same peak (i.e. whether distant

clades can be statistically collapsed under a common evolutionary regime [24]); iii) assessing

the congruence between phylogenetic and phenotypic distances [18,25] or iv) studying the tra-

jectory of phenotypic change across multiple evolutionary levels [26]. All these methods have

advantages and shortcomings. For instance, the comparison of phenotypic to phylogenetic dis-

tance matrices may reveal departures from the expected association between the two for rea-

sons other than convergence [6]. Methods based on selective regimes are strongly affected by

trait dimensionality and independence [27] and are unsuited to investigate the evolutionary

‘history’ of convergence [10]. Metrics that necessarily require pre-selected states are strongly

influenced by cases of uncertain categorization and by the choice of states. A few methods

address convergence by assuming that a certain biological mechanism underpins the pattern

[3]. Such methods cannot explain convergence that is not produced by directional processes,

and are therefore inadvisable [22].

Here, we present a new method (available as the function search.conv in the R package

RRphylo) which assesses convergence by testing whether phenotypes in distant clades in a

phylogenetic tree are more similar to each other than expected by chance. The method works

by computing the angle between the phenotypic vectors of the species as a measure of their

similarity and allows identification of the clades (rather than just the species) that converge.

We show through simulations that search.conv is remarkably powerful and fast. It does not

require the convergent clades to be phenotypically unusual as compared to the rest of the tree.

In addition, it has low (ca. 5%) Type I error rates (false positives).

We apply search.conv to three well-supported cases of morphological convergence, namely

the independent adaptation to grazing in perissodactyl and artiodactyl mandibles, the evolu-

tion of the sabertooth morphology in machairodont cats and barbourofelids, and the evolution

of distinct ecomorphs by Caribbean Anolis. The seach.conv function together with example

files is available at https://github.com/pasraia/RRphylo.

Materials andmethods

The method is based on phylogenetic ridge regression, RRphylo [28]. With RRphylo, the

phenotypic change between a node and a daughter tip along a phyletic line is described by the

Searching for morphological convergence
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sum of individual contributions at each consecutive branch according to the equation

Dy ¼ ~b1l1 þ
~b2l2 þ . . . :~bnln where n equals the number of branches intervening between the

node and the tip,~b1...:n are the vectors of regression coefficients (the evolutionary rates) at each

branch, and l1. . .n are the branch lengths. Regression coefficients are computed simultaneously

for all the branches in the tree and independently for each variable (in the case of multivariate

data), by applying to each of them a normalization factor λ which avoids fitting extreme β val-
ues and prevents multicollinearity [29].

Dealing with multivariate data, each species at the tree tips is represented by a phenotypic

vector, including one entry value for each variable. Naming A and B the phenotypic vectors of

a given pair of species in the tree, the angle θ between them is computed as the inverse cosine

of the ratio between the dot product of A and B, and the product of vectors sizes:

y ¼ arccos
A � B

jAjjBj

The cosine of angle θ actually represents the correlation coefficient between the two vectors

[30]. As such, it exemplifies a measure of phenotypic resemblance [26]. Possible θ values span

from 0 to 180 degrees. Small angles (i.e. close to 0˚) imply similar phenotypes. At around 90˚

the phenotypes are dissimilar, whereas towards 180˚ the two phenotypic vectors point in

opposing directions (i.e. the two phenotypes have contrasting values for each variable). For a

phenotype with n variables, the two vectors intersect at a vector of n zeros (the origin of the

axes in the 3D plot produced by using the S1 File). However, it is important to note that with

geometric morphometric data (PC scores) the origin coincides with the consensus shape

(where all PC scores are 0), so that, for instance, a large θ indicates the two species diverge

from the consensus in opposite directions and the phenotypic vectors can be visualized in the

PC space (S1 File).

Under the Brownian Motion (BM) model of evolution, the phenotypic dissimilarity

between any two species in the tree (hence the θ angle between them) is expected to be propor-

tional to the age of their most recent common ancestor. Under convergence, this expectation

is violated and the angle between species should be shallower than expected by their phyloge-

netic distance (see S1 File, selecting either ‘convergence’ or ‘convergence from similar ances-

tors’). We developed a new R function, search.conv, specifically meant to calculate θ values and

to test whether actual θs between groups of species are smaller than expected by their phyloge-

netic distance. The function tests for convergence in either entire clades or species grouped

under different evolutionary ‘states’ (Fig 1).

Given two monophyletic clades (subtrees) C1 and C2, search.conv computes the mean

angle θreal over all possible combinations of pairs of species taking one species per clade. This

θreal is divided by the patristic (i.e. the sum of branch lengths) distance between the most recent

common ancestors (mrcas) to C1 and C2,mrcaC1 andmrcaC2, respectively (Fig 1), to

account for the fact that the mean angle (hence the phenotypic distance) is expected to

increase, on average, with phylogenetic distance (Fig 2). To assess significance, search.conv

randomly takes a pair of tips from the tree (t1 and t2), computes the angle θrandom between

their phenotypes and divides θrandom by the distance between t1 and t2 respective immediate

ancestors (i.e. the distance between the first node N1 above t1, and the first node N2 above t2).

This procedure is repeated 1,000 times generating θrandom per unit time values, directly from

the tree and data. The θrandom per unit time distribution is used to test whether θreal divided by

the distance betweenmrcaC1 andmrcaC2 is statistically significant, meaning it is smaller

than 5% of θrandom values the two clades are said to converge.

