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Abstract.  

Hypothesis. Diblock copolymer nanoparticles have been shown to be Pickering emulsifiers for both 

oil-in-water and water-in-oil emulsions. Recently, we reported the preparation of sterically-stabilized 

diblock copolymer spheres in a low-viscosity silicone oil (Macromolecules 53 (2020) 1785-1794). We 

hypothesized that such spheres could be used as a Pickering emulsifier for a range of oil-in-oil 

emulsions comprising droplets of a bio-sourced oil dispersed in silicone oil. 

Experiments. Diblock copolymer spheres were prepared via reversible addition-fragmentation chain 

transfer (RAFT) dispersion polymerization of benzyl methacrylate in silicone oil and characterized by 

dynamic light scattering and transmission electron microscopy. These spheres were evaluated as 

Pickering emulsifiers for a series of oil-in-oil Pickering emulsions. The influence of both sphere size 

and core-forming block composition was investigated. 

Findings. Optimization of the nanoparticle size and core-forming block composition enabled stable 

bio-sourced oil-in-silicone emulsions to be obtained for nine out of the ten bio-sourced oils 

investigated. These emulsions were characterized in terms of their mean droplet size by optical 

microscopy. 
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Introduction. It is well known that generation of an interface between two immiscible fluids is 

energetically unfavorable.[1] Thus, the total surface free energy can be minimized by reducing the 

interfacial area for each fluid, which leads to the phenomenon of interfacial tension.[2] This means 

that emulsification, which produces droplets of one liquid dispersed in a second immiscible liquid, 

produces an inherently unstable system. Hence a suitable stabilizer, typically a surfactant, is required 

to produce emulsions that exhibit long-term stability.[2–8] Surfactants stabilize fluid interfaces via 

adsorption, which reduces the interfacial energy.[9,10] Such amphiphiles enable the formation of 

long-lived oil-in-water emulsions,[11] water-in-oil emulsions,[12] non-aqueous emulsions[13] and 

aqueous foams.[14,15]  

In the early 1900s Ramsden and Pickering independently reported that various types of colloidal 

particles can also stabilize fluid interfaces.[16,17] For particles, adsorption reduces the interfacial 

area and hence lowers the free energy of the system.[5] Furthermore, unlike surfactants, such 

particles need not be amphiphilic – the only requirement is that they should be partially wetted by 

both fluids.[5,18,19] This criterion is fulfilled by many types of inorganic and organic particles, such 

as silica,[20–22] titania,[23] calcium carbonate,[24] clays,[25,26] barium sulfate,[27] iron oxide,[28] 

graphene oxide,[29] carbon black,[30] cellulose nanocrystals,[31–33] latexes,[34,35] 

microgels,[36,37] etc. After many decades of relative inactivity, there has been a resurgence of 

interest in Pickering emulsions over the past twenty years or so.[19] Consequently, there are now 

many literature examples of oil-in-water Pickering emulsions.[38–41] These have been prepared 

using a wide range of particles[27,33,36,39,42–47] of varying size[34,46,48] and 

morphology.[31,33,49,50] Similarly, water-in-oil Pickering emulsions have also been explored by 

various research groups.[32,51–54] However, there are far fewer reports of oil-in-oil emulsions 

stabilized by nanoparticles.[55–59] In some of these examples, one of the ‘oils’ is relatively polar, 

e.g. DMF,[58] alcohol,[60,61] or glycerol, which no doubt promotes immiscibility.[62,63] However, 

various research groups have reported that both oils can be liquids with low relative permittivities 

(εr < 5.0).[55–57,64–67]  
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Oil-in-oil Pickering emulsions have been evaluated for lubricant and cosmetics applications.[55] 

Indeed, most reports of oil-in-oil Pickering emulsions appear in the patent literature, dating back as 

far as the 1960s.[55] Generally, such examples comprise a silicone oil and either a mineral oil or a 

bio-sourced oil. There are also a few reports of oil-in-oil Pickering emulsions in the academic 

literature. For example, Binks and co-workers demonstrated that emulsions comprising 

polydimethylsiloxane (PDMS, viscosity = 20-100 cSt) combined in turn with olive oil, sunflower oil or 

rapeseed oil can be prepared using surface-modified fumed silica particles.[55] Furthermore, such 

silica particles also enabled the production of oil-in-oil-in-oil double emulsions.[56] More recently, 

Rozynek and co-workers reported that silicone oil droplets can be stabilized within castor oil using 

various Pickering emulsifiers, including dyed polyethylene, polystyrene or silica particles.[57,64,65] 

Moreover, applying an electric field to such emulsions enabled their coalescence behavior to be 

controlled, thus producing a relatively narrow droplet size distribution compared to emulsions 

prepared using conventional techniques.[57,68]  

Recently, we reported the preparation of a range of poly(3-[tris(trimethylsiloxy)silyl]propyl 

methacrylate)-poly(benzyl methacrylate) (PSiMA-PBzMA) nanoparticles in a low-viscosity, cyclic 

silicone oil (decamethylcyclopentasiloxane or D5).[69] This was achieved by reversible addition-

fragmentation chain transfer (RAFT) dispersion polymerization, which is an example of 

polymerization-induced self-assembly (PISA). In the current study, we prepare similar PSiMA-PBzMA 

spheres directly in a low-viscosity linear silicone oil (dimethicone 5 or DM5, which has a solution 

viscosity of 5 cSt), see Scheme 1. Importantly, DM5 is immiscible with many common bio-sourced 

oils such as sunflower oil, whereas D5 is miscible with such oils. Thus we hypothesized that these 

sterically-stabilized nanoparticles might serve as putative Pickering emulsifiers for the stabilization of 

bio-sourced oil droplets within a continuous phase comprising DM5. This concept is explored herein 

for ten bio-sourced oils. Importantly, it is shown that statistical copolymerization of lauryl 

methacrylate (LMA) with benzyl methacrylate (BzMA) within the nanoparticle cores significantly 
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enhances Pickering emulsifier performance, enabling stabilization of a much wide range of bio-

sourced oil-in-DM5 emulsions. 

