
This is a repository copy of Ten basic questions about structural equations modeling you 
should know the answers to – But perhaps you don't.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163820/

Version: Accepted Version

Article:

Davvetas, V orcid.org/0000-0002-8905-7390, Diamantopoulos, A, Zaefarian, G 
orcid.org/0000-0001-5824-8445 et al. (1 more author) (2020) Ten basic questions about 
structural equations modeling you should know the answers to – But perhaps you don't. 
Industrial Marketing Management, 90. pp. 252-263. ISSN 0019-8501 

https://doi.org/10.1016/j.indmarman.2020.07.016

© 2020 Elsevier Inc. All rights reserved. This manuscript version is made available under 
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Ten basic questions about Structural Equations Modeling you should know the answers 

to – but perhaps you don’t. 

 

 

Vasileios Davvetas 

Lecturer (Assistant Professor) of Marketing 

Marketing Division, Leeds University Business School, UK 

v.davvetas@leeds.ac.uk 

 

 

Adamantios Diamantopoulos 

Chaired Professor of Marketing 

Department of International Marketing, University of Vienna, Austria 

adamantios.diamantopoulos@univie.ac.at 

 

 

Ghasem Zaefarian 

Associate Professor of Marketing 

Marketing Division, Leeds University Business School, UK 

g.zaefarian@leeds.ac.uk 

 

 

Christina Sichtmann 

Associate Professor of Marketing 

Department of International Marketing, University of Vienna, Austria 

christina.sichtmann@univie.ac.at 

 

 

 

 

 

 

July 2020 

 



2 

 

Abstract 

 

Structural Equations Modeling (SEM) has enjoyed increased popularity as an analytical 

method among Industrial Marketing Management (IMM) authors over the last years. Despite 

such popularity, many authors fail to understand the basic principles of the method and 

reviewers are frequently confronted with manuscripts suffering from erroneous applications, 

insufficient reporting and questionable interpretation of SEM-based findings. Addressing this 

issue, the present article presents – in non-technical language – the most basic concepts 

related to SEM, resolves common misconceptions about the method’s application and 

provides hands-on advice to IMM authors and reviewers dealing with SEM-based 

manuscripts. Structured along ten fundamental questions, the article covers issues related to 

(1) latent variables and their scaling, (2) types of parameters in SEM, (3) unstandardized and 

standardized estimates, (4) model identification, (5) model constraints, (6) model fit, (7) 

independence and saturated models, (8) modification indices, (9) nested models, and (10) 

equivalent models. After illustrating these concepts with the use of examples, the article 

concludes with a list of guidelines addressed both to IMM authors crafting manuscripts using 

SEM and the peers reviewing them. 

 

Keywords: structural equations modeling, confirmatory factor analysis, survey 

research 
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1. Introduction 

Structural Equations Modeling (henceforth SEM) is one of the most commonly used 

analytical methods in social sciences ranging from psychology and communication studies to 

international business and marketing (Holbert & Stephenson, 2002; Hult et al., 2006; Kumar, 

Sharma, & Gupta, 2017; MacCallum & Austin, 2000). Due to the extensive use of data 

collected through surveys in the industrial marketing field, SEM has been increasingly 

popular among Industrial Marketing Management (IMM) authors, too. Over the last 10 years, 

hundreds of publications in the journal have employed some analytical process related to 

SEM such as confirmatory factor analysis, path analysis, or scale development (Figure 1). 

 

Insert Figure 1 about here 

 

Despite such popularity, though, it is rather common to observe mistakes in the 

application of the method that range from minor issues such as incomplete or “selective” 

reporting of needed SEM statistics, to more severe errors such as flawed interpretations of 

SEM-obtained results in manuscripts submitted to IMM. These shortcomings result in the 

rejection of many submissions as they threaten key cornerstones of the scientific process such 

as the use of appropriate measurement instruments and the statistically sound testing of 

theoretical hypotheses. The underlying reasons for such shortcomings lie – more often than 

not – in researchers not having a clear understanding of some (very) basic principles of SEM 

but still applying the method due to the availability of user-friendly SEM software.1 Indeed, 

there seems to be a strong need for the IMM community of authors and reviewers to 

 
1 Particularly the availability of software with graphical interfaces (e.g., AMOS) has been both a blessing 

and a curse for SEM. A blessing because it alleviates the need for complex programming and a curse because 

modeling is often reduced to “drawing” without fully understanding what is drawn and how to (correctly) 

interpret it. 
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familiarize themselves with key principles of SEM when developing and reviewing research 

manuscripts that use the method.  