Searching for morphological convergence
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Fig 1. Hypothetical example illustrating how the search.conv function algorithm works. In the clade case (A), given
any two monophyletic clades in the tree, the mean angle averaged over all possible combinations of two species (one
per clade) is computed. This θreal angle is divided by the distance between the most recent common ancestors to the
respective clades, mrca1 and mrca2. Significance is assessed by comparing the result of this procedure to 1,000
randomly generated angles θrandom computed between species extracted by chance from the tree, divided by their
respective distances. Angles are further computed between phenotypes at the mrcas. These θace angles are summed to
the corresponding θreal to test whether convergence was already present at the beginning of clade history. Ancestral
phenotypes are either estimated by RRphylo or provided by the user according to the fossil record. In the state case (B),
θreal are computed as in the clade case, but taking the mean angle between each combination of pairs of species (taken
one per state), divided by their distance.

https://doi.org/10.1371/journal.pone.0226949.g001

Fig 2. Plot of angles between phenotypic vectors versus time distance. The increase in the mean angle between the phenotypic
vectors of all species pairs in the tree θtips and the distance between the species (left). The sum of θtips plus the angle between the
phenotypes estimated at the first node above each tip θace plotted against the distance between these nodes (right). The phenotype
was generated according to the Brownian Motion model of evolution with sigma2 (the Browian rate) = 1. The tree is 100 species
wide.

https://doi.org/10.1371/journal.pone.0226949.g002
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When testing convergence, researchers typically have species phenotypes and, ideally, a

phylogenetic tree representing their relationships. This means that while it is usually possible

to test convergence among species, it is generally not possible to identify entire clades evolving

under convergence. In the real world, these clades actually coincide withmrcaC1 andmrcaC2

and their descendants. In seach.conv, we devised a strategy to identifymrcaC1 andmrcaC2. In

practice, given a pair of candidate nodes tested for the initiation of convergence, the pheno-

types atmrcaC1 andmrcaC2 are estimated by RRphylo, and the angle between the ancestral

states (θace) is calculated (see the angle between mrcas produced by using the S1 File). Then,

θace is added to θreal and the resulting sum divided by the distance betweenmrcaC1 and

mrcaC2. The sum θace + θreal should be small for clades evolving from similar ancestors

towards similar daughter phenotypes (see the average angle between tips, ‘mean.dir’, produced

by using the S1 File). Importantly, a small θace means similar phenotypes at the mrcas of the

two clades, whereas a small θreal implies similar phenotypes between their descendants. It does

not mean, though, that the mrcas have to be similar to their own descendants. Two clades

might, in principle, start with certain phenotypes and both evolve towards a similar phenotype

which is different from the initial shape. This means that the two clades literally evolve along

parallel trajectories (S1 File, select the option ‘convergence from similar ancestors’). Under

search.conv, simple convergence is distinguished by such instances of convergence with paral-

lel evolution. The former is tested by looking at the significance of θreal. The latter is assessed

by testing whether the quantity θace + θreal is small (at alpha = 0.05) compared to the distribu-

tion of the same quantity generated by summing the θrandom calculated for each randomly

selected pair of species t1 and t2 plus the angle between the phenotypic estimates at their

respective ancestors N1 and N2 divided by their distance.

As with many other methods concerned with testing convergence (e.g. [10,18,31]), the

seach.conv function suffers from the problem that ancestral states estimation entirely depends

on the phylogenetic tree and data at hand and the evolutionary model used to fit the states. To

help addressing this issue, under search.conv phenotypes at the nodes can be indicated directly

by the user, when there is a specific hypothesis (i.e. real fossil specimens) about the phenotype

of the most recent common ancestor to the clades. This is useful since the inclusion of fossil

information increases power and reliability of comparative analyses of trait evolution [32,33].

Under search.conv, instances of convergence may be either assessed under the ‘automatic

mode’ or specifying candidate node pairs. By default, search.conv runs the former, testing all

clade pairs which are at least as distant as a one tenth of the tree size, counted as the number of

nodes between their most recent common ancestors (i.e. clades 10 nodes apart for a 100 spe-

cies tree). Alternatively, a time, rather than number of nodes, distance could be specified (we

illustrate this procedure in the supplementary information and demonstrate via simulations

how robust this alternative is). Although any minimum distance can be specified, it must be

reminded that by testing too many node pairs at once potentially introduces Type I error infla-

tion. We empirically found that this just becomes a problem by testing very small clades in

very large trees. With the default option (i.e. nodes that are at least as distant as a one tenth of

the tree size) Type I error inflation is negligible. As detailed below, we assessed the effect of

phylogenetic distance on search.conv Type I and Type II error rates. Our expectation is that

the closer the clades are on the tree, the harder it becomes to find convergence, as phenotypic

similarity is best explained in this case by phylogenetic proximity.

Several candidate node pairs could map on the same region of the tree, because phenotypic

values in close nodes are strongly autocorrelated (for instance, a candidate node pair could be

represented by nodes n1 and n2, and another by the pair of nodes immediately bracketing n1

and n2). For each candidate node pair representing a statistically significant signal for conver-

gence, search.conv performs the analysis of multivariate homogeneity of group dispersions by

Searching for morphological convergence
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using the function betadisper in the R package vegan [34], calculates the average distance from

group centroids for individual species in the clades, and orders candidate and significant node

pairs (if they are> 1 in number) from the least variable to the most. The rationale is that

under convergent evolution, species phenotypes are expected to deviate the least from group

centroids, at least when the convergent states represent evolutionary attractors [1,2].

The clade-wise approach we have described so far ignores instances of phenotypic conver-

gence that occur at the level of species rather than clades. The search.conv function is also

designed to deal with this case. To do that, the user must specify distinctive ‘states’ for the spe-

cies presumed to converge. The function will test convergence between any pair of given states.

