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Abstract: Microbial natural products underpin the majority of antimicrobial compounds in clinical
use and the discovery of new effective antibacterial treatments is urgently required to combat growing
antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which
many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were
discovered—the desotamide family. The desotamide family consists of desotamide, wollamide,
surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size
between six and ten amino acids in length. Their biosynthesis has attracted significant attention
because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase.
Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on
their biosynthesis.
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1. Introduction

The majority of antibiotics in use are derived from, or inspired by, microbial natural products
and, in particular, secondary metabolites produced by Streptomyces species and other filamentous
actinobacteria [1]. Streptomyces species have complex lifecycles that begin with spore germination
followed by growth of vegetative hyphae and end with the production of reproductive unigenomic
spores [2]. The production of aerial hyphae and spores is triggered by stress and is frequently,
though not always, accompanied by the production of secondary metabolites [3]. These metabolites are
presumably used as chemical weapons against competing organisms and/or as signalling molecules to
neighbouring microbes [4].

Non-ribosomal peptides (NRPs) are a well-studied family of natural products. NRPs are structurally
complex and diverse compounds, often with biologically or therapeutically important activities.
Their biosynthesis, as their name indicates, is independent from the ribosome, and is typified by
the biosynthetic pathways for gramicidin and tyrocidine, which were amongst the earliest to be studied in
detail [5]. NRP biosynthetic systems are composed of large multifunctional enzymes called non-ribosomal
peptide synthetases (NRPSs), which are large assembly-line like machines organised into modules whose
biochemical function is to incorporate a single monomeric building block until the final polypeptide is
generated. Biosynthetic modules are grouped into three categories: Loading modules, elongation modules
and termination modules.

A loading module typically consists of two domains: An adenylation (A) domain, which activates an
amino acid substrate and loads it onto the second domain, and a peptidyl carrier protein (PCP), which is
catalytically inactive, but conformationally dynamic. Elongation modules are also comprised of an A and
PCP domain, but possess a condensation (C) domain as well. This precedes the A domain (C-A-PCP) and
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serves to form a peptide bond between two peptide monomers. Both loading and elongation modules
can harbour additional tailoring domains such as epimerase or methyltransferase domains that modify
peptide intermediates. During biosynthesis, the growing peptide chain remains covalently linked to the
4′-phosphopantetheinyl cofactor of the PCP domain, presumably to avoid dissolution of the growing
peptide chain and to ensure the correct peptide sequence is formed. The terminal biosynthetic module
usually possesses a C-terminal thioesterase (TE) domain, which offloads the polypeptide intermediate from
the PCP domain onto a conserved serine residue, after which either a hydrolytic or macrocylisation reaction
occurs to produce the mature peptide or depsipeptide. Thioesterase domains belong to the large and
relatively diverse group of α/β hydrolases and show varying levels of substrate selectivity; when present
within an NRPS system it is explicitly required for production of the NRP. Several alternative release
domains have also been discovered and characterised at the termini of NRP biosynthetic systems, such as
reductase (R) and specialised condensation domains [6,7], as well as rare occurrences of spontaneous
offloading or cyclisation [8–10]. These offloading domains are cis-encoded within the terminal biosynthetic
module; however, a novel standalone offloading/cyclase enzyme belonging to theβ-lactamase superfamily
was recently characterised for the desotamide family of antibiotics, whose biosynthesis are the focus of
this review [11–13].

