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Acid functionalized conjugated microporous 

polymers as a reusable catalyst for biodiesel 

production 

Supakorn Tantisriyanurak,a Harry N. Duguid,a Lewis Peattie,a and Robert Dawson*a 

a Department of Chemistry, University of Sheffield S3 7HF, United Kingdom 

email: r.dawson@sheffield.ac.uk 

A series of conjugated microporous polymers (CMPs) based on bromophenol blue (BB) and 

bromocresol green (BG) have been synthesized via Sonogashira-Hagihara cross coupling reaction 

with surface areas up to 747 m2/g. The CMPs can be post functionalized with chlorosulfonic acid 

to yield corresponding sulfonated polymers with high acidity up to 7.67 mmol/g. The sulfonated 

CMPs showed excellent catalytic activity for the esterification of free fatty acids and 

transesterification of various vegetable oils and waste cooking oil as well as excellent reusability 

up to 4 consecutive runs without significant activity loss. These sulfonated CMPs have potential 

applications as recyclable acid catalysts for environmentally friendly biodiesel production from 

waste cooking oil. 

Keywords: microporous, porous materials, porous polymers, heterogeneous catalysis, conjugated 

microporous polymers 
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Introduction 

Porous organic polymers (POPs), which can be made from organic molecules linked with 

covalent bonds have been widely researched over the past two decades in various applications such 

as gas separation, energy storage, sensing and catalysis.1–7 They can be categorized into two main 

types based on their structure; those which are crystalline (such as covalent organic frameworks 

(COFs)8–10 and a wide variety of amorphous microporous polymers.  The vast majority of organic 

porous polymers belong to the amorphous class which can be further divided into sub-types 

including hypercrosslinked polymers (HCPs), polymers of intrinsic microporosity (PIMs) and 

conjugated microporous polymers (CMPs).1,11,12 CMPs are organic porous organic polymer 

containing π-conjugated systems with a permanent nanoporous structure leading to high surface 

areas (typically between 500-1000 m2/g) and high thermal and chemical stability (can be boiled in 

concentrated acid without loss of porosity). They are typically synthesized using various Group 10 

metals with chemistries such as Sonogashira-Hagihara, Suzuki-Miyaura, and Yamamoto 

couplings.12–17 Functionalized CMPs have been extensively studied as heterogeneous catalysts due 

to high efficiency, recyclability and their ability to perform metal free catalysis. CMP networks 

can be used either as a porous backbone for functional groups with which to perform catalytic 

reactions i.e. without the use of their extended conjugation, or their extended conjugation can be 

used to enhance their catalytic activity such as when used as photocatalysts.  

Fossil fuel resources are a widely utilized energy source. An increase in demand for energy has 

resulted in the depletion of non-renewable fossil energy and their emission of high amounts of 

carbon dioxide and other greenhouse gases is a leading cause of global warming and air pollution.18 

Thus, alternative energy such as solar energy, nuclear power, hydroelectric energy, biomass and 

biofuel have been considered as cleaner and more sustainable energy sources to overcome these 
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problems.19  Plant oils and animal fats are plentiful in nature and have been commonly used in 

daily life. Cheap vegetable or animal oils or even waste oil can be utilized as a starting material to 

produce biodiesel.18,19 According to the UK Department for Transport, biodiesel accounted for 

53% of verified renewable fuel and 83% of biodiesel was made from used cooking oil.20 Wang et 

al. reported that approximately 5 million tonnes of waste cooking oil were produced in China, so 

the use of waste oil for biodiesel production not only provides us with clean energy sources but 

also reduces environmental pollution.19 Natural oils and fats generally consist of triglycerides and 

free fatty acids (FFAs) that can be converted to biodiesel such as fatty acid methyl ester (FAME) 

via transesterification and esterification with methanol, respectively.18 

Porous polymers derived from both natural and synthetic materials have been widely applied as 

catalysts for various organic reactions such as selective oxidation21–24, Sonogashira-Hagihara cross 

coupling25, dehydration of fructose to 5-hydroxymethylfurfural (HMF)26 and biodiesel 

production27–36. Recently, different acid functionalized porous polymers have been synthesized 

and utilized as catalysts for biodiesel production due to their large surface area, high acidity and 

excellent thermal and chemical stability.29–36 For instance, a sulfonated HCP derived from 

carbazole has previously been prepared by Bhunja et al. and was applied as an acid catalyst for 