The species ascribed to a given state may belong anywhere on the tree or be grouped in two

separate regions of it, in which case two states are indicated, one for each region. The former

design facilitates testing questions such as whether all hypsodont ungulates converge on simi-

lar shapes, while latter aids in testing questions such as whether hypsodont artiodactyls con-

verge on hypsodont perissodactyls.

If provided with such ‘states’ search.conv will calculate the mean θreal between all possible

species pairs evolving under a given state (or between the species in the two states presumed to

converge on each other). The θrandom angles are calculated by shuffling the states 1,000 times

across the tree tips. Both θreal and individual θrandom are divided by the distance between the

respective tips.

Testing search.conv on convergence generated by unknown evolutionary
processes

We assessed the power of search.conv using both simulation experiments and real cases. The

first set of simulations reproduces the existence of phenotypically similar clades or species in

distant regions of the tree. This corresponds to the traditional observation of entire clades con-

verging towards similar ecomorphologies (e.g. adaptation to durophagy in the mandible and

skull of borophagine canids and modern hyaenids, body shape in ichthyosaurs and dolphins).

We started by generating a paleontological (i.e. non ultrametric) tree with at least 80 spe-

cies, by using the function sim.bdtree in the R package geiger (we set birth and death rates at

0.5 and 0.2, respectively [35]). Then, we produced a set of phenotypic data for the tree com-

posed of three uncorrelated variables generated according to the BMmodel of evolution with

variance (the Brownian rate) = 1, using the function fastBM in the R package phytools [36].

Clade case. To test for convergence between entire clades, our strategy was to select,

duplicate, modify, and eventually attach a given clade and its phenotypes to the tree. First, we

randomly selected a given subtree s. Then, we changed its topology and branch lengths as to

produce a new subtree s’. The phenotypes in s’ are similar but not the same as in s. Eventually,

s’ and its phenotypes are grafted to a target node on the tree being at least as distant from s as

one tenth of the tree nodes (Fig 3). Since the two subtrees have similar phenotypes in spite of

being phylogenetically distant, they should be found to converge on each other.

To accomplish this procedure, we started by selecting s from within the tree among clades

having as many as one tenth to one quarter of the tree tips. We deliberately avoided consider-

ing subtrees that are too young (i.e. more than 80% of the tree height in terms of distance from

the root) given they would represent an unrealistic case of clades which have had very little

time to evolve any convergence (Fig 3).

After modifying s to produce s’, we assigned to their species phenotypes which are similar

to each other and different from the rest of the tree, in order to avoid the new tree phenotype

representing BM (which predicts no convergence). To produce the new phenotypes for s and

s’, we took the maximum value of each original variable (thereby creating a vector of maxima
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~m) and multiplied ~m by a random factor f ranging from 0.5 to 2 to generate a new vector ~m0 .

Then, for each subclade (s and s’) we produced a number n of phenotypes as long as the num-

ber of species of each subclade, using the function jitter in R. The variables in the new s and s’

phenotypes were thus designed to have means equal to ~m0 and standard deviations equal to the

standard deviations of the original variables.

With f> 1 the new phenotypes lay outside the range of the original, BM phenotypes, and

the converse with f< 1. Thereby, we checked how ‘extreme’ the phenotypic values in s and s’

have to be for search.conv to detect convergence (see Fig 4). Before attaching s’ to the target

node, we also dropped two species at random from the subtree and changed its topology and

branch lengths by applying the function swapONE in RRphylo. By default, this function

changes the topology for half of the tree tips and the length of half of the branch lengths (Fig

3). Eventually, the new subtree was rescaled on the height of the clade subtended by the target

node (i.e. the maximum distance of its tips from the tree root equals the same distance for tips

descending from the new node) so that both s and s’ will terminate at the same distance from

the root but will have very different heights (Fig 3).

In sum, the two clades set to converge have different topologies, branch lengths, ages and

number of tips, only superficial phenotypic resemblance to each other, and may actually be

very similar (phenotypically) to other clades in the tree (with f< 1, see Figs 3 and 4). While the

distribution of phenotypes of the new tree departs from the BM expectation (which would

Fig 3. The procedure used to simulate convergence. Clades set to converge are colored. The focal clade (s) is indicated in bright pink, the modified
clade (s’ dark pink) is grafted at the target node indicated by the dark pink dot.

https://doi.org/10.1371/journal.pone.0226949.g003
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violate the basic premise for convergent evolution) we deliberately produced phenotypes

which are not too different from the rest of the tree phenotypes, to avoid testing search.conv

with unrealistic or too obvious cases of convergence (see ref. [22] for a similar approach).

We performed search.conv on the tree and the attached phenotypic variables both by testing

for convergence between all possible combinations of nodes (having proper size and distance)

in the tree (the automatic mode) or by indicating target nodes (the specified clades mode). The

entire procedure was repeated reducing the distance between convergent clades at three nodes

only. In this latter case, the power of search.conv is expected to decrease because the pheno-

typic similarity between clades so close to each other is best explained by phylogenetic proxim-

ity rather than by phenotypic convergence. To assess the Type I error rates (i.e. the incidence

of false positive instances of convergence found by search.conv when in fact there is none) we

repeated the same procedure described above to modify the tree topology and branch lengths,

and generated on this modified tree a BM phenotype. This way, no convergence is expected to

occur between s and s’ or anywhere else in the tree. The complete set of analyses was reiterated

100 times (i.e. for 100 different trees and phenotypes once to assess Type II and then again to

assess Type I error rates).