Against this background, the objective of the present paper is to provide correct 

answers to a list of the most fundamental questions relating to SEM, answers that all 

members of the IMM community should be aware of.2 Our intention is not to provide an 

advanced technical discussion of SEM statistical metrics (e.g., alternative fit indices), 

estimation methods (e.g., maximum likelihood), or cases of special applications (e.g., 

estimation of latent means). Neither do we focus on data-related issues such sample size 

determination, distributional assumptions violations, or treatment of missing data. There is an 

extensive list of textbooks (e.g., see Bollen, 1989; Kline, 2015; Schumacker & Lomax, 2016) 

and specialized method journals (e.g., Structural Equation Modeling; Multivariate 

Behavioral Research; Organizational Research Methods) covering these topics in an 

excellent manner. Instead, we follow a “stick to the basics” approach, focusing on 

communicating – to a not necessarily expert audience – some fundamental concepts on which 

the healthy application of SEM relies.  

We organize these concepts in the form of ten specific questions based on our personal 

experiences in applying SEM in our own research, reviewing SEM-based articles in a variety 

of marketing and management journals, and teaching SEM courses to research students and 

junior faculty. The answer to each question addresses a core concept in SEM that is relevant 

and applicable irrespective of the specific model or data involved. These core concepts are 

thus of the “must know” variety just as the location (and function!) of the accelerator and 

brake pedals are “must know” elements for safely driving a car, any car. Understanding these 

 
2 In this article, we focus exclusively on covariance-based SEM as implemented in software packages 

such as LISREL, EQS, AMOS or Mplus. Readers interested in partial least squares (PLS) modeling are referred 

to Hair, Hult, Ringle, & Sarstedt (2016), Sarstedt, Ringle, & Hair (2017) and references given therein. 
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concepts should help researchers make the most out of SEM in their empirical applications 

and remove any uncertainty, guesswork, or confusion associated with the procedure.  

The rest of the paper is organized as follows: We present each of the ten questions in a 

standalone section where we discuss key issues that help answer the specific question. 

Subsequently, we provide an illustration of these issues using a simple model to showcase the 

application of the method and offer a good example of the method’s use and reporting. 

Finally, we develop a table offering guidance to authors by summarising the most important 

“do’s and dont’s” they need to bear in mind when drafting SEM-based manuscripts. We also 

provide appropriate guidelines to reviewers by directing their attention to important questions 

they should pose to authors during the review process to assess the appropriate use of SEM 

and the validity of the resulting findings.  

 

2. Ten Basic Questions (and Answers!) about SEM 

 

SEM, as an analytical method, can be simply understood as a combination of factor analysis 

and multiple regression modeling. The factor analysis element of a SEM model is focused on 

assessing the appropriateness of the variables used in the model, while the multiple regression 

element is focused on estimating the hypothesized effects of some variables on others. SEM 

is particularly useful when researchers deal with data obtained through questioning 

respondents via primary data collection methods such as surveys and experiments. Because 

such data cannot be readily obtained through secondary sources and often constitute the only 

way to test theoretical hypotheses of interest, SEM has emerged as a valuable analytical tool 

in management and related domains where the effects of certain 

psychological/organizational/strategic concepts are paramount to theory building. Self-report 

data do not represent “perfectly measured information” lacking measurement errors and are 
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easily affected by issues that potentially hurt the validity and reliability (e.g. respondent 

fatigue, social desirability biases, common method variance, etc.) of corresponding findings 

if modeled through other analytical tools. SEM is particularly effective with dealing with this 

kind of issues, thus helping reach theoretically and empirically sound conclusions. 