biodiesel production from FFAs at room temperature. The synthesized catalyst exhibited high yield 

of FAME products and excellent recyclability.29 Mohan and co-workers prepared sulfonated 

phenol and bisphenol A based HCPs and used them as reusable acid catalysts for esterification and 

transesterification with various vegetable oils and fatty acids.  The synthesized sulfonated HCPs 

showed high catalytic activity at room temperature and higher temperature as well as outstanding 

recyclability.30 Sulfonated hyper‐cross‐linked porous polyacetylene networks obtained from 1,3 

and 1,4-diethynyl benzene (DEB) have been synthesized by  a chain‐growth homopolymerization 
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following by sulfonation. The parent materials showed high surface areas up to 1200 m2/g, while 

upon sulfonation the surface areas decreased to 550 m2/g after. The sulfonated polyacetylene 

networks showed high %conversion of FFAs to FAME after refluxing for 24 h, however the 

reusability of the catalysts for biodiesel production was not reported.36 

In this study we report the polymerization of bromophenol blue (BB) and bromocresol green (BG), 

which contain a sulfonate group, with alkyne monomers to produce BB and BG CMPs. The 

synthesized CMPs were post-synthetically modified via a sulfonation reaction to increase the 

acidity of the materials. The synthesized materials were used as acid catalysts for biodiesel 

production from various vegetable oils, waste oils and FFAs showing high catalytic activity at 

room temperature as well as excellent reusability.   

Experimental 

Materials. Bromophenol blue (BB), 1,3,5-triethynylbenzene (TEB) and copper (I) iodide (CuI) 

were obtained from Alfa Aesar. 1,4-diethynylbenzene (DEB), myristic acid and palmitic acid were 

purchased from Acros Organics. Oleic acid was obtained from Fluorochem. All other chemicals 

were purchased from Sigma Aldrich. Anhydrous N,N’-dimethyformamide (DMF) and 

triethylamine (TEA) were used for all polymer synthesis. All chemicals were used as received and 

had a purity over 95%. Widely available vegetable oils were purchased from supermarkets and 

used as received. 

Synthesis of BB and BG based CMPs via Sonogashira – Hagihara cross coupling. BB or BG 

(0.5 mmol), TEB (1 mmol) or DEB (1.5 mmol) and CuI (0.079 mmol) were added into a two-neck 

round bottom flask and it was degassed and backfilled with nitrogen gas 3 times. Anhydrous DMF 

(5 mL) and TEA (5 mL) were added and the reaction mixture was heated to 100 °C under nitrogen 



5 

 

atmosphere. Tetrakis(triphenylphosphine)palladium(0) (0.043 mmol) was mixed with 2 mL of 

anhydrous DMF and the mixture was injected as a slurry to the reaction. The reaction was left for 

24 h. The solid product was filtered by vacuum filtration and washed with methanol, chloroform 

and acetone, respectively. The washed product was further purified by Soxhlet extraction using 

methanol for 16 h and the obtained solid was dried under vacuum at 80 °C. Yields were 120.1, 

119.9, 98.8 and 113.5% for BB+TEB, BG+TEB, BB+DEB and BG+DEB, respectively. 

Sulfonation of BB and BG CMPs. Sulfonation reaction was conducted following the procedure 

as reported by Kalla et al.30 0.4 g of BB- or BG-CMP was suspended and stirred in 

dichloromethane (DCM). An excess of chlorosulfonic acid was used to ensure a high degree of 

sulfonation. A mixture of chlorosulfonic acid (4 mL) and 10 mL of DCM was slowly added into 

the polymer suspension and the reaction was stirred for 48 h at the room temperature. After that, 

the reaction mixture was diluted with 50 mL of DCM and was vacuum filtered and washed with 

water until the filtrate was neutral. The solid product was dried under vacuum at 80 °C. For 

comparison, BB- and BG-CMPs were also treated with hydrochloric acid using the same 

procedure. 