We repeated the analyses to test the performance of search.conv with phenotypic variables

generated by a non-BM process. To this aim, we rescaled the original tree in accordance with

four different evolutionary models (“kappa”, “delta”, “lambda”, and “trend”) by using the func-

tion rescale.phylo in the package geiger [35]. The rescaled trees were used to produce multivari-

ate phenotypes (formed by three variables each) generated according to these evolutionary

models and then attached to the original (unscaled) tree. A fifth multivariate trait was gener-

ated according to the “drift” model (i.e. having a trend in the phenotypic mean over time) by

using the function setBM in RRphylo. The procedure was repeated 25 times for each model by

sampling model parameters (kappa ranging between 0 and 1, delta ranging between 0.1 and 3,

Fig 4. The effect of phenotypic similarity between clades set to converge and the rest of the tree phenotypes on

seach.conv power. In each panel the PC1/PC2 plot of the tree phenotypes are reported. Clades set to converge are
indicated by colored convex hulls. Upper row, clade case. Ancestral phenotypes (mrcas) of the clades set to converge
are indicated by an asterisk. Large colored dots represent the mean phenotypes (group centroids) of the clades set to
converge. A modified traitgram plot is added to the lower right corner in each figure, with branches belonging to the
clades set to converge highlighted in color. Lower row, species belonging to states set to converge are indicated by
colored convex hulls (0 = background states, 1 and 2 are the states set to converge). To the lower right corner of the
quadrants the circular plot reports the mean angle between states (blue lines) and the range of random angles (gray
shaded area). The p-value for the convergence test is printed within the circular plots. The f values used to simulate the
convergent clades are (from the left to the right): 0.2, 0.4 and 0.8.

https://doi.org/10.1371/journal.pone.0226949.g004
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lambda ranging between 0.1 and 1, trend ranging between -0.01 and 0.01, and drift with ds

ranging between 0 and 1) at each repetition.

We checked whether the target subtrees are too similar to each other as compared to any

other pair of clades in the tree, which would make the test look unreliably powerful and the

simulation conditions naive. To this aim, we ran RRphylo on the modified tree and pheno-

type in order to estimate the ancestral phenotypes. Then, we calculated the multivariate

Euclidean distance between all the ancestral phenotypes in the tree, to check whether the

morphological distance between the two target (i.e. converging) nodes (s and s’) fell within

the 95% confidence interval of the internode phenotypic distances. The entire procedure was

repeated 100 times. At each repetition, we searched for cases of statistically significant con-

vergence between all the nodes in the tree at least as distant from each other as the target

nodes.

State case. To test for convergence among groups of species evolving under a single state,

we randomly sampled a subgroup including up to one tenth of the number of species in the

tree and set it to evolve under a given state. Species in this subgroup were then given new phe-

notypic values by applying the same procedure as described in the ‘clade’ case.

Similarly, to test for convergence between states, we repeated the procedure for two sub-

groups, set to converge morphologically on each other (Fig 1). Species in these subgroups were

given new phenotypic values as we described in the ‘clade’ case. Yet, one of the two groups’

phenotypes were given twice the standard deviation as the original phenotype. The phenotypes

thus fell into three different states: “background state” is the background state produced under

BM, “state 1” and “state 2” are the states set to converge (Fig 1). The entire procedure was

repeated 100 times.

Testing search.conv on convergence generated by known evolutionary
processes

The simulation sets described so far assume a pattern-based recognition of convergence,

assessing whether phenotypically similar yet phylogenetically distant clades or species do rep-

resent convergent evolution regardless of the process generating convergence (see Supplemen-

tary S4 File for the R code). Two additional simulation sets address the power of search.conv to

identify convergence by using an explicit process. We used Stayton’s [22] simulation design to

this goal. In keeping with this, we started by using the function sim.bd.taxa in TreeSim [37] fix-

ing the number of species at 26 (we set birth and death rates at 0.5 and 0, respectively). Then,

we generated ten different phenotypic vectors according to the BMmodel. The phenotypic

variance of the ten variables follows a broken-stick distribution [22]. Two to ten phenotypes

were selected at each repetition and attached to the tree. Three species distant no less than

three nodes from one another were selected from the tree and tested for convergence. Since all

variables were generated under BM, no issue of convergence should be found by search.conv.

Hence, this simulation set provides an assessment of search.conv Type I error rate. A second

simulation set was applied to assess Type II error rate, still replicating Stayton’s procedure

[22]. At this time, after producing the original, BM phenotypes as described above, three dif-

ferent lineages within the tree were randomly selected to evolve towards a common phenotype

according to the OU process, with alpha (the strength of selection) randomly varying between

1 and 50 and theta (the phenotypic attractor) being 1.25 times the maximum values of the orig-

inal BM phenotype. Both procedures were ran 1,000 times and the number of false positive

and false negative instances provided by search.conv were recorded. Within the supplementary

information, we illustrate these same simulations performed by using a time distance (rather

than number of nodes distance) criterion (File S3).
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Real cases

We tested three real cases for possible instances of morphological convergence. They represent

well-supported instances of morphological convergence during the evolution of the mamma-

lian mandible (cases 1–2) and the colonization of the Caribbean islands by the lizard genus

Anolis (case 3).