 

Scheme 1. Reaction scheme for the RAFT solution polymerization of SiMA in toluene at 80 °C using a 

CDCP RAFT agent followed by the RAFT dispersion polymerization of BzMA at 90 °C in silicone oil 

(DM5). 

 

Experimental section 

Materials. 4-Cyano-4-(((dodecylthio)carbonothioyl)thio)pentanoic acid (CDCP) was purchased from 

Boron Molecular (Australia). SiMA monomer was obtained from TER (Cambridge, UK). Lauryl 

methacrylate (LMA), benzyl methacrylate (BzMA), 1-pyrenemethanol, 4-dimethylaminopyridine 

(DMAP), N,N’-dicyclohexylcarbodiimide (DCC), dichloromethane, CDCl3, CD2Cl2, castor oil and linseed 
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oil were obtained from Sigma Aldrich (UK). Tall oil fatty acid (TOFA 2%), tall oil fatty acid (TOFA 26%), 

argan oil, pumpkin seed oil, jojoba oil, macadamia oil, 2,2’-azobisisobutyronitrile (AIBN) and Trigonox 

21s (T21s) initiator were provided by Scott Bader Ltd. (Wollaston, UK). Olive oil and sunflower oil 

were purchased from Co-Op Food Ltd. (UK). DM5 (5 cSt) was obtained from Bluestar Silicones (USA). 

Anhydrous dichloromethane was obtained from an in-house Grubbs dry solvent system. LMA was 

passed through basic alumina prior to use, while all other reagents were used as received. 

Methods 

Synthesis of the PSiMA hompolymer precursor. A typical synthesis was conducted as follows: SiMA 

monomer (20.95 g, 49.55 mmol) and toluene (32.70 g) were weighed into a round-bottomed flask. 

CDCP RAFT agent (0.80 g, 1.98 mmol) and AIBN initiator (0.10 g, 0.66 mmol) were added in order to 

target a PSiMA DP of 25 using a CDCP/AIBN molar ratio of 3.0. The flask was then sealed, cooled 

(using an ice bath) and the reaction solution was purged with nitrogen for 30 min. The flask was then 

placed in a pre-heated oil bath at 80 °C for 3 h, after which the polymerization was quenched by 

cooling the flask to 0 °C and exposing its contents to air. 1H NMR spectroscopy studies conducted in 

CDCl3 indicated a SiMA conversion of 80%. The resulting mixture was purified by precipitation into a 

ten-fold excess of methanol (three times) and then dried under high vacuum. End-group analysis via 

UV spectroscopy in chloroform indicated a mean PSiMA DP of 19. 

Synthesis of PSiMA19-PBzMAx nanoparticles via RAFT dispersion polymerization of BzMA in DM5 

A typical synthesis of PSiMA19-PBzMAx nanoparticles in DM5 was conducted as follows. The PSiMA19 

precursor (0.38 g, 45.3 µmol), BzMA (1.60 g, 9.0 mmol; target DP = 200) and DM5 (7.92 g) were 

added to a round-bottomed flask equipped with a magnetic flea. The reaction solution was stirred 

for 1 h at 20 °C, or until all of the PSiMA19 precursor had dissolved. T21s initiator was then added (9.0 

µmol, added as a 10% v/v solution in DM5) and the flask was sealed, before degassing the reaction 

solution with nitrogen for 30 min. The flask was then immersed in a pre-heated oil bath at 90 °C for 5 

h. The resulting dispersions were obtained as free-flowing fluids, which were either turbid or 
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transparent depending on the target DP for the PBzMA block. 1H NMR spectroscopy studies 

conducted in CDCl3 confirmed that more than 99% BzMA conversion was achieved in each case. 

Synthesis of PSiMA19-P(BzMAx-stat-LMAy) nanoparticles via RAFT dispersion copolymerization of 

BzMA and LMA in DM5 

A typical synthesis of PSiMA19-P(BzMA175-stat-LMA25) nanoparticles in DM5 was conducted as 

follows. BzMA (0.88 g, 4.98 mmol), LMA (0.18 g, 0.71 mmol) DM5 (5.19 g) and PSiMA precursor (0.24 

g, 28.45 µmol; target core-forming block DP = 200), were added to a round-bottomed flask equipped 

with a magnetic flea. This solution was stirred for 1 h, or until all of the PSiMA precursor had 

dissolved. T21s initiator was then added (5.6 µmol, added as a 10% v/v solution in DM5) to the 

reaction mixture and the flask was sealed, purged with nitrogen for 30 min, and finally immersed in 

a pre-heated oil bath at 90 °C for 5 h. The resulting dispersions were obtained as a turbid free-

flowing fluid. 1H NMR spectroscopy confirmed that more than 99% monomer conversion was 

achieved in each case. In order to vary the LMA content, the same overall target DP of 200 was 

targeted at a fixed copolymer concentration of 20% w/w solids and the relative proportions of the 

LMA and BzMA comonomers were varied with all other parameters being held constant.  