Characterization 

Nitrogen gas adsorption and desorption isotherms. Nitrogen gas sorption isotherms were 

acquired by a Micromeritics ASAP 2020Plus analyzer using high purity gases at 77 K. All samples 

(ca. 0.1 g) were degassed at 120 °C under dynamic vacuum prior to analysis. Surface areas were 

calculated using Brunauer-Emmett-Teller (BET) theory over a relative pressure range of 0.01–

0.15 P/P0. Differential pore sizes were analyzed using the NL-DFT method.  
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1D 1H–13C cross-polarization magic angle spinning (CP/MAS). The synthesized polymers 

were filled into 4 mm zirconia rotors before analyzed with a Bruker Avance III HD spectrometer 

at 125.76 MHz (500.13 MHz 1H) at a MAS rate of 10.0 kHz. The 1H π/2 pulse was 3.4 μs, and 

two-pulse phase modulation (TPPM) decoupling was used during the acquisition. The Hartmann–

Hahn condition was set using hexamethylbenzene. The spectra were measured using a contact time 

of 2.0 ms. The relaxation delay D1 for each sample was individually determined from the proton 

T1 measurement (D1 = 5 × T1). Data was collected until sufficient signal-to-noise was obtained, 

typically greater than 256 scans. The chemical shift values are referred to that of TMS. 

1H NMR and 13C Nuclear magnetic resonance (NMR) spectroscopy. Solution state NMR was 

perform using Bruker AV 400MHz. Samples were dissolved in deuterated chloroform and filtered 

by cotton wool prior analysis at room temperature. 

Fourier transform infrared (FT–IR) spectroscopy. FTIR was performed using a PerkinElmer 

Spectrum 100. Samples were analyzed with a diamond ATR accessory or were mixed with KBr 

and pressed into a disk before being measured in transmission mode. 

Elemental analysis (EA). EA was obtained using Elementar Vario MICRO Cube CHN/S 

analyzer by burning a sample in a stream of oxygen. Combustion products were passed through a 

copper tube to remove excess oxygen and reduce NOx to N2 before separated with a Thermal 

Programmed Desorption column and detected by a thermal conductivity detector (TCD). Halogen 

analysis was performed using the Schöniger flask combustion method and a titration was used to 

determine the amount of required element.  
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Thermogravimetric analysis (TGA). TGA was performed using PE Pyris. Approximately 5 mg 

of material was pyrolysed under nitrogen atmosphere from room temperature to 800 °C using 

10 °C/min of heating rate. 

Esterification of free fatty acids (FFAs) and transesterification of different vegetable oils with 

methanol. The procedure was adapted from previous work.30 Fatty acid (1 mmol), 10 mg of acid 

catalyst and 2 mL of methanol (50 mmol) were added into a reaction vessel and stirred at room 

temperature or 60 °C. The catalyst was doubled if dicarboxylic fatty acids were used. For 

transesterification, 100 mg of vegetable oil, various amounts of acid catalyst and 5.7 mL of 

methanol were mixed in a reaction flask and stirred at 60 °C for 24 h.  The catalyst was filtered 

and washed with chloroform. The filtrate was evaporated under vacuum and the product was dried 

using vacuum oven at 60 °C. Yield of fatty acid methyl ester (FAME) and conversion of oil to 

FAME were calculated by 1H NMR by following equations30,37;    

𝑌𝑖𝑒𝑙𝑑(%) 𝑓𝑜𝑟 𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝐼𝑀𝐸𝐼𝐶𝐻2   ฀ 100 
𝑌𝑖𝑒𝑙𝑑(%) 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  2 ฀ 𝐼𝑀𝐸

3 ฀ 𝐼฀−฀฀2  ฀ 100 
𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(%) = 4 ฀ 𝐼𝑀𝐸(4 ฀ 𝐼𝑀𝐸) + (9 ฀ 𝐼𝑇𝐺)฀ 100 

Where: IME is the peak area of methyl ester protons at 3.6 ppm, ICH2 is the peak area of methylene 

protons at 2.25 ppm, Iα-CH2 is the peak area of α-carbonyl methylene protons at 2.3, and ITG is the 

peak area of glyceridic protons at 4.15 ppm 

Results and Discussion 
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Scheme 1. Synthesis of BB and BG based CMPs via Sonogashira-Hagihara coupling and 

sulfonation of the synthesized CMPs.  