The first case concerns felids. Felids fall in two major ecotypes. Pantherine and feline cats

possess robust, conical upper canines. A second ecotype was present in two extinct clades

within the cat family, i.e. machairodonts and barbourofelids. The latter is the sister group to

true felids. Machairodonts include three tribes [38], one with short and not particularly flat-

tened upper canines, the Metailurini, a second with long, flattened upper canines often pos-

sessing crenulated margins, the Homotheriini, and a last tribe with exceptionally long,

extremely flat upper canines with smooth margins, the Smilodontini. Smilodontini are the sis-

ter clade to Metailurini. Both Homotheriini and Smilodontini are “true” sabertooths [39]. The

true sabertooth cats and barbourofelids present highly derived mandibular morphologies, spe-

cialized to confer these cats their unique killing behavior, including reduced dentition, low

coronoid and condyle processes and protruding incisors [20]. We tested whether mandibular

shape in the extinct sabertooth cat clade Machairodontini converges on mandibular shape in

Barbourofelidae (the sister clade to all felids which is usually referred to as ‘false’ sabertooth

cats). We used geometric morphometric data and the tree published in Piras et al. [38]. The

geometric morphometrics data included 83 species and 711 specimens, and we chose 10 land-

marks and 23 semi-landmarks to record the mandibular shape (S3 File). We used the first 15

eigenvectors to represent 95% of the cumulative shape variance explained. We ran this experi-

ment with the ‘automatic’ procedure of search.conv (i.e. without specifying which clades to be

tested).

We further explored the potential effect of specifying ancestral states in finding morpholog-

ical convergence by applying search.conv. To this aim, we repeated the analysis by setting the

ancestral mandibular phenotype of barbourofelids and machairodonts to be equal to Barbour-

ofelis fricki and Smilodon fatalis, respectively.

We compared seach.conv to an existing method sought to address morphological conver-

gence embedded in the R package convevol [40]. To this aim, we performed both search.conv

(under the ‘state’ condition) and convratsig [40] by collapsing barbourofelids and sabertoothed

cats under a single state. The function convratsig returns four distance-based metrics of con-

vergence and their relative statistical significance obtained by means of randomizations. The

C1metric is the ratio of phenotypic distance between two (presumably convergent) tips (Dtip)

to the maximum phenotypic distance (Dmax) between any pair of taxa in those lineages. When

the tips converge, C1 gets close to 1. The C2metric quantifies the magnitude of convergence. It

is computed as the difference between Dmax and Dtip. The C3 and C4metrics are computed by

dividing C2 by the total amount of morphological evolution intervening between the tips (i.e.

the sum of phenotypic change along the tree branches) and by the total amount of morpholog-

ical evolution in the entire clade defined by the mrca of convergent tips, respectively. All met-

rics rely on the estimation of ancestral states at internal nodes (reconstructed according to

BM) and none of them include information about the timing for convergent evolution to take

place [40].

The second case study was based on hooved mammals (Ungulatomorpha). Hooved mam-

mals fall into two major feeding categories, that is browsing on soft vegetable matter, and graz-

ing on harder vegetable material, typically grasses, whose leaves are rich in silica and therefore

result in increased wear rate of the molar tooth crowns. Browsing is typical of most Palaeocene

and Eocene ‘ungulates’ and persists today in most deer, tragulids and other small-bodied
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forms [41]. With the emergence of grasslands and the spread of grasses, the inclusion of grasses

in the diet became widespread in herbivorous mammals [42,43] and is responsible for the

rapid diversification of grazing artiodactyls [16]. In morphology, the dietary shift from soft

(browsing) to hard and fibrous (grazing) plant material is accompanied by profound changes

in the skull and mandible, including the acquisition of high-crowned (hypsodont) molars, lon-

ger snout, and deeper mandible [44–46]. This pattern is present in equids, and also appeared

several times among Pecora. Nonetheless, true grazing is restricted to a minority of species,

most of them being properly defined as mixed-feeders consuming both grasses and soft mate-

rial [44].

The data were obtained from 353 images in lateral view taken from the scientific literature

or directly from specimens (see S2 File for full details), representing 205 species. On each

image we recorded nine landmarks to register mandibular shape and analyzed shapes by

means of geometric morphometrics (see S3 File for details). We used the five largest eigenvec-

tors, as they represent 95% of the cumulative shape variance explained. The ungulate tree was

assembled from literature [16,46,47]. We considered individual species as either grazing

artiodactyls, grazing perissodactyls, or “others” (i.e. non convergent) depending on their

molar morphology (i.e. degree of hypsodonty) and tested whether grazing ungulates from dif-

ferent parts of the tree converged on similar mandibular morphologies by using the ‘state’

approach.

The third real case pertains to extant lizards of the genus Anolis. The genus includes more

than 400 species distributed in the Neotropical region and the Caribbean. Insular anoles fall

into six distinct ecomorphs which have been intensely studied as a classic example of conver-

gent evolution [19]. The data include a 100 species wide tree for Anolis lizards living on the

main islands of the Greater Antilles, and 11 phylogenetic principal components extracted ana-

lyzing lizards body shapes [48,49] (see Supplementary S4 File for the R code). Six species do

not fall into any ecomorph category and are therefore not expected to converge.

Results

Testing convergence generated by unknown evolutionary processes under
the automatic mode

The average tree size in the simulation experiments was 192.14 tips (range 156–247). The

clades set to converge varied from 17 to 44 species (average 26.74). On average, the heights of

the clades set to converge were 64.39% the tree height (range 10.33%-87.76%). The Euclidean

distance between s and s’ respective mrcas phenotypes falls with the 95% confidence intervals

of the distribution of inter-node distances in the tree 96% of the times. The distance between

the convergent clades was, on average, 98% of the tree height (range 30.14%-166.23%). Despite

this great variation in convergent clade size, distance and height, under the automatic mode

the Type II error (the rate of false negatives) is as low as 6%. Type I error (false positive) rate is

similarly low at 4%. We analyzed the effect of tree size, f, and convergent clades’ relative size

and distance (that is clade size and the distance between themrcaC1 andmrcaC2 divided to

the tree size and height, respectively) on the likelihood to find convergent clades, by regressing

these metrics against the p-value calculated for θreal over 100 simulations. The effect of relative

clade distance is negative and almost significant (p = 0.063) whereas f is positive and significant

(p = 0.037), meaning that the likelihood of finding convergence increases for clades with dis-

tinctive phenotypes and relatively distant from each other on the tree as expected (Fig 4).

