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PLATONIC RELATIONS AND MATHEMATICAL EXPLANATIONS 

BY ROBERT KNOWLES 

 

Some scientific explanations appear to turn on pure mathematical claims. The enhanced 

indispensability argument appeals to these ‘mathematical explanations’ in support of 

mathematical platonism. I argue that the success of this argument rests on the claim that 

mathematical explanations locate pure mathematical facts on which their physical explananda 

depend, and that any account of mathematical explanation that supports this claim fails to 

provide an adequate understanding of mathematical explanation. 

 

Keywords: mathematical explanation, enhanced indispensability argument, mathematical 

platonism, ontic dependence, mathematical structuralism, underdetermination. 

 

I. INTRODUCTION 

Some scientific explanations appear to turn on pure mathematical claims. According to an 

influential line of argument, these mathematical explanations evidence mathematical 

platonism—the view that abstract mathematical objects exist. The argument can be simply 

stated as follows. We should infer to our best scientific explanations. Some of these turn on 

pure mathematical claims, ascribing properties to abstract mathematical objects. So, we 

should believe in abstract mathematical objects. This is the enhanced indispensability 

argument (EIA).
1
 

                                                             
1
 See Baker 2005. EIA ‘enhances’ the traditional indispensability argument, attributed to Quine 1948 and 

Putnam 1971, by doing without the controversial principle that confirmation is radically holistic. See Sober 

1993, Maddy 2005, and Morrison 2012 for relevant criticism of the traditional argument. 



EIA supporters take mathematical explanations to work by locating explanatory 

mathematical facts.
2
 Critics take them to work by exploiting mathematics as a 

representational aid to pick out otherwise elusive explanatory physical facts.
3
 Progress in this 

debate requires a mature enough understanding of mathematical explanation to adjudicate 

between these views. 

In recent years, a number of philosophers have defended accounts of mathematical 

explanation that appear promising for bolstering EIA: Christopher Pincock argues that certain 

explanations locate mathematical facts on which their explananda depend, via a sui generis, 

non-causal dependence relation; Sam Baron, Mark Colyvan, David Ripley, and Mark Povich 

suggest that mathematical explanations locate the mathematical facts on which their 

explananda counterfactually depend; and Aidan Lyon argues that mathematical explanations 

identify causally relevant mathematical properties.
4
 These accounts appear promising for 

bolstering EIA because they are ontic: according to them, mathematical explanations limn the 

network of objective dependencies in which their explananda are embedded, and locate 

mathematical facts within that network.
5
 In contrast, relatively few have defended accounts 

that seem promising for undermining EIA.
6
 It may therefore appear that the balance of 

evidence currently favours EIA. I aim to dispel this appearance by providing support for the 

following argument. 

PREMISE 1  

Any account on which mathematical explanations locate pure mathematical facts on 

                                                             
2
 E.g. Colyvan 2002, 2013; Baker 2005, 2009, 2017; Lyon 2012. 

3
 E.g. Daly & Langford 2009; Leng 2010, 2012; Rizza 2011; Saatsi 2011; Yablo 2012. 

4
 Lyon 2012; Pincock 2015b; Baron et al. 2017; Baron 2019; Povich 2019. 

5
 I assume that there are non-causal relations of explanatory dependence, in accordance with some dominant 

thinking about grounding (see Schaffer 2009; Rosen 2010; Audi 2012; Clark & Liggins 2012; Raven 2015). I 

help myself to, and use interchangeably, the associated locutions ‘in virtue of’, ‘depends on’, and ‘is grounded 

by’. Two further clarifications: First, I talk as though grounding can relate many different kinds of things; if it 

turns out to be more selective, my arguments can be regimented accordingly. Second, I do not presume 

grounding is unitary; for all I say, it may be a non-committal means of discussing a range of more specific 

relations (see Wilson 2014). 
6
 See Leng 2012 and Knowles & Saatsi 2019. 



which their physical explananda depend fails to provide an adequate understanding of 

mathematical explanation. 

PREMISE 2  

Any account of mathematical explanation apt to bolster EIA implies that 

mathematical explanations locate pure mathematical facts on which their physical 

explananda depend. 

CONCLUSION  

Any account of mathematical explanation apt to bolster EIA fails to provide an 

adequate understanding of mathematical explanation. 

Part of the support I provide for this argument is piecemeal: I identify the three above-

mentioned accounts of mathematical explanation as confirming instances of the 

generalizations PREMISE 1 and PREMISE 2 (§§II–IV). 

In §II, I show that Pincock’s (2015b) account faces two serious problems. First, it 

posits striking yet inexplicable regularities. This is the brute regularities problem. Second, it 

renders our supposed success in identifying the mathematical facts on which physical 

phenomena depend a cosmic coincidence. This is the empirical access problem. These 

problems reveal that Pincock’s account does not furnish an adequate understanding of 

mathematical explanation. It is thus is a confirming instance of PREMISE 1. 

In §III, I show that, for the increasingly popular countermathematical account to 

provide any understanding of mathematical explanation, it must posit a sui generis physical-

on-mathematical dependence relation. The result is that it also faces the brute regularities and 

empirical access problems and is a further confirming instance of PREMISE 1.  

In §IV, I show that Lyon’s (2012) account is best understood in terms of the 

dependence of mixed mathematical/physical facts on physical facts. In contrast to the other 

accounts, the direction of dependence is reversed here, which means the brute regularities and 



empirical access problems are avoided. However, the cost is the ability of Lyon’s account to 

bolster EIA. Lyon’s account is a confirming instance of PREMISE 2.  

The argumentative moves in each case are responsive to the same general reasons. 

Capitalising on this, I will formulate a general argument for CONCLUSION, in the form of a 

dilemma (§V). Finally, I will show that, despite initial appearances, adopting structuralism 

about mathematical objects will not help to avoid this dilemma (§VI). All of this provides 

substantial (albeit defeasible) support for CONCLUSION. 