Characterization 

The tetrabromo functional monomers bromophenol blue (BB) and bromocresol green (BG) were 

reacted with either 1,3,5-triethynelbenzene (TEB) or 1,4-diethynylbenzene (DEB) to yield CMPs 

BB+TEB, BB+DEB, BG+TEB and BG+DEB using a Sonogashira-Hagihara cross coupling 

reaction with Pd(PPh3)4 and CuI as catalysts in yields of 98.8-120.1% (Scheme 1). Yields greater 

than 100% are attributed to incomplete condensation of the monomers i.e. the presence of 

unreacted bromo end groups, and trapped solvents as is commonly reported for similar CMPs and 

POPs in general.13,38,39 Indeed, the elemental analysis results confirmed the presence of halogens 

in the polymers as shown in Table S1. It is worth noting that it is difficult to locate the position of 

the sufonic groups in the sulfonated polymer networks, Scheme 1 demonstrates the possible 

positions of sulfonate groups on the polymer network. 
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The FT-IR spectra (Figure 1a) display a peak at 2362 cm-1 assigned to internal alkyne linkages (–

C≡C-) confirming that polymerization has occurred.40 The absence of peaks at 457, 461 and 3278 

cm-1 corresponding to CAr-Br in BB and BG monomers as well as C-H in terminal alkyne of TEB 

and DEB monomers (Figure S1), respectively, confirmed that the monomers were successfully 

incorporated into the polymer networks. The peaks at 624, 1021, and 1174 cm-1 correspond to C-

S stretching, S=O symmetric and asymmetric stretching in -SO3H.31  After sulfonation, the 

intensity of these peaks increased due to the further incorporation of sulfonic groups into the 

polymer networks. Furthermore there is evidence of modification of the alcohol groups into 

sulfates (-OSO3H) with  O=S=O asymmetric and symmetric stretching peaks observed at 1220 and 

1040 cm-1, respectively, as well as the S-O stretching peak observed at 890 cm-1.30 The 13C 

CP/MAS spectra of the as synthesized and sulfonated CMPs are shown in Figure 1(b). The peaks 

at 123, 129, 144, and 154 ppm are assigned to (CAr-H), (CAr-C), (CAr-SO3
-), and (CAr-OH), 

respectively. The small peak at 100 ppm corresponds to alkyne linkages which further confirm the 

formation of a CMP network.40 The spectra for BG CMPs show an additional peak at 16 ppm 

which corresponds to the methyl groups. After sulfonation, the intensity of the 123 ppm (CAr-H) 

peak decreases while the peak at 144 ppm (CAr-SO3
-) increases due to the substitution of sulfonic 

acid groups on the aromatic ring. The broadening of peak at 154 ppm indicates the esterification 
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of the CAr-OH group to CAr-OSO3H which is consistent with the FTIR. 

 

Figure 1. (a) IR and (b) 13C CP/MAS spectra of the as-synthesized CMPs and sulfonated CMPs. 

(* denotes sideband spinning) 
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Figure 2. (a) Nitrogen gas sorption isotherms (filled is adsorption and emptied is desorption) of 

the synthesized CMPs and (b) the sulfonated CMPs, (c) pore size distribution of the synthesized 

CMPs and (d) the sulfonated CMPs. The isotherms were offset by 100 cm3/g and 0.5 cm3/g for 

pore size distribution.   
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Table 1. BET surface areas, total pore volumes, sulfur contents and acidity of the synthesized 

CMPs. 

Sample SBET (m2/g) Vt (cm3/g) S Content (%) Acidity 

(mmol/g) 

BB+TEB 

BB+DEB 

BG+TEB 

BG+DEB 

HCl-BB+TEB 

HCl-BB+DEB 

HCl-BG+TEB 

HCl-BG+DEB 

s-BB+TEB 

s-BB+DEB 

s-BG+TEB 

s-BG+DEB 

747 

580 

566 

373 

688 

511 

532 

463 

349 

12 

303 

60 

0.38 

0.35 

0.34 

0.22 

0.34 

0.26 

0.29 

0.27 

0.22 

0.01 

0.29 

0.003 

2.41 

2.75 

2.23 

2.34 

3.78 

3.31 

2.79 

2.73 

8.67 

10.24 

9.15 

9.11 

1.54 

1.55 

1.83 

1.89 

1.72 

1.69 

1.89 

1.84 

3.53 

7.67 

4.39 

4.04 

 

The obtained materials exhibit type I N2 isotherms with high BET surface areas (SBET) from 373 

to 747 m2/g and total pore volumes (Vt) between 0.22 and 0.38 cm3/g as shown in Table 1 and 

Figure 2(a). All synthesized CMPs show a narrow pore size distribution with the main peaks 

located at a pore width less than 2 nm confirming they are indeed microporous materials (Figure 