As expected, when the simulations were repeated with clades separated by only three nodes,

Type I error is 0%, whereas Type II error increases to 54%. These results indicate that search.

conv does not find convergence between clades that are very close to each other on the tree,

Searching for morphological convergence

PLOSONE | https://doi.org/10.1371/journal.pone.0226949 December 27, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0226949


whose phenotypic resemblance is best explained by phylogenetic proximity rather than

convergence.

Testing convergence generated by unknown evolutionary processes by
specifying candidate clades

The power of search.conv to correctly identify the convergent clades when they are specified by

the user (i.e. both θreal and θreal + θace are significant) is 71%. However, considering cases when

species phenotypes (θreal) are found to be significantly convergent but θreal + θace is not, the

identified mrcas for the clades found to converge were correct 88% of the time, within 2 nodes

distance from the convergent clades’ mrcas. search.conv often identifies nodes which are very

close to the ‘real’ mrcas rather than the ‘real’ mrcas themselves. We found this usually depends

on the balancing between the clade set to converge and its sister node, and the strong pheno-

typic autocorrelation between these clades (because a given clade necessarily includes all of the

descendants of its daughter node). When the sister to the real mrca is made up of very few spe-

cies search.conv usually identifies a younger node than the real mrca. Whichever exact mrca

pair is identified, 97.5% of the species set to converge are, on average, found to do so.

The Type I and Type II error rates of search.conv (automatic mode) are little influenced by

how the phenotypes are simulated. The Type I error (the percentage of false positives) remains

remarkably low (Table 1). However, some types of phenotypes (most notably ‘drift’) present

high Type II error rate (Table 1).

Testing convergence generated by unknown evolutionary processes using
evolutionary states

By using the ‘state’ specification, the Type I error rate is 5%, either within or between states.

Type II error of search.conv is 1% when testing for convergence within a group and 6% testing

two different states for convergence on each other. We did not find a significant regression

between the rank of θreal and f across 100 simulations (within state p = 0.104; between states

p = 0.882). This is not surprising because under the state case species evolving under a single

state appear randomly across the tree, hence the effect of f transformation is diffused rather

than focusing on a single clade.

Testing convergence generated by known evolutionary processes

We found 47 instances of convergence among groups of three randomly selected species out

of 1,000 simulations with phenotypes designed to evolve under the BMmodel. This means

that the Type I error rate of search.conv, under this condition, is 4.7%. By using the OU process

Table 1. Type I and Type II error rates.

Type II error Type I error

Phenotype type

browian 6.00% 4.00%

kappa 4.00% 0.00%

delta 12.00% 0.00%

lambda 0.00% 0.00%

trend 12.00% 4.00%

drift 16.00% 4.00%

Type I and Type II error rates with phenotypes simulated according to different evolutionary models.

https://doi.org/10.1371/journal.pone.0226949.t001
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to model convergence, we found search.conv fails to recognize convergence 45 times out of

1,000 simulation. The corresponding figure for Type II error rate (4.5%) is below the nominal

alpha level (5%). By using time distances to select clades for convergence, we found Type I

error rate as low as 2% and Type II rate at 4.9% (see supplementary information).

Real case scenarios

Felid mandibles. When testing for convergence between clades, we found two instances

of convergent morphological evolution, both pertaining the same clade, Barbourofelidae. The

latter includes false saber-toothed cats of the genera Barbourofelis and Albanosmilus. They

were found to be convergent on both Smilodontini and Homotheriini within machairodonts,

which represent the true sabertoothed cats (Fig 5). It is noteworthy that search.conv effectively

failed to find convergence between barbourofelids and Metailurini (Fig 5), which form a clade

of machairodont cats sister to Smilodontini but did not possess the full sabertooth morphol-

ogy. The mean angle between barbourofelids and Smilodontini is 29.93 degrees (Table 2A).

The angle between their ancestors is 21.50 degrees. Both θreal and θreal + θace are statistically

smaller than expected by chance (p = 0.009 for both). This suggests that the two clades evolved

along parallel trajectories. The angle between barbourofelids and Homotheriini is 43.09

degrees, the angle between their reconstructed ancestors is 39.09 degrees, and both θreal and

θreal + θace are statistically significant (p = 0.019 and 0.011, respectively; Table 2A). The compu-

tational time was 145 seconds.

By using the mandibular shapes of Barbourofelis fricki and Smilodon fatalis as the ancestral

states to all barbourofelids and machairodonts, respectively, the results are similar to those

obtained without specifying phenotypes at the mrca nodes (Table 2B, S3 File), and this may

help explaining the good performance of search.conv in finding the correct position, hence the

true identity, of converging clades.