 

II. ABSTRACT DEPENDENCE 

Pincock (2015b) claims that certain scientific explanations account for the properties of 

collections of physical systems by appealing to the properties of objects more abstract than 

those physical systems. He calls these abstract explanations, and posits the sui generis, non-

causal relation of abstract dependence to make sense of them. His chosen case study is an 

explanation in which the more abstract objects are mathematical.  

If Pincock is right, then his account bolsters EIA. In this section, I show that Picock’s 

account faces the brute regularities and empirical access problems, and so fails to provide an 

adequate understanding of mathematical explanation. First, I show that Pincock’s account 

leaves it underdetermined which mathematical fact is selected for by the abstract dependence 

relation. Then I argue that we must nevertheless take instances of abstract dependence to 

select for particular mathematical facts, as Pincock does. Finally, I show that this leads to the 

brute regularities and empirical access problems. 

Pincock’s case study is the mathematical proof that soap formations must satisfy 

Plateau’s laws. Plateau’s laws capture three striking regularities in soap film and bubble 

formations: 



(1) Soap formations consist of finite flat or smoothly curved surfaces smoothly joined 

together. 

(2)  Within a soap formation, there are three possible meetings of surfaces: (i) no surfaces 

meet; (ii) exactly three surfaces meet along a smooth curve; (iii) exactly six surfaces 

(together with four curves) meet at a vertex. 

(3) When three surfaces meet along a curve, they do so at angles of 120°; when four 

curves meet at a point, they do so at angles of ≈ 109°. 

The proof, from Jean E. Taylor, can be divided into three parts (following Almgren & Taylor 

1976). The first is the initial modelling phase, where a mathematical analogue of soap 

formations is defined, capturing the basic physical principle that soap formations minimize 

their total surface area. For a soap formation on a wire frame, the area-minimization leaves 

the frame’s size unchanged. For a bubble formation, the area-minimization leaves the volume 

of enclosed air unchanged. These properties are captured by approximating soap formations 

with configurations of two-dimensional surfaces in ℝ 3
 that are minimal: their total area 

cannot be decreased by certain small deformations that leave their frame or enclosed volume 

fixed. These configurations are almost minimal sets.  

The second part of the proof shows that almost minimal sets that satisfy (1) also 

satisfy (2) and (3). The final part shows that almost minimal sets exist and satisfy (1). 

Overall, the proof shows that almost minimal sets satisfy Plateau’s three laws, which is 

relevant to soap formations because the defining property of almost minimal sets models the 

area-minimization principle that governs soap formations.  

Pincock (2015b) claims that this proof explains the fact that soap formations satisfy 

Plateau’s laws by showing that it abstractly depends on the fact that almost minimal sets are 

minimal. For this to provide an adequate understanding of mathematical explanation, we 

must have a decent understanding of the abstract dependence relation. Pincock is clear that it 



is objective, non-causal, and sui generis, but going beyond this very general characterization 

raises serious problems.  

Abstract dependence is supposed to obtain between a fact about certain physical 

systems, and a fact about some more abstract objects. To elucidate this idea, Pincock (2015b: 

865–866) appeals to the relationship between types and tokens. A piece of music (type) and a 

particular performance of it (token) share many properties. For example, assuming the 

performance is faithful and successful, they share many of their aesthetic properties. Yet 

there are certain more specific properties the token alone has, such as having a particular 

spatial location. In this way, the piece of music is more abstract than the performance of it, 

and the latter is an instance of the former. Similarly, we can say that something is an instance 

of an almost minimal set just in case it has minimality, and other more specific properties 

besides. 

So, a condition on physical-on-mathematical abstract dependence is that the physical 

systems are instances of the mathematical objects, in the above sense. This is not a sufficient 

condition. To see this, imagine an accurate plastic model of a soap formation created by a 

teacher by combining plastic surfaces so as to satisfy one of Plateau’s laws. This is an 

instance of an almost minimal set, but the model satisfies Plateau’s laws because the teacher 

made it so. According to Pincock (2015b: 866–867), for abstract dependence to obtain, the 

formation of the physical systems must be governed by a process relevant to the condition for 

being instances of the more abstract objects. The relevant fact about soap formations is 

eligible because soap formations are instances of almost minimal sets, and because they are 

formed by a process of area-minimization that is relevant to their being instances of almost 

minimal sets.  

This gives us an idea of what abstract dependence requires on the physical side. But 

what about the mathematical side? We know that the mathematical objects must have the 



physical systems as instances, but this fails to distinguish between many distinct candidates. 

There are at least three sources of underdetermination.
7
 

 

Properties:  There are various definitions of ‘minimality’ in terms of which the explanation 

can be run. For example, Guy David (2013) provides a variation on the definition offered by 

F. J. Almgren Jr. (1975), invoking different sets to fix the operative notion of a small 

deformation. David says ‘a few other variants exist, but they would not be significantly 

different for what we want to say here’ (2013: 77), where among what he wants to ‘say’ is 

Taylor’s proof. Even if these alternatives are extensionally equivalent, explanation is more 

fine-grained than extensional equivalence. Abstract dependence is supposed to select for a 

particular fact involving certain mathematical objects having certain properties. So, there are 

at least as many candidates as there are distinct properties in terms of which the explanation 

can be run. 

 

Bearers:  For a given property, we face the further choice of bearers. For example, we could 

restrict our attention to the almost minimal sets contained within a particular subregion of ℝ 3
, 

such as the interior of a particular sphere, with no overall effect on the explanation. There are 

at least as many further candidates for abstract grounds as there are distinct collections of 

bearers in terms of which we can run the explanation. 

 

                                                             
7
 Pincock (2015b: 877) admits that it is possible to define distinct kinds of mathematical objects and relate them 

to soap formations in ways that mimic Taylor’s proof. Perhaps he has in mind one or more of the sources of 

underdetermination I identify, or perhaps he has in mind some further source. In any case, he recognizes this as 

a problem (see fn. 8), and suggests that the remedy is a theory about what abstract dependence is and how it is 

distributed. If my discussion in this section is right, no ameliorative theoretical moves are forthcoming. In 

another paper (2015a), where Pincock applies his account to explanations within mathematics, he identifies an 

analogue of the same problem. There he proposes that the abstract ground for a given explanandum is the least 

more abstract fact among the candidates (2015a: 12). This solution presupposes that the various candidates for 

abstract grounds are partially ordered by their abstractness. It is far from clear that they are, at least for the 

candidates I identify. However, even if they are, and there is a least more abstract fact in the offing, why choose 

this, as opposed to, say, the most more abstract fact? This solution seems unduly arbitrary. 