Synthesis of a pyrene-labeled PSiMA19 precursor 

PSiMA19 precursor (1.00 g, 118 µmol) was weighed into a flame-dried round-bottomed flask and 

placed under an inert nitrogen atmosphere. 1-Hydroxymethylpyrene (55.0 mg, 237 µmol) and DMAP 

(2.10 mg, 17.78 µmol) were then co-dissolved in anhydrous CH2Cl2 (10 ml) and this solution was 

added via syringe. The resulting reaction mixture was cooled to 0 °C for 30 min and a solution of DCC 

(73.25 mg, 355 µmol, dissolved in 5 ml CH2Cl2 prior to addition) was added dropwise over 30 min. 

The resulting mixture was allowed to warm up to ambient temperature, before being heated at 

30 °C. for 18 h. The reaction solution was then exposed to air and cooled in a freezer set at –17 °C 

overnight. A white precipitate gradually formed, which was removed via filtration. The product was 

then purified by precipitation into excess methanol (five times). 1H NMR spectroscopy studies 
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indicated a degree of esterification of approximately 30 % by comparing the integrated pyrene 

signals at around 8 ppm to that of the oxymethylene protons of the SiMA repeat units at 4.5 ppm. 

Synthesis of pyrene-labeled PSiMA19-PBzMA200 nanoparticles 

The preparation of pyrene-labeled PSiMA19-PBzMA200 nanoparticles in DM5 was conducted as 

follows. The pyrene-labeled PSiMA precursor (0.30 g, 34.6 µmol; mean degree of esterification = 

30%) was added to a round-bottomed flask equipped with a magnetic flea. DM5 (6.08 g) and BzMA 

(1.22 g, 6.92 mmol) were then added to target a PBzMA core-forming DP of 200. The reaction 

solution was stirred for 1 h, or until all of the precursor had dissolved. T21s initiator (1.5 mg, 7.0 

µmol) was then added as a 10% v/v solution in DM5 and the reaction mixture was sealed, purged 

with nitrogen for 30 min and immersed in a pre-heated oil bath at 90 °C for 5 h. The resulting 

copolymer dispersion was obtained as a free-flowing fluid. 1H NMR spectroscopy studies confirmed 

that more than 99% BzMA conversion was achieved and DLS studies (see below) indicated a z-

average diameter of 95 nm. 

Preparation of Pickering emulsions 

Pickering emulsions were prepared via high-shear homogenization using a Silverson L4RT high-shear 

mixer at 7 500 rpm for 2 min at 20 °C. Unless otherwise stated, the oil volume fraction was 0.50 in 

each case. 

Preparation of fluorescent Pickering emulsions 

A typical preparation of a fluorescent Pickering emulsion was conducted as follows. DM5 (4.0 ml) 

containing 0.75% w/w PSiMA19-PBzMA200 nanoparticles was added to castor oil (4.0 ml). The 

resulting mixture was then homogenized for 2 min at 7 500 rpm using a Silverson L4RT high-shear 

mixer. Over the course of 1 h, droplet sedimentation occurred owing to the density difference 

between the castor oil (droplet phase) and the DM5 (continuous phase). The DM5 layer containing 

excess non-adsorbed fluorescent nanoparticles was removed via pipet and replaced with fresh DM5. 
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The emulsion was then gently hand-shaken to redisperse the droplets and this protocol was 

repeated four more times to ensure complete removal of the non-adsorbed fluorescent 

nanoparticles from the continuous phase prior to fluorescence microscopy studies. 

Characterization 

1H NMR spectroscopy 

1H NMR spectra were recorded at 25 °C using a Magnitrek Spinsolve bench-top instrument operating 

at 60 MHz. For characterization of the pyrene-labeled PSiMA19 precursor, a Bruker AV1-400 MHz 

spectrometer was used. Typically, 64 scans were averaged per spectrum. 

Gel permeation chromatography 

Molecular weight distributions were determined at 30 °C using a GPC set-up comprising two Polymer 

Laboratories PL gel 5 μm Mixed C columns, a LC20AD ramped isocratic pump, THF eluent and a 

WellChrom K-2301 refractive index detector operating at 950 ± 30 nm. The mobile phase contained 

2.0% v/v triethylamine and 0.05% w/v 3,5-di-tert-4-butylhydroxytoluene (BHT); the flow rate was 1.0 

ml min−1 and toluene was used as a flow rate marker. A series of ten near-monodisperse poly(methyl 

methacrylate) standards (Mp = 1 280 to 330 000 g mol−1 ) were used for calibration. Chromatograms 

were analyzed using Varian Cirrus GPC software. 

Dynamic light scattering 

DLS studies of the diblock copolymer nanoparticles were performed using a Zetasizer Nano-ZS 

instrument (Malvern Instruments, UK) at 25 °C at a scattering angle of 173°and a copolymer 

concentration of ~ 0.2% w/w. The z-average diameter (which is an intensity-weighted mean 

diameter reported by DLS) and polydispersity (PDI) were calculated by cumulants analysis of the 

experimental correlation function using Dispersion Technology Software version 6.20. Data were 

averaged over ten runs each of thirty seconds duration. 

UV spectroscopy 
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UV spectra were recorded at 25 °C using a PC-controlled UV-1800 spectrophotometer equipped with 

a 1.0 cm quartz cell. A Beer−Lambert calibration curve was constructed using a series of twelve CDCP 

stock solutions of known concentration in chloroform. The absorption maximum at 312 nm assigned 

to the trithiocarbonate end-group was used for this calibration plot, with CDCP concentrations 

ranging from 10 µmol dm-3 to 80 µmol dm-3. The mean DP for each PSiMA19 macro-CTA was 

calculated using a molar extinction coefficient of 11 460 ± 229 mol−1 dm3 cm−1 determined for CDCP. 