2. Members of the Desotamide Family of Antibiotics and Their Bioactivities

Compounds within the desotamide family of cyclic peptide antibiotics (Figure 1) range in size
between six and ten amino acids in length and are cyclised by a standalone cyclase enzyme belonging
to the β-lactamase superfamily. They are typified by the presence of at least one tryptophan or
phenylalanine residue and a C-terminal glycine or d-amino acid (which is a prerequisite for cyclisation
of the peptide (elaborated upon in Section 5)); they also frequently contain modified or unusual
amino acids (elaborated upon in Section 4). The founding member of the desotamide family is
desotamide A, which was originally discovered in 1997 from the fermentation broth of Streptomyces
sp. NRRL 21611 [14]. Six years later, a suite of structurally similar cyclic octapeptides named
surugamides A-E were discovered from a marine microbe named Streptomyces sp. JAMM992 [15]
followed by four additional desotamide analogues (desotamides B-D) produced by S. scopuliridis
SCSIO ZJ46 [16]. In the same year, a further two desotamide analogues (E and F) were discovered
as well as C-terminal d-ornithine-containing wollamides A and B, produced by the same organism
Streptomyces nov. sp. MST-115088. Soon after, came the discovery of surugamide F, a linear decapeptide
previously unobserved during the initial discovery of surugamides A-E [17]. Additional chlorinated
hexapeptide members of the desotamide family were recently identified, including the ulleungmycins
produced by Streptomyces sp. KCB13F003, noursamycins produced by S. noursei ATCC 11455 [18,19],
and curacomycin and dechlorocuracomycin produced by S. curacoi NBRC 12761 [20].Antibiotics 2020, 9, 452 3 of 14 
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Figure 1. The desotamide family of antibiotics. Numbering indicates the amino acid position
within the macrocycle. Red coloured text indicates biosynthetic precursors discussed in Section 4.
NFK = N-formyl-kynurenine, Kyn = kynurenine, AMPA = 3-amino-2-methylpropionic acid.
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The antimicrobial target or targets for members of the desotamide family remain unknown,
but all compounds possess a minimum inhibitory concentration against Gram-positive indicator
organisms that is in the micromolar range and, excitingly, wollamides are active against Mycobacterium
tuberculosis [21]. A structure–activity relationship study was recently performed with synthetic
derivatives of wollamide B, which revealed that the Trp and Leu residues in the first and second
positions of the macrocycle, respectively, are essential for bioactivity and that it could be enhanced by
altering the C-terminal d-Orn residue to d-Arg or d-Lys, but not to their l-stereoisomers [22].

3. Biosynthetic Gene Clusters of the Desotamide Family

Increased access to relatively inexpensive genome sequencing technology has led to a predictable
increase in the number of biosynthetic gene clusters to which products have been assigned. BGCs for
desotamide, surugamide, ulleungmycin, noursamycin, or curacomycin have been identified [17–20,23].
The composition and architecture of the four BGCs is typical for NRPS systems in that they possess genes
encoding the large modular assembly line that specifies the core peptide scaffold using canonical NRPS
biosynthesis logic. For example, the co-linearity principle is obeyed and the number of biosynthetic
modules encoded is equal to the number of monomers comprising the mature compound, with the
exception of the sur BGC, which harbours a total of 18 modules and encodes the production of
compounds with two different ring sizes, surugamides A-E (octapeptides) and a linear decapeptide
named surugamide F (Figures 2 and 3). Additionally, the location of epimerase tailoring domains within
the assembly line is consistent with the final stereochemistry of the structurally characterised compound.
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Figure 2. Biosynthetic gene clusters (BGCs) of the desotamide family of antibiotics. BGCs are drawn
to relative scale. Colour-coding denotes deduced functionality of gene products. dsa = desotamide,
sur = surugamide, ulm = ulleungmycin, nsm = noursamycin, cur = curacomycin.

As is typical for other NRPS BGCs, members of the desotamide family also encode genes for
transcription factors, transport and production of BGC-encoded precursors (the latter is discussed
in Section 4). Although these BGCs are clearly expressed under the growth conditions used during
their initial characterisation, on the whole there is little insight into their regulation. The dsa BGC
harbours three transcription factor genes encoding a winged helix-turn-helix DNA binding protein
(DsaA) and a canonical two-component system (DsaMN). Deletion of either one of these regulatory
genes abolished the production of desotamide [24]. The DsaMN two-component system is also
encoded within the ulm and nsm/cur BGCs and, by extension, it is likely to be essential for production
of their respective compounds. Interestingly, this two-component system is not present within the
sur BGC, but a GntR-family regulator (encoded by surR) was recently identified as a repressor of
surugamide production and its own expression could be modulated by supplementing growth media
with ivermectin [25]. Although there is at least one transport system encoded within each BGC,
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compound export has only been examined for desotamide, where the genes dsaKL encode a classic
ABC transporter system that when deleted decreased the titre of desotamide [24].Antibiotics 2020, 9, 452 4 of 14 
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Figure 3. Biosynthetic pathways of the desotamide family of antibiotics. Red colouring denotes
biosynthetic precursors discussed in Section 4. A = adenylation domain, PCP = peptidyl carrier protein,
C = condensation, E = epimerase. The biosynthesis of desotamide A, ulleungmycin A, noursamycin B
or curacomycin, surugamide A and surugamide F is shown.
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4. BGC-Encoded Precursors and Modified Amino Acids