Interpretations:  Given a selection of properties and bearers, we face a further choice of 

interpretation. For example, there are many distinct set-theoretic models of ℝ 3
, each of which 

has its own collection of almost minimal sets. The mathematics of almost minimal sets 

(topology and geometric measure theory) is algebraic, meaning it has no intended model. In 

light of this, no particular model ℝ 3
 has claim to being the more natural home for the 

explanation. So, there are at least as many further candidates for the abstract grounds as there 

are models of ℝ 3
. 

 

These three sources of underdetermination are independent and cross-cutting. In light of 

them, our understanding of the abstract dependence relation seems inadequate. By ruling out 

the alternative options, I will now argue that the only sensible recourse is to claim that 

instances of abstract dependence select for a particular mathematical fact from among the 

eligible candidates.  

As I see it, there are three alternative options. The first is to argue that each candidate 

abstract ground is partial, so that only by enumerating every candidate have we provided the 

full abstract explanation. On this view, Taylor’s explanation is incomplete. This cannot be 

right. Once we have understood the explanation, we stand to learn nothing of explanatory 

value by considering other candidate abstract grounds. Moreover, a philosophical theory 

should not pass judgement on the success of a scientific explanation. If practitioners deem it 

successful, a naturalistic philosophical account should take its success as a datum. There is 

also the further difficulty that, on this view, the explanation looks to be impossible to 

complete.  

The second option is to argue that each candidate abstract ground is complete. On this 

view, each instance of abstract dependence is a case of massive overdetermination of a 

particularly problematic kind. To illustrate, contrast the present case with the much-discussed 



case of two people simultaneously throwing a rock through a pane glass window. Each rock-

throw is sufficient to cause the glass to break all on its own, but both rocks hit the window at 

the same time, so both events cause the window to break. This is a case of causal 

overdetermination, but it is unproblematic for at least two reasons. 

The first is that its occurrence does not involve systematic coincidence. Even if it is a 

coincidence that the rocks were thrown at exactly the same time, or that the rocks hit the 

window at the same time, one-off coincidences of this kind shouldn’t concern us. The second 

is that, despite the overdetermination, the explanation of why the window breaks is ‘causally 

satisfying: there is a precise account of the causal powers of both rocks, and of the individual 

contribution of each rock to the shattering of the window. Removing one rock-throw has an 

easily definable result: the window shatters with less force’ (Bernstein 2016: 30).  

In contrast, on the present proposal, every case of abstract explanation will involve 

massive and systematic overdetermination. Further, the explanation is not satisfying in above 

sense. We have no sense of what each abstract ground is contributing, nor how the 

explanandum would change were any one of them to be removed.  

A further worry is that, if all it takes for something more abstract than the 

explanandum to be a complete abstract ground is that it satisfies one of a range of very 

general structural properties, then abstract grounds come too cheaply. This is at odds with the 

ontic aspirations of Pincock’s account. Objective dependence relations should demand a lot 

of their relata. Causation demands physical or modal connections between its relata, and 

grounding demands more intimate metaphysical connections. On the present proposal, 

abstract dependence merely requires certain kinds of similarity. It is hard to understand how 

this would amount to objective dependence in any particular direction. Moreover, if abstract 

dependence comes too easily, we would expect it to crop up everywhere. As Pincock says, 

‘[u]nless there is some principled way to constrain the proliferation of abstract dependence 



relations, there will be too many of them and so the value of abstract explanations will be 

diluted’ (2015b: 877). 

The final option is to argue that it is indeterminate which mathematical fact is 

selected. To say that Taylor’s proof explains why soap formations satisfy Plateau’s laws by 

identifying something on which the explanandum does not determinately depend on, but also 

does not determinately not depend on, does not help us understand how this mathematical 

explanation works. This is surely a caricature of a range of worked-out views that may 

provide some understanding; but the onus is on the proponent of Pincock’s account to 

provide such a worked-out view. Without one, tethering our understanding of mathematical 

explanation to our understanding of how ontic indeterminacy interacts with ontic dependence 

seems like a bad way to go. 

In light of the inadequacy of the above three options, we are forced to conclude that 

an instance of abstract dependence selects for a particular mathematical fact from among the 

eligible candidates. But this incurs an explanatory debt. If abstract dependence selects for one 

among a range of eligible mathematical candidates, it seems there should be a reason why.
8
 

We have seen that the conditions abstract dependence imposes on its relata do not account for 

this. I can think of two further ways of gaining understanding of a relation. First, we might 

identify symptoms of its obtaining. Pincock suggests that the novelty and informativeness of 

the characterization of soap formations as almost minimal sets may be symptomatic of 

abstract dependence (2015b: 877–878). However, explanations run in terms of any of the 

eligible candidates for the abstract grounds would be novel and informative in these ways, so 

these symptoms fail to address the present concern. Indeed, I can think of no symptoms that 

would. 

                                                             
8
 Compare Benacerraf: ‘[i]f the numbers constitute one particular set of sets, and not another, then there must be 

arguments to indicate which’ (1965: 58). 

 



Second, we might provide an analysis of the relation in more familiar terms. Abstract 

dependence is sui generis, which rules out a reductive definition; but we may be able to 

provide an illuminating non-reductive characterization. Pincock’s invoking of the 

instantiation relation, along with his description of abstract dependence as non-causal and 

objective is as close as he gets to such a characterization, and we have already seen that these 

descriptors are far from illuminating.  