Density measurements 

Oil densities were determined using an Anton Paar DMA 4100 M density meter operating at 25 °C. 

Transmission electron microscopy  

Transmission electron microscopy (TEM) studies were conducted using a FEI Tecnai G2 spirit 

instrument operating at 80 kV and equipped with a Gatan 1k CCD camera. Copper TEM grids were 

surface-coated in-house to yield a thin film of amorphous carbon. The grids were then loaded with 

one droplet of a 0.20% w/w copolymer dispersion using a micropipet. Prior to imaging, each grid was 

exposed to ruthenium(IV) vapor for 7 min at 20 °C in order to improve contrast. The ruthenium(IV) 

oxide stain was prepared by adding ruthenium(II) oxide (0.30 g) to water (50 g) in order to form a 

slurry. Then, sodium periodate (2.0 g) was added with vigorous stirring to form a yellow solution of 

ruthenium(IV) oxide within 1 min.[70] 

Optical microscopy 

Optical microscopy images were recorded using a Zeiss Axio Scope A1 microscope and analyzed 

using ArcSoft ShowBiz software - version 3.5.15.67. Mean droplet diameters were determined via 

image analysis using ImageJ software. At least 100 droplets were imaged in each case. 

Fluorescence microscopy 
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Fluorescence microscopy images were recorded using a Zeiss Axio Scope A1 microscope equipped 

with an AxioCam 1Cm1 monochrome camera fitted with Zeiss filter set 43 HE (excitation 550/25 nm 

and emission 605/70 nm). Images were captured and processed using ZEN lite 2012 software. 

Surface tensiometry. 

Interfacial tension was measured at 20 °C using a Kruss K10 instrument equipped with a Du Noϋy 

ring. 

Results and discussion 

A PSiMA precursor with a mean DP of 19 was prepared via RAFT solution polymerization of SiMA in 

toluene using a commercially available RAFT agent CDCP, according to Scheme 1. The polymerization 

was quenched at around 80% SiMA conversion (as indicated by 1H NMR studies) to preserve the 

RAFT chain-ends. The mean DP for the purified precursor was determined to be 19 by UV 

spectroscopy by constructing a linear Beer-Lambert calibration curve for the strong π – π* 

absorption band at λ = 312 nm (see Figure S1). Furthermore, THF GPC analysis (refractive index 

detector, poly(methyl methacrylate) calibration standards) indicated an Mn of 6 200 g mol-1 and an 

Mw/Mn of 1.16, indicating good RAFT control.  

In order to prepare well-defined diblock copolymer nanoparticles, the PSiMA precursor block was 

then chain-extended via RAFT dispersion polymerization of BzMA at 90 °C targeting 20% w/w solids 

in DM5 (see Scheme 1). In each case, the PBzMA target DP was either 50 or 200. Thus, two examples 

of PSiMA19-PBzMAx nanoparticles were prepared, as summarized in Table 1. 

Table 1. Summary of characterization data obtained for the two types of PSiMA19-PBzMAy diblock 

copolymer nanoparticles used in this study, including BzMA conversion, number-average molecular 

weight (Mn), dispersity (Mw/Mn), and the z-average diameter (dz) and corresponding polydispersity 

index (PDI) obtained from DLS studies.  

PSiMA 

DP 

Target 

PBzMA  

DP 

Conversiona 

/ % 

Diblock 

Copolymer 

Composition 

THF GPC DLS 

Mn 

/ g mol-1 
Mw/Mn dz / nm PDI 

19 50 > 99 PSiMA19-PBzMA50 11,200 1.29 30 0.04 

19 200 > 99 PSiMA19-PBzMA200 40,500 3.30 123 0.08 

a. Determined by 1H NMR spectroscopy studies.  
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1H NMR spectroscopy studies indicated that more than 99 % BzMA conversion was achieved within 2 

h for both PISA syntheses. TEM images confirmed that a spherical morphology was obtained in each 

case (see Figure 1), while DLS studies indicated relatively narrow size distributions (PDI < 0.10). It is 

perhaps noteworthy that the apparent nanoparticle aggregation indicated by TEM is most likely a 

drying artefact because DLS studies do not indicate any flocculation for the diluted dispersions.  

 

Figure 1. TEM images recorded for PSiMA19-PBzMAx spherical nanoparticles (where x = 50 or 200). In 

each case the scale bar corresponds to 200 nm. 

 

To produce oil-in-oil Pickering emulsions, a second oil that is immiscible with DM5 is required. To 

identify suitable oils, a range of bio-sourced oils were examined. In each case, 4.0 ml DM5 and 4.0 ml 

of the bio-sourced oil were homogenized under high shear at 7 500 rpm for 2 min at 20 °C. The 

resulting emulsions were then allowed to stand for 24 h prior to visual inspection. The digital 

photograph in Figure 2 indicates the ten oils that proved to be sufficiently immiscible with DM5.   

 

PSiMA19-PBzMA50

PSiMA19-PBzMA200

• • •• -( • • -- •• •• • • • • 
~ • ~ 

' • --



13 

 

 

Figure 2. Digital photograph recorded 24 h after high shear homogenization of equal volumes of 

DM5 with a range of bio-sourced oils (see labels; ‘TOFA’ denotes tall oil fatty acid and the % value 

indicates its rosin acid content). For the five vials shown on the left-hand side, DM5 is the denser 

phase and hence forms the lower layer. For the five vials shown on the right-hand side, DM5 is the 

less dense phase and hence forms the upper layer.  