4.1. Ornithine

Whilst not uncommon within NRPS biosynthetic systems, Orn is a non-proteinogenic amino acid
with obvious structural similarities to Lys, lacking a single methylene unit in the amine-terminating
side chain. The α-amino acid is primarily observed as an intermediate in primary metabolic pathways,
such as the urea cycle or as a biosynthetic intermediate to the amino acid Arg, which is largely
thought to be the origin of Orn for most Orn-containing NRPs [26]. However, some BGCs encode an
amidinotransferase that converts Arg to Orn, for example in gobichelin biosynthesis or biosynthesis
of the cyanobacterial toxin, cylindrospermopsin, where the enzyme resembles commonly observed
arginine:glycine amidinotransferases [27–29]. The ulm and nsm/cur BGCs (where Orn is the fifth
amino acid in the hexapeptide, Figure 3) harbour an orthologue of such an amidinotransferase,
which presumably provides a supply of Orn that is spatiotemporally consistent with the needs of the
assembly line.

4.2. Kynurenine and N-Formyl-l-Kynurenine

N-formyl-l-kynurenine (NFK) and kynurenine (Kyn) are observed in desotamides C and D at the
first position of the hexacyclic ring, respectively (Figure 1). NFK and Kyn are α-amino acids formed
primarily through the decomposition and metabolism of the natural, aromatic amino acid Trp [30].
For instance, the enzyme tryptophan 2,3-dioxygenase oxygenates the indole ring of tryptophan to
produce N-formyl-l-kynurenine, which can be enzymatically transformed, or spontaneously hydrolysed,
to form Kyn. NFK or Kyn can either be directly incorporated into the final compound (e.g., daptomycin)
or be used as an intermediate towards a further derivatized precursor (e.g., 3-formamidosalicylate in
antimycin) [31,32]. In many if not most cases, genes encoding these processing steps reside within the
BGC, however inspection of the desotamide BGC did not identify gene candidates with the required
products, leading to the suggestion that NFK/Kyn in desotamide biosynthesis originates directly from the
primary metabolite pool [23].

4.3. Allo-Isoleucine and Homoleucine

The non-proteinogenic amino acid l-allo-Ile is observed in several of the desotamide family
antibiotics, including the desotamides, wollamides, ulleungmycins, noursamycins, and curacomycin.
Although generally rare among natural products, a handful of l- ord-allo-Ile containing compounds have
been identified. The biosynthetic pathway leading to the production of the phytotoxin coronatine in the
phytopathogenic bacteria Pseudomonas syringae, although not solely NRPS dependent, utilises NRPS
biosynthetic logic and l-allo-Ile as a precursor to synthesise coronamic acid, an integral component
of the phytotoxin [33]. Recently, cadasides A and B, calcium-dependent acidic lipopeptides whose
BGC was characterised in a functional metagenomics study, were discovered [34]. The BGC encodes
13 NRPS modules as well as six other operons specifying the regulation, biosynthesis and transport of
chemical precursors or the final compound. The sixth module in the system is described as adenylating
l-Ile before epimerisation to d-allo-Ile and incorporation into the growing polypeptide chain.