By performing the analysis collapsing machairodonts and barbourofelids under a single

state, search.conv produced a small and significant mean angle (19.93 degrees, p = 0.001)

between convergent species. The computational time was 44 seconds. This latter analysis

Fig 5. Convergence among mandibular shapes in felids. A) The clades found to converge were Homotheriini (orange) and Barbourofelidae (blue)
and Smilodontini (green). B) PC1/PC2 plot showing the position of the convergent clades compared to the rest of the tree. Deformation grids are
shown at the extremes of both axes. The silhouette forHomotherium was available for reuse under the Creative Commons Attribution 3.0 Unported
(https://creativecommons.org/licenses/by-sa/3.0/) at http://phylopic.org/image/c6c2d17b-56b3-4c87-97c4-cd2b7de365fa/ (image by Zimices). The
silhouettes for Smilodon and Barbourofelis are our own work.

https://doi.org/10.1371/journal.pone.0226949.g005
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performed by using convratsig [40] produced significant results for all the measures (Table 3).

The computational time was 21h 48’ 7”.

Grazing ungulate mandibles. We performed search.conv once taking grazers as a single

group, then considering grazing artiodactyls and grazing perissodactyls separately.

The mean angle between all grazers collapsed under a single state is 69.62 degrees. This is

significant at p = 0.041 (see S3 File for figure). The mean angle between grazing artiodactyls

and grazing perissodactyls is 77.53 degrees. Although large, we found this angle is less than

expected by chance (p = 0.001, Fig 6). In fact, the angle θreal increases by 0.51 degrees per mil-

lion year between grazing artiodactyls and grazing perissodactyls (which are separated by

some 152 million years of independent evolution on the ‘ungulate’ tree, i.e. at least twice as

much as the inferred age of the most recent common ancestor to all ‘Ungulatomorpha’). This

same figure is 0.71 degrees per million year between grazing perissodactyls and “others” and

0.65 between grazing artiodactyls and “others”.

Caribbean Anolis. By using search.conv, we found significant convergence in 5 out of the

6 ecomorphs traditionally recognized for insular anoles (Table 4, see S3 File for figure).

We found convergence in 5 out of 6 different ecomorphs, the only exception being ‘trunk’

anoles. The Anolis species that cannot be ascribed to any ecomorphs are, unsurprisingly, not

found to converge. By using the C1 metric, Stayton [22] found 4 of 6 ecomorphs converging.

By using the metric C5, convergence is found in 3 ecomorphs. Species not ascribed to an eco-

morph were not found to converge for either of the metrics.

Table 2. The results of search.conv applied to felid mandibular shape.

A. ACE estimated

candidate node pairs θace θreal distance
(# nodes)

distance (years � 106) p (θreal) p (θreal+θace)

Smilodontini Barbourofelidae 21.50 29.93 9 43.5 0.01 0.01

Homotheriini Barbourofelidae 39.09 43.09 9 40.8 0.02 0.01

B. ACE indicated

candidate node pairs θace θreal distance
(# nodes)

distance (years � 106) p (θreal) p (θreal+θace)

Smilodontini Barbourofelidae 34.44 29.93 9 43.5 0.01 0.01

Homotheriini Barbourofelidae 51.67 43.09 9 40.8 0.03 0.03

The results of search.conv applied to felid mandibular shape, either by estimating ancestral phenotypes by RRphylo (A), or specifying the ancestral phenotypes to all

barbourofelids and all machairodonts to be equal to the phenotype of Barbourofelis fricki and Smilodon fatalis (B), respectively. ACE = ancestral character state (i.e. the

ancestral phenotype), p (θreal) the significance of convergence test restricted to species only, p (θreal + θace) the significance of convergence test for the θreal + θace sum.

https://doi.org/10.1371/journal.pone.0226949.t002

Table 3. The results of convratsig applied to felid mandibular shape.

value p-value

C1 0.259 0

C2 0.058 0

C3 0.110 0

C4 0.013 0

Distance-based measures of convergence and relative significance level as derived by the function convratsig in the R

package convevol.

https://doi.org/10.1371/journal.pone.0226949.t003
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Discussion

Evolutionary convergence has been the focus of many evolutionary studies [6,21]. Morpholog-

ical convergence arises from adaptation to similar niches by different lineages, which can be

separated geographically, phylogenetically and temporally [12], although different processes

such as phylogenetic and developmental constraint, and even chance may produce the same

pattern [50–53].

There are several methods available in the literature to test the hypothesis of morphological

convergence. Most of them rely on the basic assumption that convergence implies stronger

phenotypic resemblance than expected by phylogenetic distance. Although the method we

propose here, search.conv, makes this same assumption, it additionally helps identifying entire

clades evolving towards similar shapes and recognizing whether they actually converge from

different starting points (which we deem simple convergence) or evolved along parallel

Fig 6. Convergence among mandibular shapes in ungulates. A) The distribution of individual species per state (gray = background
state (others), orange = grazing artiodactyls, green = grazing perissodactyls) on the ‘ungulate’ tree. B) PC1/PC2 plot showing the
position of the convergent states (grazers) compared to the rest of the tree. Deformation grids are shown at the extremes of both axes.
Animal silhouettes were available under Public Domain license at phylopic (http://phylopic.org/). Specifically, Bos primigenius
(http://phylopic.org/image/dc5c561e-e030-444d-ba22-3d427b60e58a/) image by DFoidl (modified by T. Michael Keesey) and Equus
ferus (http://phylopic.org/image/85d95128-912c-427a-9542-138e1dbf5651/) image by Mercedes Yrayzoz (vectorized by T. Michael
Keesey) are available for reuse under the Creative Commons Attribution 3.0 Unported (https://creativecommons.org/licenses/by-sa/
3.0/).

https://doi.org/10.1371/journal.pone.0226949.g006

Table 4. Results of convergence within Anolis ecomorphs. The left columns represent the results obtained by applying search.conv. The last two rightmost columns are
the corresponding results pertaining to the metrics C1 and C5, retrieved from [22]. mean angle = the mean angle between species within the ecomorph; mean angle by
time = the mean angle between species within the ecomorph divided by time distance; p mean angle = significance level for mean angle; p mean angle by
time = significance level for mean angle by time; p-value C1 = significance level for the C1 measure [22]; p-value C5 = significance level for the C5 measure [22].