2(b)).  BG based CMPs showed lower surface areas than BB based CMPs due to steric hindrance 

from the adjacent methyl group resulting in lower conversion of monomers to polymer networks 

as confirmed by the higher bromine contents according to elemental analysis (Table S1). The 

polymers produced from TEB showed higher SBET than from DEB due to the higher connectivity 
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of the TEB monomer compared to the linear linker of DEB.5,41–44 After sulfonation, the SBET and 

Vt of all samples dropped dramatically due to the incorporation of sulfonic groups in the polymer 

networks. The DEB versions of the functionalized CMPs showed a lower SBET than those 

synthesized from TEB due to the greater sulfonic group substitution of the DEB than TEB resulting 

from less stearic hindrance. It is consistent with elemental analysis results (Table S1) that all 

sulfonated polymers showed higher sulfur content than non-functionalized and HCl treated CMPs 

and the DEB versions polymers possessed higher amount of sulfur than TEB ones. The halogen 

content displayed in Table S1 also increased after treated with both HCl and chlorsulfonic acids 

probably due to the interference of residual chlorine.45 The acidity of the synthesized CMPs was 

been determined by reacting with aqueous NaOH and then back titrating with HCl aqueous 

solution as described in previous works29,30. The acidity of the polymers were in agreement with 

elemental analysis results and were in the range of 1.54 to 7.67 mmol/g, which exceeds that of 

previously reported microporous polymers.29–31,36All samples were analyzed by TGA under 

nitrogen atmosphere as shown in Figure S4. All synthesized CMPs had high thermal stability with 

decomposition temperature from 200 to 300 °C. BB based CMPs showed higher degradation 

temperature (ca. 300 °C) than the BG based CMPs (ca. 250 °C) due to the loss of methyl group in 

the BG based polymers. All sulfonated CMPs showed lower degradation temperature at 

approximately 200 °C due to the loss of sulfonic group in the materials which is consistent with 

the literature.36 

Esterification of FFAs and Transesterification of Vegetable Oils Using the Acid Catalysts. 

The synthesized catalysts were used for the esterification of various chain lengths (C6 – C18) of 

mono and dicarboxylic FFAs such as myristic, palmitic, stearic, oleic, adipic and sebacic acids. 

The no catalyst and non-functionalized CMPs showed very low %yield of the FAME product at 
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60 °C for 24 h due to the absence of an acid catalyst and the lack of acidity of the materials, 

respectively (Entry1-5). The HCl treated CMPs (Entry 6-9, 14-17) showed low to moderate % 

yield while the sulfonated CMPs (Entry 10-13) showed a high % yield of methyl ester product of 

lauric acid up to 94% because the sulfonated catalysts possessed more sulfonic groups in the 

polymer networks as shown in Table 2. s-BB+TEB, the lowest acidity sulfonated catalyst showed 

a high %yield which is similar to other sulfonated polymers, so it indicated that the acidity of s-

BB+TEB was high enough to catalyze the esterification of FFAs. The catalytic activity was likely 

independent on the surface areas of the polymers as all polymers showed similar %yield. 

Table 2. Esterification of FFAs using the synthesized CMPs  

Entry Fatty acid Catalyst Temp (oC) Time (h) Yield (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Lauric acid 

Myristic acid 

No catalyst 

BB+TEB 

BB+DEB 

BG+TEB 

BG+DEB 

HCl-BB+TEB 

HCl-BB+DEB 

HCl-BG+TEB 

HCl-BG+DEB 

s-BB+TEB 

s-BB+DEB 

s-BG+TEB 

s-BG+DEB 

HCl-BB+TEB 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

24 

2.6 

2.7 

2.2 

4.3 

1.9 

16.2 

64.2 

75.3 

15.1 

93.7 

89.3 

92.6 

93.6 

24.0 
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15 

16 

17 

18 

19 

Myristic acid 

Myristic acid 

Myristic acid 

Adipic acid 

Sebacic acid 

HCl-BB+DEB 

HCl-BG+TEB 

HCl-BG+DEB 

s-BB+DEB 

s-BB+DEB 

60 

60 

60 

60 

60 

24 

24 

24 

6 

6 

63.5 

66.7 

77.9 

91.3 (91.3)* 

95.2 (92.6)* 

Reaction condition: 1mmol of FFA, 2 mL of methanol and 10 mg of catalyst was used for 

monocarboxylic acid and the catalyst was doubled for dicarboxylic acid. 

* The number in brackets is %yield when 10 mg of the catalyst was used. 