At this point, it may be tempting to say that there is something which accounts for 

why abstract dependence selects for the mathematical relata it does, though we may never be 

in a position to know it. This last draw amounts to a desperate assurance that the explanatory 

debt is settled, in spite of the lack of any reason to think so. An account on which we may 

never properly understand the operative dependence relation is a poor foundation on which to 

build an understanding of mathematical explanation. It seems our only recourse is to stipulate 

that, as a matter of brute fact, abstract dependence selects for one among the many candidate 

abstract grounds. This brings abstract dependence within reach of our understanding, to the 

extent that it places no important features of it beyond our ken. Ultimately, however, our 

understanding is no better off.  

For a given instance of abstract dependence underlying a mathematical explanation, 

there will be a brute fact of the matter about which mathematical fact it selects for. 

Stipulating that there is nothing to explain here does not dispel the feeling that there is. It is a 

striking regularity that soap formations satisfy Plateau’s laws by virtue of one mathematical 

fact, rather than any of the other eligible candidates. But, in taking it as brute, we relinquish 

any means by which we might illuminate it. The same goes for each putative instance of 

abstract explanation. Thus, adopting Pincock’s position involves positing a range of striking 

yet inexplicable regularities. This is the brute regularities problem.  



Let us assume that Taylor’s proof succeeds in picking out the unique abstract ground 

of our explanandum. That is, it locates the right properties of the right mathematical objects. 

The proof is couched in terms of these properties of these objects in the first place because 

they provide good approximate models of soap formations, by bearing certain structural 

similarities to them. These structural similarities must therefore have been a reliable guide to 

which mathematical fact the explanandum abstractly depends on. But we have been forced to 

accept that abstract dependence selects for abstract grounds as a matter of brute fact. Ipso 

facto, it does not select for abstract grounds in virtue of any structural similarity they bear to 

the physical systems whose properties they determine. But then Taylor’s success in 

identifying the abstract ground of the fact that soap formations satisfy Plateau’s laws, guided 

as it was by structural similarities, is a fluke. More generally, assuming there are supposed to 

be many more cases of abstract explanation, Pincock’s account implies that the reliability 

with which practitioners identify abstract grounds is a massive cosmic coincidence. This is 

the empirical access problem.
9
 

Because it faces these problems, Pincock’s account fails to provide adequate 

understanding of mathematical explanation. The brute regularities problem shows that it 

offers no understanding of how abstract grounds are related to what they ground. The 

empirical access problem shows that it offers no understanding of how practitioners succeed 

in providing abstract explanations. There are mysteries precisely where an account of 

mathematical explanation should illuminate. Note that my arguments here are sensitive only 

to the fact that Pincock’s view implies that physical phenomena bear an objective, sui generis 

dependence relation to pure mathematical facts. The peculiarities of Pincock’s account are 

irrelevant. If other accounts of mathematical explanation imply the same, we should expect 

                                                             
9
 This objection is reminiscent of Field’s (1989: 25–30, 230–239) variation on the epistemological objection to 

mathematical platonism, which arguably improves on Benacerraf’s (1973). 



them to face the brute regularities and empirical access problems. Pincock’s account is a 

confirming instance of PREMISE 1 for entirely general reasons. 

 

III. COUNTERFACTUAL DEPENDENCE 

The notion that scientific explanation involves tracing relations of counterfactual dependence 

is growing in popularity, due in no small part to James Woodward and Christopher 

Hitchcock’s development of an influential counterfactual analysis of causal explanation in 

science.
10

 Many authors have since argued that we can generalize Woodward and 

Hitchcock’s account in pursuit of a monist counterfactual theory that covers causal and non-

causal explanations alike.
11

 In this spirit, Baron, Colyvan, Ripley, and Povich offer 

counterfactual accounts of mathematical explanation.
12

  

I am sympathetic to this movement. However, there is more than one way of 

extending the counterfactual theory to mathematical explanation. One might take the 

mathematics in mathematical explanations to identify mathematical facts on which their 

explananda counterfactually depend; or one might take it to help identify non-mathematical 

facts on which their explananda counterfactually depend. The aforementioned authors all 

develop the former option.
13

 This countermathematical account seems promising for 

bolstering EIA. However, I will argue that its proponents must posit and evidence the 

existence of a sui generis relation of physical-on-mathematical non-causal dependence. 

Because of this, for all the reasons detailed in §II, the countermathematical account faces the 

brute regularities and empirical access problems, and thus fails to provide an adequate 

understanding of mathematical explanation. In other words, it is a further confirming instance 

of PREMISE 1. 
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 Hitchcock & Woodward 2003; Woodward 2003; Woodward & Hitchcock 2003. 
11

 Strevens 2008; Saatsi & Pexton 2013; Rice 2015; Reutlinger 2016; Povich 2018. 
12

 Baron et al. 2017; Baron 2019; Povich 2019. 
13

 Knowles & Saatsi 2019 develop the latter. 



Baron et al. (2017) and Baron (2019) use the following case study.
14

 North American 

periodical cicadas lie dormant in larval form for either 13 or 17 years, then emerge to eat, 

mate, and die. Why 13 and 17, specifically? Background ecological constraints restrict 

cicadas’ life-cycles to between 12 and 18 years. Within that range, periods that maximize the 

time between co-emergence with nearby periodical predators will be advantageous. The 

number of years between the co-emergence of two periodical organisms is equal to the least 

common multiple of their life-cycles in years, and this is maximized when these numbers are 

coprime. There are good reasons for thinking that any nearby predators will have life-cycle 

periods of less than 12 years, and prime numbers are coprime with all numbers smaller than 

themselves. We therefore expect there to have been evolutionary pressure for cicadas to 

evolve prime-numbered life-cycle periods, and 13- and 17-year periods, specifically. 

On the countermathematical account, the above explanation works by identifying the 

mathematical facts on which the explanandum counterfactually depends. It does this by 

implicating specific countermathematical claims, such as the following: 

 

CM : If 13 and 17 were not prime, cicadas would not have 13- or 17-year life-cycles. 