 

For each oil/DM5 pair, the interfacial tension was then measured using the Du Noϋy ring method 

(see Table S1). In all cases, the measured interfacial tension was below 4.4 mN m-1. In preliminary 

experiments to determine which of the two types of PSiMA19-PBzMAx spherical nanoparticles was 

the most effective Pickering emulsifier, each copolymer dispersion was evaluated using only three of 

the ten oils shown in Figure 2, specifically argan, sunflower and castor oil. In these preliminary 

scoping experiments, 4.0 ml of the desired 2% w/w copolymer dispersion in DM5 was added to 4.0 

ml of each bio-sourced oil prior to high shear homogenization of this binary oil mixture at 7 500 rpm 

for 2 min. The initial emulsions were then allowed to stand for two weeks at 20 °C before visual 

inspection and optical microscopy analysis. The PSiMA19-PBzMA50 spheres formed stable emulsions 

with castor oil, whereas the initial emulsions prepared using sunflower or argan oil underwent 

complete phase separation over the course of two weeks, see Figure 3. However, the larger 

PSiMA19-PBzMA200 spheres produced Pickering emulsions that remained stable for at least two 

weeks when using either sunflower, argan or castor oil. Optical microscopy studies revealed the 

presence of well-defined spherical droplets in each case. Furthermore, each emulsion was readily 

dispersible in DM5, indicating that this oil formed the continuous phase. It is perhaps noteworthy 

TOFA2 % Olive Sunflower Linseed 

Jojoba Macadamia I Castor TOFA 26 % Pumpkin seed 

DMS forms the bottom layer DMS forms the top layer 
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that castor oil has a significantly greater density (ρ = 0.96 g cm-3) than DM5 (ρ = 0.92 g cm-3), see 

Table S2. Hence castor oil droplets in DM5 undergo sedimentation on standing. However, these 

droplets remain stable towards coalescence and can be readily redispersed by gentle hand-shaking. 

 

Figure 3.  Digital photographs recorded after storage for two weeks at 20 °C for a series of Pickering 

emulsions prepared using PSiMA19-PBzMAx nanoparticles (where x = 50 or 200), (a) sunflower oil-in-

DM5, (b) castor oil-in-DM5 and (c) argan oil-in-DM5. For each emulsion, a 2.0% w/w nanoparticle 

dispersion in DM5 was utilized, and the DM5 volume fraction was fixed at 0.50. Optical micrographs 

are also shown for the three PSiMA19-PBzMA200 stabilized emulsions. The scale bar corresponds to 

100 µm in each case. For brevity, S denotes PSiMA and B denotes PBzMA when referring to each 

diblock composition. 

 

Conversely, argan oil (ρ = 0.91 g cm-3) and sunflower oil (ρ = 0.92 g cm-3) have approximately the 

same density as DM5. Thus these droplets underwent minimal sedimentation or creaming on 

standing for two weeks at 20 °C Presumably, the superior Pickering emulsifier performance exhibited 

by the PSiMA19-PBzMA200 spheres is related to their size – such nanoparticles are significantly larger 

than the PSiMA19-PBzMA50 spheres (123 nm vs. 30 nm diameter, see Table 2). It is well-known that 

the energy of detachment of a spherical nanoparticle located at a fluid interface is proportional to 

the square of its radius, with larger nanoparticles being adsorbed much more strongly than smaller 

ones.[5] In view of these initial experiments, only PSiMA19-PBzMA200 nanoparticles were used for 

S19B200 S19B50

S19B200S19B50

S19B200S19B50

a) Sunflower

oil-in-DM5

b) Castor

oil-in-DM5

c) Argan

oil-in-DM5
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further studies. Next, a series of Pickering emulsions were prepared using each of the ten oils shown 

in Figure 2 in turn. PSiMA19-PBzMA200 spheres were used as a Pickering emulsifier at 2.0% w/w 

copolymer concentration. The DM5 volume fraction was fixed at 0.50 in each case and each 

emulsion was homogenized at 7 500 rpm for 2 min. After two months standing at 20 °C, sunflower 

oil-in-DM5, castor oil-in-DM5 and TOFA 26 % oil-in-DM5 Pickering emulsions remained stable 

towards coalescence, as indicated by optical microscopy (Figure 4). Sedimentation was observed for 

the latter two emulsions because each bio-sourced oil is denser than DM5, but in both cases 

redispersion was readily achieved by gentle hand-shaking. Conversely, no significant creaming or 

sedimentation was observed when using sunflower oil as the dispersed phase because it has 

approximately the same density as DM5. Emulsions prepared with TOFA 2%, argan, macadamia, 

olive and linseed oil exhibited initial stability, but phase separation occurred within 2-3 weeks of 

standing at 20 °C. On the other hand, emulsions prepared with jojoba or pumpkin seed oil proved to 

be unstable, with macroscopic phase separation occurring almost immediately. 