The biosynthetic origin of the non-proteinogenic l-allo-Ile precursor was originally identified from
the desotamide and marfomycin pathways [35]. The two-enzyme system consists of an aminotransferase
and an isomerase, whose collective action results in isomerisation at the β-carbon of Ile and occurs
initially through covalent linking of the α-amino group to pyridoxal phosphate (PLP), itself covalently
linked to a Lys within the active site of the aminotransferase. This is followed by two deprotonations at
the α- and β-carbons, catalysed by the aminotransferase and isomerase, respectively. Reprotonation of
the β-carbon from the opposite side to initial abstraction of the proton results in the formation of the
diastereoisomer, l-allo-Ile, upon release of the amino acid from the enzyme active site. This amino
acid can then be directly adenylated by A domains within NRPS modules and incorporated into
growing NRPs.
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Ulleungmycin A and noursamycin C containd-homoleucine at the third position of the hexapeptide
cycle, although the presence of this non-proteinogenic amino acid is not observed across all compounds
comprising the ulleungmycins and noursamycins. The homoleucine within these two compounds was
ascribed to originate from the lack of specificity of the enzymes constituting branched chain amino
acid biosynthesis [18]. However, this seems somewhat unlikely as the BGCs typically harbour their
own set of precursor biosynthetic genes for rare precursors (for example, allo-isoleucine synthesis,
described above) and there are putative leucine metabolic genes within the ulm and nsm/cur BGCs.
The presence of homologated amino acids has also been observed in the NRPS-derived metabolites;
echinocandins, pneumocandins, and pahayokolides, with dihydroxylated homotyrosine in the two
former compounds and homophenylalanine in the latter, respectively, although little is known about
the origins of the homologated amino acids themselves [36–38].

4.4. 3-amino-2-methylpropionic Acid (AMPA)

The linear decapeptide surugamide F is composed of nine amino acids (five with l-configuration
and four with d-configuration) and an unusual β-amino acid named 3-amino-2-methylpropionic
acid (AMPA) that is installed by the fifth biosynthetic module (Figure 3). AMPA, also known as
β-aminoisobutyric acid, is rare in natural products. Surugamide F was identified to possess an
AMPA moiety, which was followed by the discovery of the biosynthetic gene cluster for leualacin
B, a derivative of leualacins A and C-G, which are synthesised with the demethylated β-Ala at the
corresponding position [39]. Prior to the discovery of these NRPs, AMPA was identified in hybrid
NRPS/PKS compounds cryptophycins, fusaristatins and aspergillipeptides [40–43]. The lipid moiety
present in the lipopeptides cadaside A and B (described in the preceding subsection) is attached to the
β-amino group of AMPA.

AMPA has been shown to be derived from two different sources: pyrimidine degradation and
decarboxylation of 3-methyl aspartate. Catabolism of the pyrimidine base thymine begins with
NAD(P)H-dependent reduction of the alkene within the heterocyclic six-membered ring, catalysed by
dihydropyrimidine dehydrogenase. This is followed by amide bond hydrolysis and ring opening by a
dihydropyrimidinase and the formation of AMPA is achieved through release of ammonia and carbon
dioxide by β-ureidopropionase [44]. Genes encoding enzymes with similar putative catalytic activities
were observed within the cadaside BGC and were putatively assigned as AMPA biosynthetic genes,
namely an aldehyde dehydrogenase, α/β hydrolase, and P450 monooxygenase. AMPA biosynthetic
genes can be putatively identified within the sur BGC: Aldehyde dehydrogenase and α/β hydrolase
genes form part of an operon downstream of the NRPS genes.

The biosynthesis of AMPA within the cryptophycin pathway, however, has been shown to occur
through a divergent mechanistic route [45]. The enzyme CrpG was shown to have shared amino
acid identity with pyruvoyl-dependent aspartate decarboxylases, such as the characterised E. coli
enzyme PanD, whose active, catalytic form is generated through internal proteolytic cleavage of the
initially expressed proenzyme [46]. CrpG was observed to effectively catalyse decarboxylation at the
α-carboxylic acid of 3-methylaspartate, leading to the formation of AMPA. The enzyme activity was
diastereoselective regarding the substrate as (2S,3R)-3-methylaspartate was preferred by 3-4 orders of
magnitude over other diastereoisomers, as well as l- and d-Asp.