In light of the above, SEM emerges as a necessary modeling tool in the following 

research contexts, among others. First, being able to assess the covariance structure of 

variables through confirmatory factor analysis in a more stringent manner than exploratory 

factor analysis approaches. SEM is particularly helpful for testing the measurement 

instruments’ psychometric properties and isolating measurement errors that would hurt the 

tests of theoretical propositions. Second, SEM is particularly useful when researchers are 

interested in developing novel measurement scales for constructs and thus in need to assess 

the validity, reliability and predictability of such scales for future applications. Finally, unlike 

typical regression models trying to estimate effects of a set of independent variables on a 

single criterion variable, SEM offers the ability to simultaneously estimate substantially more 

complex model structures that involve variables operating simultaneously as both causes and 

outcomes of other variables in the model. This enables the estimation of both direct and 

indirect effects among a set of variables of interest. 

 

2.1.  Question 1: What are latent variables and how should they be scaled? 

Unlike variables that can be directly measured using objective data such as revenues, profits, 

costs or number of customers, researchers are often interested in measuring theoretical 

constructs that cannot be effectively quantified using secondary, observable information –  

such as a retailer’s satisfaction with a supplier or the level of trust between two business 

partners. These unobservable variables are called latent variables and represent constructs 

which are typically measured through survey instruments administered to managers, 
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employees or other key organizational informants.3 To quantify a latent variable, researchers 

typically rely on those informants’ scores on several items (indicators) intended to capture the 

construct of interest. Such items are commonly called manifest (or observed) variables 

because, unlike latent variables, they can be directly observed (usually using reported scores 

on Likert-type or other rating scale formats). Although manifest variables are necessary for 

measuring the latent variables of interest, their psychometric nature makes them prone to 

issues of validity and reliability such as measurement errors resulting from respondents’ 

response biases or measurement instrument characteristics. One of the key benefits of SEM is 

the fact that relationships between latent and manifest variables can be formally specified 

(typically in a linear form) and measurement error explicitly accounted for. Generally, 

constructs can be measured either in a reflective manner (i.e., through specifying the manifest 

variables as causal manifestations of the latent variable and whose variability is 

predominantly explained by the latent variable) or in a formative manner (i.e., through 

specifying the manifest variables as elements that causally form the latent variable and 

contribute to its variance).  

Going from respondents’ scores on a set of observed (manifest) variables to the 

quantification of an unobserved (latent) variable, though, requires the specification of a scale 

format for the latent variable. This is necessary because, being unobserved, latent variables 

do not have a “natural” unit of measurement (e.g., what are the units of measurement of 

“trust” or “relationship quality”?). The process of assigning a unit of measurement to a latent 

variable is called latent variable scaling. This is typically achieved in one of two ways. First, 

one can simply standardize the latent variable by setting its variance to 1 (some SEM 

software, such as LISREL do this by default). Second, one can select one of the manifest 

 
3 The terms “constructs” and “latent variables” are often used interchangeably in literature. Strictly 

speaking, however, latent variables are representations of constructs in SEM. Thus, in the case of 

multidimensional constructs, several latent variables may be needed to formally represent them in a model.  



8 

 

variables as the reference or scaling indicator and set the value of its loading (i.e., the 

coefficient capturing the association between the latent variable and the indicator) equal to 1. 

Importantly, using a reference indicator and fixing its loading to 1 does not set the latent 

variable equal to the observed indicator. What it does, is assign the units of measurement of 

the reference indicator to the latent variable; this means that the variance of the latent variable 

will be estimated in the units of measurement of the reference indicator.  Any one manifest 

variable could be used as a scaling indicator – without affecting the conceptual meaning of 

the construct, the estimation of its effects, or the fit of the model.4 

Quite often authors fail to mention in their manuscripts what their scaling indicators 

are; sometimes, authors do not even report any of the indicators used to measure their 

constructs (referring instead to past papers that used the same operationalization); and 

sometimes, the indicators themselves are reported without, however, any relevant 

psychometric information (e.g., the loadings and error variances of the manifest variables – 

see Question 2 below). Such poor reporting practices prevent readers from properly judging 

the operationalization of the latent variables used to represent the constructs of interest in the 

model. Thus, authors are strongly advised to provide a complete list of the items used to 

measure every latent variable in their models and highlight which of these items serve as 

scaling indicators.  