 

To make sense of this, we at least need a procedure for evaluating countermathematicals like 

CM. Baron et al. (2017) provide a two-step procedure relied upon by each of the 

aforementioned proponents of the countermathematical account. We first imagine a scenario 

in which the antecedent obtains, keeping the rest of the scenario as similar to actuality as 

possible without giving rise to a contradiction in the neighbourhood. In other words, we 

change just enough to produce a fragment of mathematics in which the antecedent obtains 

consistently. This step is the twiddle. We then rely on relevant physical laws to ascertain how 

                                                             
14

 Introduced to the literature by Baker 2005. 



the mathematical changes ramify in the physical system. This step is the ramification. For 

example, for CM, we imagine a scenario in which the multiplication function is different, 

such that 2 and 6 are factors of 13, making any further changes required to produce a 

consistent fragment of arithmetic (twiddle). Finally, we appeal to the laws of evolutionary 

theory to see how this change ramifies (ramification). 

 On the countermathematical account, countermathematicals such as CM must come 

out as true via the above procedure. This requires the assumption that the twiddle not only 

changes the mathematical facts, but also changes certain physical facts along with it. Only 

then will the physical laws yield the truth of the consequent. This is a substantive assumption, 

and requires the positing of a relation between the mathematical and physical facts. 

Recognising this, Baron et al. (2017: 9) suggest that structure-preserving mappings 

(homomorphisms) may suffice. They won’t. There is a homomorphism between my fingers 

and my toes, but that doesn’t give us any reason to think that, if I had nine fingers, I would 

have nine toes! The point generalizes. Homomorphisms are relations of similarity, grounded 

in the properties of their relata. Changing the properties of one relatum only serves to break 

the similarity; it does not force the other relatum to change along with it.  

One might reply as follows. When we evaluate a counterfactual of any kind, we have 

to make decisions about what to hold fixed and what to vary. All the above objection shows 

is that we haven’t held enough fixed. If we hold the homomorphism between the physical and 

the mathematical fixed, then the twiddle will ramify in the desired way.
15

 This move is 

methodologically suspect. To see why, it will be helpful to consider the evaluation of more 

humdrum counterfactuals. Suppose I almost drop a very fragile cup on my tiled kitchen floor, 

but only just manage to catch it. The following counterfactual is plausible: If I had not caught 

the cup, it would have smashed. Following the standard procedure, we evaluate this 
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 This is exactly what Baron 2019: 6 and Baron et al. 2017: 9–10 suggest. 



counterfactual by imagining a situation as similar as possible to actuality, but where the 

antecedent is true. In this situation, it seems, I drop the cup, and the cup smashes.  

One might think that, in the course of my evaluation, I have decided to hold fixed a 

range of facts: the fact that the floor is tiled, the fact that the cup is fragile, the fact that a very 

soft rug didn’t suddenly appear on the floor, the fact that an angel wasn’t waiting to catch the 

cup in my place, and so on ad nauseam. But this is to misunderstand the procedure. It is not a 

case of deciding what to hold fixed to get the truth-value we want; it is a matter of trying to 

work out what would remain unchanged, if the antecedent were true. I left the 

abovementioned facts unaltered because, based on what we know about the world, there is 

good reason to believe that my failing to catch the cup would not change these things.  

In contrast, we have seen that, if the mathematical and physical domains are related 

by mere homomorphism, there is good reason to think that the homomorphism would not 

survive certain changes to the mathematical domain. To respond to this by suggesting we 

hold the homomorphism fixed seems completely ad hoc. Worse, it is hard to see how 

countermathematicals whose truth is guaranteed in this way could bear any explanatory 

weight. We might just as well explain the redness of my socks by claiming that it 

counterfactually depends on the redness of my shirt. After all (holding their sameness in 

colour fixed), if my shirt were not red, my socks would not be, either.  

The above shows that we need a stronger relation to underpin the truth of the relevant 

countermathematicals. In particular, we must posit a relation of physical-on-mathematical 

dependence, and evidence its existence. If we have reason to think such a relation obtains, we 

have reason to think that changes in the mathematical facts will ramify as desired. The 

dependence relation cannot be one that obtains too easily. For instance, if the primality of 13 

and 17 determines the properties of any homomorphic physical system, then changes in these 

properties will have widespread ramifications, and there will be no interesting counterfactual 



connection between the primality of 13 and 17 and the cicadas’ life-cycle periods. The 

dependence must be more demanding, such that changes in the relevant properties of 13 and 

17 only ramify in changes to the cicadas’ life-cycles.
16

 

There is no off-the-shelf dependence relation one can appeal to here: the remit is far 

too specific. So, the proponent of the countermathematical account must posit a sui generis, 

non-causal dependence relation, the existence of which is presumably evidenced by the 

success of the explanations amenable to analysis in terms of it. We saw in §II that this path 

leads to the brute regularities and empirical access problems. Just as in the soap formation 

case, there are many candidate mathematical facts eligible for the role of determining the 

cicadas’ life-cycle durations. Again, there appear to be at least three sources of 

underdetermination.  

 

Properties: The familiar definition of primality can be stated as follows. For a ∈ ℤ +
 where a 

> 1, a is prime iff, for any b,c ∈ ℤ +
, bc = a only if b = 1 or c = 1. However, there is an 

alternative definition that runs as follows, where x|y means x is a factor of y. For a ∈ ℤ +
 

where a > 1, a is prime iff, for any b,c ∈ ℤ +
, a|bc only if a|b or a|c. In fact, these definitions 

pick out distinct properties. The first defines a special case of irreducibility, while the second 

defines a special case of primality. For the positive integers, the properties coincide; but in 

more abstract algebraic structures they come apart. So, that 13 and 17 are irreducible and that 

13 and 17 are prime are distinct facts, both of which imply the relevant facts about LCM-

maximization. The explanation runs equally well by appeal to either.  

 

Bearers: For a chosen property, we face a further choice of bearers. For example, by 

measuring life-cycles in months, we uniformly multiply by 12. Such a uniform translation 
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will preserve the LCM-maximizing structure, so we can just as well take the explanation to 

work by implicating a countermathematical such as the following: If, in addition to 12(1) and 

12(13), 12(13) had factors 12(2) and 12(6), then cicadas would not have 12(13)-month life-

cycle periods. 