4.5. Chlorotryptophan

The presence of a halogen, specifically chlorine, within antibiotics and other natural products is
often important for its biological activity. For example, the chlorine atoms present in many glycopeptide
antibiotics (GPAs), such as vancomycin and teicoplanin, are known to be important for binding its lipid
II target, which is anchored within bacterial cell membranes and required for cell wall biosynthesis [47].
The 5-chloro-tryptophan moiety in noursamycins and curacomycin has been shown to be critical for
antimicrobial activity [20] and this is presumably also true for ulleungmycins.
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The incorporation of Cl in a natural product typically occurs via chlorination of Tyr or Trp.
Initial efforts to dissect the mechanism by which tryptophan was chlorinated centred on the
non-NRPS biosynthetic pathways for the antibiotic pyrroindomycin, the antifungal pyrrolnitrin, and the
antitumour agent, rebeccamycin [48–50]. Pyrroindomycin contains a 5-chloroindole moiety derived
from tryptophan, whilst the antifungal and antitumour agents are synthesised from 7-chlorinated
indoles. The Trp halogenases from these systems utilise a reduced flavin cofactor, produced by a
flavin reductase as part of the two-component halogenase, molecular oxygen and a halide ion (Cl-) to
generate hypochlorous acid (HOCl). The active site HOCl is captured by a neighbouring Lys residue
to generate a stable, covalent N-Cl bond on the ε-NH2, which then acts as the chlorinating agent upon
entry of Trp into the active site. Structural analysis of the PrnA (pyrrolnitrin) and RebH (rebeccamycin)
enzymes highlighted the presence of two distinct binding modules specialised for binding the flavin
cofactor and the Trp substrate, respectively [51–53]. The binding modules were separated by a 10 Å
tunnel through which the generated HOCl travels before capture by the active site Lys and delivery to
the bound Trp. This represented a novel chlorination mechanism and the expansion of mechanistic
repertoire employed by natural product biosynthetic systems.

Many NRPS BGCs harbour a halogenase, but only a handful have been characterised in any detail.
Recently, the Tyr halogenases involved in the biosynthesis of the GPAs balhimycins and teicoplanins
were recently shown to only chlorinate PCP-bound Tyr and not free Tyr or other peptide intermediates
in vitro; this observation was subsequently verified in vivo using an engineered dipeptide-producing
NRPS system [54]. Preferential utilization of PCP-bound substrates over free amino acids was also
recently shown for the Pro and Tyr halogenase enzymes from the pyoluteorin and C-1027 biosynthetic
systems, respectively [55,56]. Taken together, these studies have collectively demonstrated that NRP
halogenases appear to preferentially utilize PCP-bound monomers as substrates over free amino
acids, which is likely also to be true for the Trp halogenases present within the desotamide family
of antibiotics.

4.6. β-Hydroxyasparagine

A hallmark of many NRPS biosynthetic systems is the presence of specific enzymes catalysing
varied chemical modifications at the β-carbon of amino acid substrates. These modifications can
result in methyl or amino substitutions, or commonly the β-hydroxylation of amino acids, as seen
in the ulleungmycins, noursamycins and curacomycin with the presence of β-hydroxyasparagine in
the mature compounds. A wide variety of amino acids have been shown to be hydroxylated within
natural products, including, but likely not limited to; Arg, Asn and Glu, as well as the unnatural amino
acid enduracididine [57]. The hydroxylation of Leu and Ile side chains, as well as Asp, has also been
observed in the antibiotics bicyclomycin (a cyclodipeptide) and cinnamycin (a ribosomally-encoded
and posttranslationally modified peptide), respectively [58–60], showing the widespread involvement
of hydroxylases across many diverse natural product synthetic pathways.