To illustrate the above points, imagine that a researcher wants to test a model depicting 

how the stereotype a client has about the supplier’s staff impacts the client’s satisfaction with 

the supplier and the willingness to repurchase from this supplier. Let us assume that, after 

reviewing related literature, the researcher proposed a model where two fundamental 

 
4 Note that this holds for reflectively-measured constructs only. For formatively-measured constructs, 

researchers should consider alternative options for scaling the latent variable (for details, see Diamantopoulos, 

2011; Diamantopoulos & Riefler, 2011). 



9 

 

dimensions of the supplier staff stereotype (competence and warmth) affect satisfaction with 

the supplier and, through it, repurchase intent (Figure 2).  

 

Insert Figure 2 about here 

 

The model includes two exogenous latent variables5, namely supplier staff competence 

(ξ1, capturing supplier staff ability to competently satisfy the client’s business needs – 

measured with five items, x1-x5) and supplier staff warmth (ξ2, capturing the supplier staff’s 

positive intent toward the client – also measured with five items, x6-x10). The model also 

includes two endogenous latent variables6: satisfaction with the supplier (η1, measured 

through three items y1-y3, completed by the manager handling the supplier, the team working 

with the supplier, and the CEO of the client) and repurchase intent (η2, also measured by 

three items y4-y6 from the aforementioned informants). In short, the model in Figure 2 

contains four latent variables and a total of 16 manifest variables (indicators).7 In this 

example, if item x1 = “the supplier’s staff is competent” is chosen as the scaling indicator for 

the supplier staff competence construct, the researcher would set λ11 = 1; if item x6 = “ the 

supplier’s staff is warm” is selected as the scaling indicator for the supplier staff warmth 

construct, the researcher would set λ62 = 1, and so on.  

Note that the number of manifest variables in a model determines the measurement 

model relations, that is, the equations linking the latent variables to their measures; in Figure 

2 there are a total of 16 such equations, of which ten relate to the measures of the exogenous 

latent variables (i.e., x1= λ11ξ1 + δ1 through to x10 = λ1,10ξ2 + δ10) and six to the measures of the 

 
5 Exogenous variables act always as independent (predictor) variables and never have error terms. 
6
 Endogenous latent variables act always as dependent (criterion) variables and always have error terms; 

however, they can also act as independent variables impacting other endogenous variables (e.g., see η1 in Figure 

2). 
7 As an aside, note that η1 is modeled as a mediator of the relationship between ξ1 and η2 as well as of the 

relationship between ξ2 and η2. 
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endogenous latent variables (i.e., y1 = λ11η1 + ε1 through to y6 = λ62η2 + ε6). The number of 

endogenous latent variables determines the structural model relations, that is, the equations 

linking the latent variables to one another. In Figure 2, there are two such equations one 

relating to the satisfaction with the supplier (η1 = γ11ξ1 + γ12ξ2 + ζ1) and one to repurchase 

intent (η2 = β21η1 + ζ2). Finally, the number of exogenous latent variables determines the 

number of non-directional relationships (covariances) in the model. In Figure 2, there is only 

one such covariance (i.e., φ12 = COV (ξ1ξ2)). For an overview of key SEM terms, their 

definitions and the corresponding notation, see Table 1. 

 

Insert Table 1 about here 

 

2.2. Question 2: What kind of parameters are we interested in when estimating in SEM 

models? 

In SEM models, researchers are interested in the estimation of several types of parameters. 

First, researchers are interested in the loadings (λ’s) and error variances (VAR(δ)’s and 

VAR(ε)’s) of the manifest variables; the loadings capture the association between the 

manifest variables and the latent variable, while the error variances capture the remaining 

(residual) variation of the manifest variables after the influence of the latent variable has been 

accounted for. These parameters are referred to as measurement model parameters and offer 

a test of whether the chosen manifest variables are valid and reliable measures of the latent 

variable (and thus whether using them can be safe when testing for hypothesized 

relationships among latent variables). From the loading and associated error variance, one 

also obtains the squared multiple correlation (SMC) for each manifest variable. This is 

essentially an R2 value that shows the proportion of variance in the manifest variable 

attributable to the underlying latent variable (e.g., a SMC value of .80 indicates that 80% of 
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the variance in the manifest variable is due to the latent variable to which it is assigned, while 

the remainder 20% is due to measurement error). Researchers are also often interested in the 

covariances/correlations between latent variables which are important for validity tests (e.g. 

discriminant validity assessment).  