 

Figure 3. Kinetic studies of esterification of myristic acid with 2 mL of methanol using 10 mg of 

different sulfonated CMPs at 60 °C. 
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Figure 4. (a) Esterification of FFAs at 60 °C for 6 h, (b) esterification of FFAs at 25 °C for 24 h, 

(c) %conversion of transesterification of vegetable oils and (d) %yield of transesterification of 

vegetable oils at 60 °C for 24 h using different sulfonated polymers. Esterification: 1 mmol of 

FFAs, 2 mL of methanol, 10 mg of catalyst was used for monocarboxylic acid and the amount of 

catalyst was double when dicarboxylic was used. Transesterification: 100 mg of oil, 5.7 mL of 

methanol and 60 mg of catalyst was used.  

The catalytic activity of different sulfonated CMPs on esterification of myristic acid at 60 °C was 

studied at different reaction times (Figure 3). The results illustrate that s-BB+DEB achieved the 

highest yield of 85.5% after 2 h while s-BB+TEB, s-BG+TEB and s-BG+DEB showed lower % 

yields of 69.5, 37.3 and 69.2, respectively. The s-BB+DEB showed the highest activity at the 

beginning of the reaction due to the highest acidity of the catalyst. The %yields of product 
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continuously increased after 2 h and %yields reached a plateau after 3h for s-BG+DEB, 4h for s-

BB+DEB and 6 h for the rest of sulfonated polymers. All sulfonated catalysts showed a high yield 

of products for various FFAs at 60 °C for 6 h i.e., 82-92% for s-BB+TEB, 91-99% for s-BB+DEB, 

64-94% for s-BG+TEB, and 95-97% for s-BG+DEB as shown in Figure 4(a). Moreover, the 

sulfonated catalysts also showed very high yields of biodiesel products up to 90, 97, 95 and 92% 

for s-BB+TEB, s-BB+DEB, s-BG+TEB and s-BG+DEB, respectively even at room temperature 

for 24 h for different FFAs as illustrated in Figure 4(b).  Stearic acid, which has the longest chain 

FFA in this study, was partially soluble in methanol at room temperature leading to a relatively 

low % yield of 31.8-64.9 % which increased to 74.0-97.1 % at 60 °C due to the better solubility of 

stearic acid at the higher temperature. From the previous work, the catalyst was doubled to 20 mg 

when dicarboxylic acids were used.29,30 It is worth noting that s-BB+DEB showed a very high 

yield of 91.3 and 92.6 % for dicarboxylic acids; adipic and sebacic acids, respectively, when 10 

mg of the catalyst was used at 60 °C for 6 h as shown in Table 2 (Entry 18-19). This indicates that 

the synthesized catalysts still showed excellent catalytic activity even at a lower amount of catalyst 

loading. The results suggest that sulfonated materials synthesized in this work have similarly high 

catalytic activity for esterification of FFAs at either room temperature or 60 °C compared with the 

previous reported sulfonated HCPs and CMPs29–31,36. Sulfonated phenol and bisphenol A based 

HCPs showed high %yield of 78.5-96.6% for esterification of different FFAs at room temperature 

from 6-24 h.30 Sulfonated carbazole based HCPs also showed high %yield of 93-99% at room 

temperature using 0.5 mmol of FFA and 6 mg of catalysts.29 Sulfonated pyrene based HCPs gave 

high %yield of 88-94% for esterification of FFAs at room temperature for 10h, but higher amount 

of catalysts (17-25 mg) was required for 1 mmol of FFA.31 Sulfonated hyper‐cross‐linked porous 
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polyacetylene yielded up to 99% of FAME synthesized from various FFAs using 1%wt of catalyst. 

However, they needed higher temperature and longer time (60 °C for 24h).36 

Different vegetable oils such as coconut, sunflower, rapeseed and sesame were selected to react 

with methanol using different synthesized CMP catalysts via transesterification. Likewise, the non-

functionalized and HCl treated CMPs (Entries 1-8) showed much lower conversion than the 

sulfonated CMPs (Entries 9, 16, 24-25, 26-29) as shown in Table 3. The effect of the amount of 

catalyst was also studied using s-BB+TEB and s-BB+DEB catalysts for transesterification of 

coconut oil at 60 °C for 24 h. The results showed that an increase in amount of the catalysts led to 

a higher conversion of triglycerides to biodiesel products, but the conversions reached a plateau 

after 60 mg for both catalysts, thus 60 mg of catalyst was the optimum amount of the catalyst as 

illustrated in Table 3 (Entries 9-15, 16-22). The sulfonated catalysts showed the high conversions 

of tranesterification of various vegetable oils up to 81, 100, 88 and 99% and high yields up to 67, 