Siderophores produced by NRPS biosynthetic pathways very often contain β-hydroxylated Asp
and His residues, which function as bidentate chelating groups for coordination of metal ions [61,62].
These hydroxyl groups are primarily added by the activity of standalone factors, a catalytic methodology
also employed by numerous other NRPS systems. The phytotoxin syringomycin, produced by Pseudomonas
syringae, contains an l-threo-β-hydroxyaspartyl residue, whilst both isomers of d-β-hydroxyglutamate are
observed in the antimicrobial kutznerides [63,64]. These chemical modifications predominantly occur
on PCP-appended amino acid substrates and are catalysed by standalone non-haem iron oxygenases.
Exceptions to this are usually observed in the synthesis or hydroxylation of non-proteinogenic amino
acids, such as the biosynthesis of unnatural capreomycidine by the hydroxylation of free Arg and
hydroxylation of the non-natural amino acid l-enduracididine, as discovered in the biosynthetic pathways
for the viomycins and mannopeptimycins, respectively [57,65]. These chemical modifications, however,
are similarly catalysed by the family of non-haem iron, α-ketoglutarate-dependent oxygenases.
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Generally, it seems that non-haem iron, α-ketoglutarate-dependent oxygenases act upon
PCP-bound intermediates. The target amino acid is held within the active site alongside the
co-substrates and an Fe(II) ion. A series of recombination and decomposition reactions lead to
the activation of the β-methylene group, allowing subsequent stereospecific transfer of a generated
hydroxyl group. Studies are ongoing to describe the nature and timing of hydroxylation events within
the biosynthetic pathways for the desotamide family antibiotics, however bioinformatic analysis and
similarity to known enzymes suggests a mechanism of hydroxylation commensurate to that described
above. The importance and effect of the hydroxyl group on the bioactivity profile of the compounds is
unknown, as is much of the detail regarding overall bioactivity, and future studies should focus on
elucidating these mechanisms and the potential for targeted advances in bioactive range and potency.

5. Peptide Offloading within the Desotamide Family by a Novel Class of Standalone Cyclases

5.1. Discovery and Characterisation of a Standalone Peptide Cyclase from the Sur BGC

As noted above, the octapeptides surugamide A-E and decapeptide surugamide F were originally
isolated from Streptomyces sp. JAMM992 and later from S. albidoflavus strains J1074 and S4. [13,15,66].
A key peculiarity of this biosynthetic system was noted early on—the terminal biosynthetic modules
lack a TE domain. Inspection of the surugamide BGC initially revealed two candidates named surE
and surF, which encode a β-lactamase and α/β-hydrolase, respectively. Analysis of ∆surE and ∆surF
knockout strains quickly indicated SurE was the cyclase rather than SurF, which may function as a
type II thioesterase or proofreading thioesterase [13]. Figure 4 summarises the functionality of SurE.
The SurE cyclase contains a Ser-Lys-Tyr-His active site tetrad characteristic of β-lactamases and can
cyclise SNAC-thioester mimics of surugamides A and B [11–13]. In vitro cyclisation assays utilising
a SNAC-thioester mimic of surugamide F revealed that SurE transformed the linear decapeptide
intermediate into a new compound named cyclosurugamide F, which was retrospectively observed in
trace amounts in crude chemical extracts from the producing organism [67]. However, in a subsequent
study by another group who used the same SNAC-surugamide F substrate only a trace amount of
cyclosurugamide F was detected and instead accumulation of surugamide F was observed [11].