 

Figure 4. Digital photograph recorded after standing for two months at 20 °C showing various bio-

sourced oil-in-DM5 Pickering emulsions prepared using a 2.0% w/w dispersion of PSiMA19-PBzMA200 

spheres in DM5. Each specific oil is indicated above or below the relevant vial: emulsions that 

remained stable after two months are denoted in blue, whereas those that undergo (partial) phase 

separation are shown in red. Corresponding optical micrographs are also shown for (a) castor oil-in-

DM5, (b) sunflower oil-in-DM5 and (c) TOFA 26% oil-in-DM5 Pickering emulsions prepared using this 

protocol. In each case the scale bar corresponds to 100 μm 

 

TOFA 2 %

Jojoba

Argan

Macadamia

Olive

Castor

Sunflower

TOFA 26 %

Linseed

Pumpkin seed

(a) (b) (c)
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One concern when preparing such Pickering emulsions is that nanoparticle dissociation might occur 

under high shear, resulting in the adsorption of individual diblock copolymer chains at the oil-oil 

interface. For example, such in situ dissociation has been observed by Thompson and co-workers 

when attempting to prepare n-dodecane-in-water emulsions using linear PGMA-PHPMA 

spheres.[49] However, dissociation was not observed in this prior study if the weakly hydrophobic 

core-forming PHPMA block was replaced with a much more hydrophobic block such as PBzMA. 

Nevertheless, given the possibility of nanoparticle dissociation occurring under shear, the three 

stable oil-in-oil emulsions prepared using castor oil, sunflower oil or TOFA 26% were further 

evaluated to examine whether they were genuine Pickering emulsions or not. Thus the PSiMA19-

PBzMA200 concentration used to prepare these emulsions was systematically varied to investigate 

how this parameter affected the mean droplet diameter. The diameter of the freshly-prepared 

emulsions were then determined via optical microscopy (see Figure 5). 
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Figure 5. Variation in the mean droplet diameter with nanoparticle concentration for (a) sunflower 

oil-in-DM5, (b) castor oil-in-DM5 (red) and (c) TOFA 26% oil-in-DM5 Pickering emulsions prepared 

using 2.0% w/w PSiMA19-PBzMA200 spheres in DM5 using a DM5 volume fraction of 0.50.  

 

For Pickering emulsions, the total interfacial area that can be stabilized is directly proportional to the 

nanoparticle concentration.[5] Consequently, lowering the nanoparticle concentration at a fixed 

volume fraction of the droplet phase leads to the formation of fewer, larger droplets. This upturn in 

droplet diameter at lower nanoparticle concentrations is evident for the three oil-in-DM5 emulsions 

stabilised by PSiMA19-PBzMA200 shown in Figure 5. In contrast, if in situ nanoparticle dissociation had 

occurred, then a zero concentration dependence would be expected for the mean droplet diameter 

over this concentration range.[49] Thus, the data reported in Figure 5 confirm that the PSiMA19-

PBzMA200 nanoparticles do indeed survive high-shear homogenization and adsorb intact at the oil-oil 

interface. The corresponding optical micrographs obtained for these experiments are shown in 

Figure S2. 
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Pyrene-labeled nanoparticles were prepared to provide further evidence for their presence at the 

surface of the oil droplets. This was achieved by esterification of the carboxylic acid end-group on 

the PSiMA19 stabilizer chains using 1-hydroxymethylpyrene according to Scheme 2.  

 

 

Scheme 2. Reaction scheme for the esterification of the carboxylic acid end-group on the PSiMA19 

precursor with 1-hydroxymethylpyrene using carbodiimide coupling chemistry. 

 

After purification by precipitation into excess methanol, 1H NMR analysis indicated that 30 mol% of 

the carboxylic acid end-groups had been converted into the corresponding ester (see Figure S3). This 

pyrene-functionalized PSiMA19 precursor was then chain-extended via RAFT dispersion 

polymerization of BzMA in DM5 to produce fluorescent PSiMA19-PBzMA200 nanoparticles (see Figure 

6a). Figure 6b shows a fluorescence micrograph recorded for a castor oil-in-DM5 Pickering emulsion 

prepared with such pyrene-labeled nanoparticles. This image confirms that these nanoparticles are 

indeed adsorbed at the castor oil/DM5 interface, as expected for a Pickering emulsion. 
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Figure 6. (a) TEM image recorded for pyrene-functionalized PSiMA19-PBzMA200 spheres prepared in 

DM5. (b) Fluorescence micrograph recorded for a castor oil-in-DM5 Pickering emulsion prepared 

using the nanoparticles shown in (a). Conditions: 0.75% w/w dispersion of PSiMA19-PBzMA200 spheres 

in DM5 prior to emulsification; high-shear homogenization was conducted at 7 500 rpm for 2 min at 

20 °C; DM5 volume fraction = 0.50.  

 

One of the primary mechanisms of emulsion instability is Ostwald ripening.[71] This is a spontaneous 

process whereby larger droplets grow at the expense of smaller ones because the former droplets 

are more thermodynamically stable. In emulsions, this occurs by diffusion of molecules from smaller 

droplets through the continuous phase into larger droplets. To investigate whether the oil-in-oil 

Pickering emulsions described herein suffered from Ostwald ripening, the mean droplet diameter 

was monitored over time for the castor oil-in-DM5, TOFA (26%) oil-in-DM5 and sunflower oil-in-DM5 

emulsions, with each emulsion being prepared using 2.0% w/w PSiMA19-PBzMA200 spheres. 

According to Figure 7, both castor oil-in-DM5 and TOFA (26%) oil-in-DM5 emulsions remain stable 

for at least four weeks during storage at 20 °C, because there is no discernible increase in mean 

droplet diameter over this time period. On the other hand, the mean droplet diameter of the 

sunflower oil-in-DM5 emulsion increased from 32 ± 12 µm to 50 ± 13 µm over the same four-week 

time scale. Moreover, the cube of the droplet radius increased approximately linearly over time (see 

100 µm

200 nm

(a)

(b)
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Figure S4). This suggests that the background solubility of sunflower oil in DM5 is appreciably higher 

than that of either castor oil or TOFA 26% oil, which leads to Ostwald ripening.[25] Given that TOFA 

26% oil contains a significant proportion of rosin acid[72] and castor oil contains some hydroxyl 

functionality,[73] the observed differences in long-term emulsion stability seem to be physically 

reasonable. 