 

Interpretations: There are infinitely many set-theoretic models of the positive integers, and 

it makes no difference whatsoever to the explanation if we interpret the mathematics as about 

one or other of these models. 

 

For the same reasons outlined in §II, this radical underdetermination forces us to stipulate 

that, as a matter of brute fact, the dependence relation in question selects for a particular 

mathematical fact from among the many eligible candidates. This posits a striking yet 

inexplicable regularity, and there will be further striking yet inexplicable regularities 

associated with each mathematical explanation amenable to the countermathematical account. 

Thus, the countermathematical account posits a range of striking yet inexplicable regularities. 

On the countermathematical account, the cicadas explanation works by identifying the 

mathematical facts on which the explanandum counterfactually depends. The reason 13 and 

17 are appealed to in the first place is that they help to form an adequate model of the 

physical system. The considerations at play in the initial modelling must therefore be a 

reliable guide to what the explanandum counterfactually depends on. These considerations 

include our desire to capture the hypothesised structural relationship between the cicadas’ 

life-cycles and the life-cycles of nearby predators, namely the minimization of co-emergence. 

Perhaps we also consider the year to be a biologically significant unit of time, which may 

influence our choice in units (Baker & Colyvan 2011: 329). 



However, the counterfactual dependence in question is supported by a sui generis 

dependence relation that selects for its mathematical relata as a matter of brute fact, meaning 

the natural numbers 13 and 17 are not selected in virtue of their ability to capture structural 

features of the physical system, nor in virtue of the privileged status of the year. Biologists’ 

success in identifying the mathematical facts on which the cicadas’ life-cycle periods 

counterfactually depend is therefore a coincidence. The countermathematical account faces 

the brute regularities and empirical access problems, and so fails to provide an adequate 

understanding of mathematical explanation. It is a further confirming instance of PREMISE 1. 

 

IV. CAUSAL RELEVANCE 

Lyon (2012) analyses mathematical explanations in terms of Frank Jackson and Philip Pettit’s 

(1990) theory of program explanation, with the explicit intention of supporting EIA. To 

illustrate program explanation, imagine that water in a sealed glass container is heated to 

boiling point. Why does the glass shatter? There are two kinds of explanation. We can 

gesture towards the underlying causal process, culminating in particular water molecules 

striking the glass with momenta collectively sufficient to break it. This is the process 

explanation. Or we can point to the water’s being at 100°C. This is the program explanation. 

Jackson and Pettit’s theory aims to show how these two explanations are related. 

 The relation is a modal one. The temperature property had to be realized by some 

arrangement of molecules and some distribution of momenta among them, such that some 

molecules or other would have struck the glass with momenta collectively sufficient to break 

it. Because we know the temperature property was instantiated by the water, we can be sure 

that some causal process or other produced the explanandum. We say that the temperature 

property programs for the causes of the explanandum, and is thereby causally relevant to it. 



 Why do we need program explanations, if we are so sure there are process 

explanations in the offing? The reason is twofold. First, underlying causal processes are often 

recondite, so it is beneficial to have a means of exploiting their existence for explanatory ends 

without having to describe them explicitly. Second, program explanations yield explanatory 

information that process explanations do not. Even if we were able to trace the trajectory of 

the molecules that shattered the glass, doing so would miss the fact that, even if these 

particular molecules were not responsible, some other molecules would have been. The 

program explanation improves on the process explanation by implying that, whatever the 

underlying causal goings on, so long as the temperature property was instantiated, some 

causal process or other will have culminated in the glass shattering. In this way, program 

explanations reveal the modal robustness of their explananda. 

 Lyon claims mathematical explanations work by locating a causally relevant property 

of mathematical objects. For example, in the cicadas case, the instantiation of being prime by 

13 and 17 is supposed to program for the causes of the explanandum. Unfortunately, Lyon 

fails to explain how this might work. Nor does any promising account seem forthcoming 

(Saatsi 2012). Such an account requires appeal to a dependence relation to supply the 

requisite modal force. In the temperature example, we appeal to realization: we say that the 

temperature property had to be realized by something sufficient for the relevant causes to be 

instantiated. But the fact that 13 and 17 are prime does not obviously demand anything of 

cicadas, in the way that the temperature property demands something of the water. 

 The temperature case suggests that programming occurs internal to the physical 

system, from a higher-level property instantiated by it, to lower-level causes instantiated in it. 

If we are willing to give up on the contention that pure mathematical properties program for 

causes, there is a natural way of getting the primality of 13 and 17 involved with 

programming. There is a homomorphism between the physical system and the mathematical 



domain that preserves the minimization of the frequency of co-emergence as the LCM-

maximization of 13 and 17 with integers smaller than 12. This mapping is determined by our 

decision to measure lifecycle periods in years, along with the other background constraints 

imposed by the explanation. Call this mapping Φ. In virtue of it, the cicadas’ life-cycle 

periods instantiate the higher-level, multiply-realizable properties being mappedΦ to 13 and 

being mappedΦ to 17. 

 These properties tick all the boxes. Any period that instantiates one will be part of a 

system featuring a minimization of the frequency of overlap between it and shorter periods. 

Some causes or other will have led to this, so the instantiation of one of these properties 

programs for the causes of the explanandum. In particular, its stable instantiation within a 

biological system programs for evolutionary pressure towards that stability. Moreover, the 

existence of the positive integers is required to enter into the mapping on which the 

instantiation of these properties depends. So we have a metaphysic that explains how 

mathematical properties can be causally relevant to physical phenomena, and appears 

promising for supporting EIA. 

 This metaphysic does not entail that physical facts depend on mathematical facts. The 

instantiation of the impure mathematical programming properties depends on the overlap-

minimizing structure of the physical system and the LCM-maximizing structure of the 

mathematical domain, respectively. Because of this, it is not a problem that there are many 

distinct mathematical candidates for capturing the relevant properties of the physical system. 