The substrate specificity of SurE has been partially characterised in vitro, where it has been shown
that conservative changes to amino acid composition and stereochemistry at internal positions within
octapeptide SNAC substrates are tolerated. Interestingly, SurE obligately requires a d-amino acid at the
C-terminus of the peptide chain for cyclisation, which is corroborated by the presence of a C-terminal
epimerase domain within the terminal biosynthetic modules for surugamide A and surugamide F.
The similarity of the cyclase with penicillin binding proteins (PBPs), which, amongst other catalytic
activities, can recognise and remove d-alanine from peptidoglycan precursors, could be a potential
rationale for the C-terminal d-amino acid requirement of SurE. A recent study also demonstrated that
SurE requires heterochirality at the termini of its octa- or decapeptide substrates [68]. The heterochirality
requirement explains the observation that the assembly line for all desotatmide family antibiotics
starts with incorporation of an amino acid in the l-configuration and ends with an amino acid in
the d-configuration conferred by a conserved C-terminal E-domain within the terminal biosynthetic
module. A structural rationale for this requirement was also proposed; the C-terminal amino acid
residue of the substrate is accommodated within a hydrophobic pocket with an Arg residue hydrogen
bonding to the substrate carbonyl, which was also suggested to be important in excluding the side
chains of those terminating in l-amino acids. In vivo studies also showed that SurE was capable
of cyclising and offloading a truncated form of surugamide F, formed by exclusion of the final two
modules of SurC. The promiscuity in substrate utilization of SurE makes it an attractive biocatalyst for
production of cyclic peptides, ranging from eight to ten amino acids in length.
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5.2. SurE Cyclases are Widespread

One of the fundamental uniting aspects of the desotamide family antibiotics is the presence of a
SurE cyclase and the corresponding lack of other cis-acting termination strategies. The identification
of SurE as the offloading domain for the surugamides laid the foundation for the retrospective
identification of the cyclases within the dsa, ulm, and nsm/cur BGCs [18–20,23] where DsaJ remains
the only other SurE family cyclase to be experimentally verified [24]. The identification of these SurE
orthologues was the impetus for a more detailed bioinformatic analysis addressing the question of
how widespread this cyclisation strategy could be. From a curated database of 1421 actinobacterial
genomes, organisms harbouring orthologues of the SurABCD NRPSs and SurE were identified.
Candidate genomes were then analysed with antiSMASH [13] to identify NRPS biosynthetic systems
without a cis-encoded TE domain, but that possessed an adjacent SurE homologue. A total of
166 organisms contained at least one NRPS system employing a standalone cyclase offloading strategy.
These BGCs were subsequently anlaysed with BiG-SCAPE [69] to generate a BGC similarity network
comprising 15 related subnetworks and 12 singletons. The network contained all members of the
desotamide family except for the dsa BGC itself suggesting a distant relatedness between this BGC and
other members of the family. Upon inspection of the network it became apparent that the number of
biosynthetic modules in an NRPS system (4–10 modules) was a major factor influencing formation
of subnetworks [13], which is intriguing as it suggests SurE and its orthologues may be able to
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cyclise peptides ranging in length and composition. Excitingly, the mannopeptimycin BGC harbours a
SurE cyclase (MppK), suggesting that this method of release/cyclisation may not be restricted to the
desotamide family [40].

6. Conclusions and Further Perspectives

The desotamide family of antibiotics are relatively newly discovered antibacterial compounds
that appear to be widely produced by Streptomyces species. Traditional MIC-based assessment of
bioactivities indicates the family generally has micromolar potency against Gram-positive organisms
and excitingly this includes Mycobacterium species for the wollamides. Nothing is known about
their mechanism(s) of action and interrogating this question should be a key goal for future work
as should ascertaining essential chemical moieties for bioactivity, building off the existing SAR
analysis of wollamides. At first glance, the desotamide family look like quintessential NRPs; however,
the presence of unusual chemical moieties within the family motivated researchers to look deeper into
their biosynthesis. These studies revealed the presence of a surprisingly large number of genes for
the production or modification of precursor amino acids, many of which are involved in controlling
stereochemistry while others append additional functional moieties. While most questions in this area
have been addressed, there are still gaps in knowledge concerning when exactly some events occur,
for example chlorination of Trp and hydroxylation of d-Asp. Arguably, the most surprising biosynthetic
feature of the desotamide family is the use of a β-lactamase standalone cyclase for chain release and
cyclisation. The standalone nature of this cyclase suggests it will be more easily repurposed than
cis-encoded TE domains for enhancing chemical synthesis of cyclic peptide antibiotics and therapeutics.
However, more detailed analysis of substrate utilisation is required and ideally accompanied by
structural data to provide a roadmap for re-engineering studies to exploit the cyclase.
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