 

Figure 7. Number-average droplet diameter (as determined by digital image analysis of optical 

micrographs) observed over time for the sunflower oil-in-DM5 (black diamonds) castor oil-in-DM5 

(red squares) and TOFA 26% oil-in-DM5 (blue triangles) Pickering emulsions. Each emulsion was 

prepared using 2.0% w/w PSiMA19-PBzMA200 spheres at a fixed DM5 volume fraction of 0.50. [N.B. 

Error bars correspond to one standard deviation of the droplet diameter, rather than indicating the 

experimental error]. 

Thus far, the PSiMA19-PBzMA200 spheres have been shown to be effective Pickering emulsifiers for 

bio-sourced oil-in-DM5 emulsions prepared using either castor, sunflower or TOFA 26% oil. 

However, seven out of the ten oils did not produce stable emulsions. To improve the Pickering 

emulsifier performance of PSiMA-stabilized nanoparticles, LMA was statistically copolymerized with 

BzMA when preparing the core-forming block. Given that PLMA is soluble in most of these bio-

sourced oils, this structural modification was anticipated to increase the nanoparticle wettability 

with respect to the droplet phase. In principle, an alternative approach would be to statistically 

copolymerize LMA with SiMA to modify the steric stabilizer block. However, this would most likely 

have an adverse effect on the colloidal stability of the resulting nanoparticles because DM5 is only a 

marginal solvent for PLMA. Moreover, when attemping to prepare PLMA-PBzMA nanoparticles 
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directly in DM5, complete loss of colloidal stability was always observed (data not shown). Hence 

three new examples of PSiMA19-stabilized diblock copolymer nanoparticles were synthesized with 

P(BzMA-stat-LMA) core-forming blocks comprising 5.0, 12.5 or 18 mol% LMA, see Table 2. TEM 

analysis confirmed that well-defined spheres were obtained in each case (see Figure S5).  

Table 2. Summary of target diblock copolymer compositions, comonomer conversions, DLS and GPC 

data obtained for three examples of PSiMA-P(BzMA-stat-LMA) (denoted as S19-(Bx-stat-Ly) for 

brevity) diblock copolymer nanoparticles prepared with varying proportions of LMA within the core-

forming block. 

Target diblock 

copolymer 

composition 

Comonomer 

conversion  

/ %a 

LMA content 

within core-

forming block 

(mol %) 

 

DLS GPCb 

Z-average 

diameter 

/ nm 

PDI 
Mn  

/ g mol-1 
Mw/Mn 

S19-(B190-stat-L10) 99 5.0 130 0.07 44,600 2.06 

S19-(B175-stat-L25) 99 12.5 147 0.07 55,200 1.60 

S19-(B164-stat-L36) 99 18.0 210 0.10 76,100 2.10 

 

A series of oil-in-DM5 Pickering emulsions were prepared employing the ten oils shown in Figure 2 

using each of the three types of LMA-modified nanoparticles summarized in Table 2. For each 

emulsion, the nanoparticle concentration was 2.0% w/w and the DM5 volume fraction was 0.50. For 

the PSiMA19-P(BzMA190-stat-LMA10) nanoparticles, five of the ten oil-in-oil emulsions remained stable 

after standing for two months at 20 °C (Figure 8) compared with just three emulsions when using 

PSiMA19-PBzMA200 nanoparticles. In each case, optical microscopy studies confirmed the presence of 

well-defined spherical droplets, and each emulsion was readily dispersible in excess DM5, indicating 

that DM5 was the continuous phase. Close inspection of Figure 8c confirms that some of the 

sunflower oil-in-DM5 droplets appear to be wrinkled. This suggests emulsion instability owing to 

droplet shrinkage, as reported by Datta et al.[74] This is consistent with our observation that 

sunflower oil appears to have a higher background solubility in DM5. If partial dissolution of the 

sunflower oil in the DM5 continuous phase occurs, this would reduce the overall droplet volume and 

give rise to buckling of the particle-laden interface. Furthermore, inspecting Figure 8e, some of the 

linseed oil droplets appear to be elongated and non-spherical. Such behavior has been well-
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documented in the literature and suggests some degree of arrested droplet coalescence.[75] Finally, 

inspecting Figure 8f, there is evidence of the formation of multiple emulsions, or droplets within 

droplets. This observation seems reasonable given the relatively high nanoparticle concentration 

(2% w/w) and is consistent with previous reports.[76] Overall, this set of experiments suggests that 

incorporation of even relatively small amounts of LMA comonomer into the nanoparticle cores can 

significantly influence their Pickering emulsifier performance.  

 

Figure 8. (a) Digital photograph of various oil-in-DM5 Pickering emulsions prepared using a 2.0% 

w/w dispersion of PSiMA19-P(BzMA190-stat-LMA10) spheres in DM5 recorded after storage for two 

months at 20 °C. In each case, the DM5 volume fraction was 0.50 and the PSiMA19-P(BzMA190-stat-

LMA10) concentration was 2.0% w/w. The five emulsions that remained stable after two months are 

indicated in blue, whereas those that exhibited (partial) phase separation are shown in red. 

Representative optical micrographs for the five stable emulsions are also shown: (b) TOFA 26% oil-

in-DM5, (c) sunflower oil-in-DM5, (d) castor oil-in-DM5, (e) argan oil-in-DM5 and (f) TOFA 2% oil-in-

DM5 emulsions. 