95, 78, 96% for s-BB+TEB, s-BB+DEB, s-BG+TEB and s-BG+DEB, respectively due to the high 

acidity of the catalysts as shown in Figure 4(c) and (d). However, the % conversion of coconut oil 

to the products using s-BB+DEB as a catalyst decreased dramatically to 23.2 % at room 

temperature (Table 3, Entry 23), which is consistent with the previous reports30,31, so a higher 

temperature is needed in order to increase a speed of molecules and therefore a higher kinetic 

rate.46 Moreover, the sulfonated polymers also exhibited a very high conversion up to 97.1 % for 

waste cooking sunflower oil. This indicates that our synthesized catalysts have potential to be used 

for the production of biodiesel from waste cooking oils, which not only reduces the use of fossil 

fuel and carbon emissions, but also prevents pollution caused by the waste cooking oils. 

Table 3. Transesterification of various vegetable oils using the synthesized CMPs 



19 

 

Entr

y 

Oil Catalyst Catalyst amount (mg) %Conversion 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

Coconut 

Coconut  

BB+TEB 

BB+DEB 

BG+TEB 

BG+DEB 

HCl-BB+TEB 

HCl-BB+DEB 

HCl-BG+TEB 

HCl-BG+DEB 

s-BB+TEB 

s-BB+TEB 

s-BB+TEB 

s-BB+TEB 

s-BB+TEB 

s-BB+TEB 

s-BB+TEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BB+DEB 

s-BG+TEB 

s-BG+DEB 

10 

10 

10 

10 

10 

10 

10 

10 

10 

20 

30 

40 

50 

60 

70 

10 

20 

30 

40 

50 

60 

70 

60 

10 

10 

0.9 

0.0 

0.9 

0.4 

0.0 

0.9 

1.3 

0.9 

12.3 

25.2 

47.2 

52.3 

57.9 

71.8 

68.5 

49.0 

73.2 

88.4 

95.4 

97.0 

99.4 

99.4 

23.2* 

30.3 

47.9 
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26 

27 

28 

29 

Sunflower 

Sunflower 

Sunflower 

Sunflower  

s-BB+TEB 

s-BB+DEB 

s-BG+TEB 

s-BG+DEB 

10 

10 

10 

10 

20.2 

22.7 

18.8 

35.5 

The transesterification was performed at 60 °C for 24 h using 100 mg of oil and 5.7 mL of 

methanol.  

*The reaction temperature was 25 °C. 

 

Reusability Testing 

s-BB+DEB was selected for reusability testing due to having the highest acidity and high catalytic 

activity (Figure 5). The esterification of myristic acid was performed at 60 °C for 6 h using 10 mg 

of the catalyst. The catalyst was washed after the reaction with excessive chloroform and dried in 

a vacuum oven at 60 °C. The same amount of catalyst (10 mg) was used in each cycles. The catalyst 

showed good stability with just around 10% activity loss after the 4th cycle. The slight loss of 

activity might cause by the pore blocking by FFA and its product and the loss of acid sites over 

multiple uses as sulfur content decreased to 4.16% according to elemental analysis (Table S1)47 

TGA (Figure S4) of the used catalyst showed a small decrease of %residual of the material when 

it was compared with the fresh catalyst indicative of the high thermal stability of the catalyst. FTIR 

spectra (Figure S5) show that s-BB+DEB still possesses sulfonic groups after being reused.  
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Figure 5. Reusability study of esterification of myristic acid (1 mmol) using 2 mL of methanol 

and 10 mg of s-BB+DEB at 60 °C for 6 h. 

Conclusions 

BB and BG containing CMPs were successfully synthesized using Songogashira-Hagihara 

coupling to produce highly porous materials. The sulfonated BB and BG CMPs showed high 

acidity which resulted in high activity toward esterification of FFAs and transesterification of 

various vegetable oils and waste cooking oil. The functionalized CMPs show excellent stability 

and can be reused over 4 cycles, and this acid functionalized CMPs shows great potential to be a 

recyclable catalyst for biodiesel production from waste cooking oil, which is one of the greenest 

alternative fuel to replace fossil diesel. 
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