We can happily say that the physical system instantiates a distinct programming property for 

each candidate, since this will not result in any troubling systematic overdetermination. 

(Compare: the fact that the water in the temperature example has a distinct programming 

property corresponding to each temperature measurement scale does not over-determine the 

explanandum.) We are not forced to posit any brute regularities, so our success in identifying 



the programming properties is not mysterious. The present proposal therefore appears to offer 

some understanding regarding how mathematical explanations work. 

 Unfortunately, despite initial appearances, this account is unfit to support EIA. In 

locating our causally relevant impure mathematical properties, we have inadvertently located 

a purely physical property that can do all of the desired explanatory work. We avoid the brute 

regularities and empirical access problems by accepting that the instantiation of the 

programming properties is partially grounded by the overlap-minimizing structure of the 

physical system. All the work done by the impure mathematical property can be done by this 

overlap-minimizing property. It is a multiply-realizable property of the physical system that 

programs for the causes of the explanandum, but its instantiation does not require the 

existence of any mathematical objects. Moreover, it is mutually-recognized among parties to 

the debate. Indeed, the proponent of Lyon’s account needs it to ground the relevant mapping. 

 The critic of EIA can achieve the same level of understanding of mathematical 

explanation by appeal to the same theory of explanation, while claiming that the mathematics 

in mathematical explanations merely serves to represent a physical higher-level structural 

property of the physical system. Importantly, the failure to support EIA is a consequence of 

relinquishing the claim that the physical explananda of mathematical explanations depend on 

pure mathematical facts. Lyon’s account confirms PREMISE 2. 

 

V. A DILEMMA 

Recall my master argument: 

PREMISE 1  

Any account on which mathematical explanations locate pure mathematical facts on 

which their physical explananda depend fails to provide an adequate understanding of 

mathematical explanation.  



PREMISE 2  

Any account of mathematical explanation apt to bolster EIA implies that 

mathematical explanations locate pure mathematical facts on which their physical 

explananda depend.  

CONCLUSION  

Any account of mathematical explanation apt to bolster EIA fails to provide an 

adequate understanding of mathematical explanation.  

In §§II–IV, I identified two sources of confirmation for PREMISE 1, and one for PREMISE 2. I 

showed that positing a sui generis relation of physical-on-mathematical dependence fails to 

provide an adequate understanding of mathematical explanation (§II). I showed that the 

increasingly popular countermathematical account must posit a sui generis relation of 

physical-on-mathematical dependence, and so fails to provide an adequate understanding of 

mathematical explanation (§III). And I showed that, while the causal relevance account 

seems able to provide some understanding, it fails to support EIA precisely because it does 

not posit physical-on-mathematical dependence (§IV). These findings are significant in their 

own right. But one might think they only provide piecemeal support for CONCLUSION. Not so. 

My arguments are responsive to entirely general reasons. Capitalising on this, we can give a 

general argument in favour of CONCLUSION in the form of a dilemma. 

 Any account of mathematical explanation apt for supporting EIA must be ontic. It 

must characterize mathematical explanations as limning the network of objective 

dependencies in which the explanandum is embedded, and locate explanatory mathematical 

facts within this network.
17

 Such an account must choose between two options. First, take the 

mathematical facts invoked by mathematical explanations to depend on their physical 
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explananda. Second, take their physical explananda to depend on the mathematical facts they 

invoke.
18

 

 Platonic mathematical facts do not depend on contingent physical facts, so mounting 

the first horn with respect to a given explanation involves locating an impure mathematical 

fact that depends on the physical explanandum via an independently-established relationship. 

If anything about a mathematical domain is explanatory with respect to a physical 

phenomenon, it is its structure, and only if the physical phenomenon is related to the 

mathematical domain via some kind of mapping. So, our independently-established 

relationship will be some kind of mapping between the physical and the mathematical 

domain. However, mappings obtains in virtue of the structures exhibited by their relata. As 

such, any explanatory relationship the mathematical structure bears to the physical 

explanandum (via the mapping) will be mediated by the structure of the physical system, and 

the latter will be just as eligible for bearing the proposed explanatory relationship to the 

explanandum. So, there will be a mutually-recognized physical property that does the 

required explanatory work. Mounting this horn results in an account of mathematical 

explanation that cannot support EIA, whatever its other virtues. 

 Mounting the second horn with respect to a given explanation involves locating some 

mathematical fact on which the physical explanandum depends. To provide an adequate 

understanding of this dependence, the account will have to say something about how it 

selects for its mathematical relatum. Since mathematical objects are abstract, this will be in 

terms of the mathematical objects’ fulfilment of a certain theoretical role, such as capturing 

structural features of the physical system. However, for any specified theoretical role, there 

will be many different collections of mathematical objects able to fill it. For the reasons given 

in §II, this forces us to stipulate that, as a matter of brute fact, the proposed dependence 
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selects for a particular mathematical relatum from among the eligible candidates. This 

generates the brute regularities and empirical access problems, and so mounting this horn 

destroys our understanding of mathematical explanation. 

 The first horn vindicates PREMISE 1, the second horn vindicates PREMISE 2, and our 

choice of horns seems to be a forced decision between exhaustive and mutually exclusive 

alternatives. Along with the three confirming instances identified in §§II–IV, this provides 

considerable (defeasible) support for CONCLUSION. 

 

VI. THE SIREN CALL OF STRUCTURALISM 

One might worry that my dilemma has limited scope. Perhaps the second horn only threatens 

a traditional form of platonism, on which the intrinsic natures of mathematical objects 

determine the mathematical relations they bear to one another. On another well-established 

form of platonism, the entities answering to our mathematical theories are abstract structures 

that are independent of, and explanatorily prior to, any possible instantiation of them by any 

particular system of objects. On this structuralism, a mathematical singular term refers to a 

position in a mathematical structure whose nature is exhausted by the relations it bears to 

other positions in the structure.19
 

 At a distance, it appears that adopting structuralism will blunt the second horn of my 

dilemma. For a given explanation, if the supposedly different candidates for mathematical 

grounds are merely different instantiations of a unique mathematical structure, then we can 

say that the posited dependence relation selects for the structure itself, blocking the 

underdetermination that leads to the brute regularities and empirical access problems. 