 

Next, the PSiMA19-P(BzMA174-stat-LMA25) spheres were evaluated using the same conditions 

employed for Figure 8 (see Figure 9). Clearly, these LMA-modified nanoparticles can stabilize a much 

wider range of oil-in-oil emulsions than the PSiMA19-PBzMA200 spheres. More specifically, only the 

jojoba oil-in-DM5 emulsion was judged to be unstable after two months. It is not immediately 
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obvious why this particular emulsion is unstable, because each of the oils used in this study are 

composed of similar compounds, i.e. medium and long-chain triglycerides. 

 

 

Figure 9. Digital photograph of various oil-in-DM5 Pickering emulsions prepared using a 2.0% w/w 

dispersion of PSiMA19-P(BzMA174-stat-LMA25) spheres in DM5 recorded after storage for two months 

at 20 °C. In each case, the DM5 volume fraction was 0.50 and the PSiMA19-P(BzMA175-stat-LMA25) 

concentration was 2.0% w/w. Emulsions that remained stable after two months are indicated in 

blue, whereas the single jojoba oil-based emulsion that underwent phase separation over this time 

period is shown in red.  

 

One possible explanation for these observations is that Ostwald ripening is more significant for 

jojoba oil-in-DM5 emulsions than it is for the other nine oils. This is a plausible hypothesis because 

jojoba oil is primarily composed of triglycerides of 11-eicosenoic acid, which is an unsaturated C20 

chain. In contrast, the other bio-sourced oils are composed of triglycerides with unsaturated C16-18 

chains. Thus jojoba oil is somewhat less polar and therefore may have a higher background solubility 

in DM5. For the nine emulsions that remained stable after two months, optical microscopy studies 

confirmed the presence of well-defined droplets in each case (Figure 10). In addition, these 

emulsions proved to be readily dispersible in excess DM5, confirming that DM5 was the continuous 

phase in each case. Some of the linseed oil droplets shown in Figure 10 appear to be non-spherical 

and somewhat elongated, which suggests arrested droplet coalescence.[75] Moreover, multiple 

emulsions appear to be formed in the case of the TOFA 2% oil and TOFA 26% oil formulations.  
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Figure 10. Optical micrographs recorded for the nine stable Pickering emulsions shown in Figure 9. In 

each case the scale bar corresponds to 100 µm. 

 

Perhaps surprisingly, increasing the LMA content of the nanoparticle cores up to 18 mol% resulted in 

a significant reduction in emulsion stability (data not shown). Thus phase separation was observed 

for the TOFA 2%, TOFA 26% and jojoba oils, while using the remaining seven oils merely led to the 

formation of viscous pastes. These observations suggest that an optimum LMA content is required to 

achieve maximum Pickering emulsifier performance for such nanoparticles. 

 

Conclusions 

PSiMA19-PBzMA200 spherical nanoparticles can be prepared directly within a low-viscosity silicone oil 

(DM5). Such nanoparticles act as efficient Pickering stabilizers for oil-in-oil emulsions, where the 

droplet phase comprises either castor oil, sunflower oil, or TOFA 26% oil and the DM5 forms the 

continuous phase. When used at a copolymer concentration of 2.0% w/w, such nanoparticles can 

stabilize Pickering emulsions for at least two months, as confirmed by visual inspection and optical 

microscopy. Furthermore, the carboxylic acid end-groups located on the PSiMA stabilizer block 

enable convenient fluorescent labeling of the nanoparticles using pyrene, facilitating fluorescence 

microscopy studies of the resulting nanoparticle-stabilized castor oil-in-DM5 emulsions. Such 
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experiments confirm the presence of the PSiMA19-PBzMA200 nanoparticles adsorbed at the castor 

oil/DM5 interface. 

A series of TOFA 26% oil-in-DM5, castor oil-in-DM5 or sunflower oil-in-DM5 emulsions were 

prepared by systematically varying the PSiMA19-PBzMA200 concentration. These sterically-stabilized 

nanoparticles remain intact at the interface during homogenization, rather than undergoing 

dissociation to form individual diblock copolymer chains, which is consistent with similar block 

copolymer nanoparticles[77]. The mean droplet diameter was monitored over time for these three 

emulsions in order to investigate whether these emulsions suffered from Ostwald ripening on 

ageing[71,78]. Initially, Ostwald ripening was indeed observed for the sunflower-in-DM5 emulsions 

when aged at 20 °C, but no further increase in droplet diameter occurred after approximately three 

weeks. In contrast, the castor oil-in-DM5 and TOFA 26%-in-DM5 emulsions exhibited no detectable 

Ostwald ripening when aged for one month at 20 °C.  

Finally, PSiMA19-based nanoparticles comprising a P(BzMA-stat-LMA) copolymer core-forming block 

can also act as a Pickering emulsifier. For an LMA content of 12.5 mol %, such nanoparticles can 

stabilize a significantly broader range of bio-sourced oils as the internal (droplet) phase. However, 

when the core comprises 18 mol % LMA, the corresponding Pickering emulsions become highly 

aggregated and unstable. This suggests that an optimum LMA content is required to achieve optimal 

Pickering emulsifier performance. This finding is in good agreement with previous literature on 

copolymer surfactant-stabilized emulsions[79] whereby the copolymer architecture and composition 

were found to be critical parameters in determining emulsion stability. 
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Supporting Information  

UV spectra for the CDCP RAFT agent, density measurements for the various bio-sourced oils, 

1H NMR spectra for the pyrene-functionalized PSiMA19 precursor, additional optical 

micrographs and TEM images.  
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