Ecomorph search.conv Stayton 2015

mean

angle

mean angle

by time

p

mean angle

p mean angle by time p-value

C1

p-value

C5

Trunk-ground 44.064 32.204 <0.001 <0.001 0.008 0.120

Grass-bush 35.855 24.835 <0.001 <0.001 <0.001 0.386

Crown-giant 20.814 36.305 <0.001 0.003 <0.001 <0.001

Trunk-crown 68.635 45.403 0.002 0.040 0.186 0.011

Twig 30.050 19.695 <0.001 <0.001 <0.001 0.445

Trunk 41.289 43.735 <0.001 0.119 0.252 0.002

None 87.996 53.344 0.317 0.991 0.255 0.763

https://doi.org/10.1371/journal.pone.0226949.t004

Searching for morphological convergence

PLOSONE | https://doi.org/10.1371/journal.pone.0226949 December 27, 2019 15 / 20

http://phylopic.org/
http://phylopic.org/image/dc5c561e-e030-444d-ba22-3d427b60e58a/
http://phylopic.org/image/85d95128-912c-427a-9542-138e1dbf5651/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1371/journal.pone.0226949.g006
https://doi.org/10.1371/journal.pone.0226949.t004
https://doi.org/10.1371/journal.pone.0226949


trajectories (note that under Adams and Collyer’s phenotypic trajectory analysis there is no

expectation about how large the angle between a pair of phenotypic vectors should be [26]).

Our procedure to identify convergence between clades is at least as dependent on ancestral

state estimation as many other approaches (e.g. [6,10,23,54]). However, in search.conv it is pos-

sible to indicate specific phenotypes at nodes, if they are known from the fossil record, which

can reduce the impact of ancestral states estimation.

We demonstrate search.conv, which is embedded in the R package RRphylo, is robust, has

low Type I and Type II error rates, and is very fast even with reasonably large trees. Although

the mrcas set to converge are not always found with precision under the automatic mode, the

species actually set to converge are correctly identified up to 97.5% of the time, further demon-

strating the selection of clade pairs is reasonably precise. When the starting phenotype was

modelled to follow an evolutionary model other than BM, the function remains powerful, per-

haps with the exception of the ‘drift’ (a trend in the mean phenotype over time) case. The

lower performance of seach.conv on ‘drift-ed’ phenotypes might depend on the fact that ances-

tral state estimation is bounded by the actual phenotypes at the tips, making it evident how

highly informative the specification of ancestral phenotypes could be.

We successfully applied search.conv to mandibular shape evolution in mammals in two dif-

ferent real cases and to Caribbean islands anole ecomorphs. The first real case study regards

the evolution of mandibular shapes in felids. We found “true” sabertooths (Homotheriini and

Smilodontini) independently converge on barbourofelids in their mandible morphology.

Intriguingly, Metailurini (i.e. “false” sabertooths) which is nested within the machairodont

family, were not found to converge on barbourofelids under the automatic mode. This means

search.conv successfully excluded the false sabertooths from the convergence pattern despite

their phylogenetic position close to other “true” sabertoothed machairodont cats [55,56].

We used the felid data to compare search.conv to convevol’s convratsig function. While

both functions recognize the same pattern, search.conv was found to be three orders of magni-

tude faster, which could be crucial when it comes to assessing convergence with uncertain

state categorization, or to taking the effect of phylogenetic uncertainty into account, as this

implies repeating the analyses dozens of times by using different phylogenetic hypotheses.

The second real case application, performed with the ‘state’ approach, relates to the evolu-

tion of hypsodonty due to grass feeding in ‘ungulates’. Grazing adaptations in the mandible

evolved independently in horses (genus Equus) and several bovid lineages, most notably

among antelopes. We found evidence for convergent evolution between Equus and strictly

grazing bovids, such as Bison, Bos, and Alcelaphus. This is especially noteworthy considering

that the paleontological tree we used includes a number of non-grazing equids, such as hippar-

ionoid horses and browsing anchitheriine equids, plus several extinct rhinos and tapirs which

were all browsers. This demonstrates the method was able to find convergence among grazers

despite the effect of phylogeny and body size on mandibular shape variation [46].

The final real case pertains to Anolis ecomorphs. We found evidence for convergence in all

of them but the ‘trunk’ ecomorph species. Intriguingly, five of the six ‘trunk’ groups belong to

a single monophyletic clade, indicating that the trunk ecomorph evolved only twice, once for a

single clade only present on Hispaniola and then again when Cuban Anolis loysiana converged

on them.

Compared to other statistical procedures used to test for morphological convergence,

search.conv offers the possibility to test convergence between entire clades, and allows testing

specific ‘states’ sparsely distributed across the tree. In addition, being much faster than alterna-

tive approaches, seach.conv allows exploring the potential effect of phylogenetic uncertainty

and use of fossil phenotypes as ancestral states, that can be crucial in the presence of non-

Brownian processes. It must however be noted that not all cases of “convergence” may be
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explored best with search.conv. There are several instances reported in literature of conver-

gence between closely related clades and even single species with close phylogenetic proximity.

We provide a test which is useful to find instances of large-scale morphological resemblance

between distant clades that are generally referred at as either ‘convergent’ or just cases of itera-

tive evolution. Caution must be applied to the choice of the ancestral phenotype in the pres-

ence of strong phenotypic drift.
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