However, on closer inspection, things are not so simple. Even if we assume that there is a 
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unique mathematical structure picked out by each of our non-algebraic mathematical theories 

(the uniqueness assumption), we can only block two of the three sources of 

underdetermination I have identified. Worse still, there is reason to doubt the uniqueness 

assumption. If it is false, then we are no better off in adopting structuralism. 

 For concreteness, consider the cicada explanation outlined in §III, which appeals to 

properties of natural numbers. On the uniqueness assumption, there is a unique structure 

answering to our theory of natural numbers: being a sequence closed under a successor 

function with a unique first element. Natural numbers are positions in this structure. When a 

system of objects instantiates the natural-number structure, objects in that system ‘occupy’ 

the natural-number positions. Now, a collection of positions in a structure can be treated as a 

system of objects which can itself instantiate a distinct structure. So, we can consider various 

different sequences of positions in the structure described by set theory as instantiating the 

natural-number structure. On structuralism, this is precisely what we do when we provide set-

theoretic models of the natural numbers. On this view, the existence of many different set-

theoretic models of the natural numbers does not underdetermine the interpretation of the 

mathematics in the cicadas explanation. The one and only correct interpretation of this 

mathematics is in terms of the natural-number structure itself. 

 A similar move blocks underdetermination in our choice of objects within a given 

interpretation. I suggested that, by applying a uniform translation, we end up with a distinct 

collection of mathematical objects with which we can run the explanation equally well. 

However, we can only do this because the result of a uniform translation of the natural 

numbers is a sequence of natural numbers that instantiates the natural-number structure. In 

the example I gave, 12 occupies the 1-position, 24 occupies the 2-position, and so on, where 

the successor function s is defined as s(x) = x + 12. Measuring life-cycles in months does not 

yield a distinct candidate for the mathematical ground of the explanandum. The explanatory 



properties will be those had by the 13-position and 17-position in the natural-number 

structure, under any uniform translation. 

 Unfortunately, none of this helps with the third source of underdetermination. We 

have the choice of appealing to the fact that 13 and 17 are irreducible or the fact that 13 and 

17 are prime. Both can be used to run the explanation equally well, yet these are distinct 

properties. The uniqueness assumption doesn’t help. Nor should we think this is a special 

case. We saw in §II that there are different properties we might appeal to in running the 

explanation of why soap formations satisfy Plateau’s laws. More generally, for a given 

physical phenomenon, it seems naïve to assume there is a unique mathematical property in 

terms of which it is best modelled and explained. So, there remains a source of 

underdetermination on which to hang my arguments from §II, keeping the second horn of my 

dilemma sharp. One might nevertheless see this as progress. Structuralism has blocked two 

out of three sources of underdetermination. Perhaps with some further ingenuity, we can 

block the third. But such optimism is premature. 

 We have seen that two sources of underdetermination can be blocked on the 

uniqueness assumption. But the uniqueness assumption is controversial. In fact, the very 

ingredients of structuralism that allow us to block underdetermination, on the uniqueness 

assumption, provide compelling reasons to doubt it. The ingredients are the flexible nature of 

mathematical objects, as both positions in structures and objects able to occupy those 

positions. It is natural to individuate structures on the basis of isomorphism, so that 

isomorphic structures are identical, and non-isomorphic structures are distinct. However, if 

we can make sense of a position of one structure occupying a position of another structure, 

then we can make sense of a permutation of the positions of a given structure. For example, 

take the natural-number structure and permute the first and second position. We end up with a 

new structure that is isomorphic to the original. In this way, it seems, there are infinitely-



many distinct yet isomorphic structures equally eligible for being the natural-number 

structure. In light of arguments like this, Stewart Shapiro, a key defender of the present form 

of structuralism, concedes that ‘an ontological realist cannot simply stipulate that there is at 

most one structure for each isomorphism type’ (2006: 143).
20

 

 Structuralism, combined with an account of mathematical explanation that posits 

physical-on-mathematical dependence, faces underdetermination in which mathematical 

property the posited dependence selects for, and which of the infinitely many structures 

answering to the relevant mathematical theory is selected for. These sources of 

underdetermination are independent and cross-cutting. Following my arguments in §II, this 

combination of views faces the brute regularities and empirical access problems, so adopting 

structuralism fails to blunt the second horn of my dilemma. 

 

VII. CONCLUSIONS 

I do not want to overreach. I have not shown that EIA fails. Nor have I shown that it is 

impossible to account for mathematical explanation in a way that supports platonism. I have 

provided considerable (albeit defeasible) support for the following claim. 

CONCLUSION  

Any account of mathematical explanation apt to bolster EIA fails to provide an 

adequate understanding of mathematical explanation. 

In doing so, I have dispelled the appearance that the balance of evidence currently favours 

EIA. As things now stand, the balance of evidence counts against EIA. I mentioned in §I that 

there are accounts of mathematical explanation that are promising for undermining EIA. 

Robert Knowles and Juha Saatsi (2019) provide an account of mathematical explanation 

according to which they explain by locating physical facts on which their explananda 
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counterfactually depend. Mary Leng (2012) provides an account according to which 

mathematical explanations identify structural features of the physical system in virtue of 

which their explananda had to occur. And, in light of our discussion in §IV, we can add 

Lyon’s (2012) causal relevance account to this list. 

 Perhaps these are genuine rivals. Perhaps they offer different but compatible 

theoretical perspectives on the same phenomenon. Either way, they are compatible with the 

view that the mathematics in mathematical explanations merely serves to represent otherwise 

elusive explanatory physical facts. As yet, there is no reason to think they run into difficulties 

that undermine their capacity to provide genuine understanding of how mathematical 

explanations work. So, on balance, we have reason to side with the critics of EIA.
21
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