Second, researchers are interested in structural model parameters, that is, the path 

coefficients (γ’s and β’s) capturing the hypothesized non-zero directional effects between two 

latent variables in the model as well as the structural error variances (VAR(ζ’s)), from which 

squared multiple correlations can be calculated. The latter capture the proportion of variance 

in an endogenous latent variable that is explained by the independent latent variables that 

influence it (i.e., similar again to the R2 statistic obtained in conventional linear regression).  

Irrespective of the software package used, SEM estimation generates three values: (a) 

the parameter estimate (e.g., loading or path coefficient), (b) its corresponding standard error 

(i.e., the standard deviation of the sampling distribution of the parameter), and (c) its t- or z-

statistic which determines the significance level of the parameter (and is nothing more than 

the simple fraction of the (unstandardized) parameter estimate over its corresponding 

standard error).  

Measurement and structural model parameters are of equal importance when testing 

theoretical relationships and both should have acceptable values for any findings to carry 

meaning. On the one hand, poor measurement model parameters (e.g., low SMCs) imply 

weak measurement of the latent variables, rendering even significant structural parameters 

questionable or even misleading. On the other hand, although structural model parameters are 

tests of hypothesized theoretical relationships and researchers want them to have statistically 

significant values, they can still be informative by being non-significant (e.g., by suggesting 

that a hypothesized relationship does not receive empirical support by the data). 
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Quite often, authors pay less attention to measurement model parameters in their 

manuscripts because they rely on scales that have been used in prior literature and/or because 

they perceive measurement parameters to be irrelevant for hypothesis testing. However, 

merely assuming that a measurement instrument successfully used in the past is necessarily 

psychometrically sound when applied to one’s own data may prove questionable. Appropriate 

estimation and discussion of measurement model parameters is a prerequisite for meaningful 

statistical inferences about structural model parameters. Similar to how any body temperature 

figure is uninformative (if not dangerous) when it is recorded with a broken thermometer, any 

structural parameter estimate is useless unless it is obtained using psychometrically-sound 

measurement instruments. Thus, researchers should always include a detailed list of the 

measurement instruments they use accompanied with the corresponding psychometric 

properties and present the results of their measurement model before proceeding with the 

results of hypothesis testing. 

An example of a measurement model using the same latent variables as in Figure 2 is 

shown in Figure 3. It is worth noting that although both structural and measurement models 

include the same latent and manifest variable, in the measurement model, every latent 

construct is allowed to correlate freely with all other latent variables in the model; these 

covariances (or correlations if we assume standardization – see Question 3) are denoted by 

the φ’s and are captured by the two-headed arrows in Figure 3.  In contrast, in the structural 

model of Figure 2, only the directional paths (i.e., γ’s and β’s linking different latent variables 

that are theoretically expected to be related are included; the only covariances/correlations 

specified are those between the exogenous variables (i.e., φ12)). 

 

Insert Figure 3 about here 
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2.3. Question 3: What are unstandardized and standardized estimates? 

SEM software usually reports estimated parameters in both unstandardized (raw) and 

standardized form. Researchers are often unclear regarding the difference between the two 

and which they should report in their manuscripts. To illustrate, take the example of a path 

coefficient between an independent latent variable (satisfaction with supplier X) and a 

dependent latent variable (repurchase intent from supplier X) and imagine that its estimated 

unstandardized value is β21 = 0.5 (also assume that it is statistically significant). This estimate 

can be interpreted as: an increase of one unit in the scale measuring supplier satisfaction is 

associated with a 0.5 unit increase in the scale measuring repurchase intent, all other variables 

held constant. The word of interest here is unit of measurement, as different units of 

measurement lead to different implications for the practical significance and interpretability 

of the observed effect.  

Consider three scenarios where the 0.5 path estimate is obtained. Scenario 1: if 

satisfaction and repurchase intent are both measured on a 0-100 scale, then the effect is rather 

weak bearing in mind the scale range. Scenario 2: if satisfaction and repurchase intent are 

both measured on a 1-5 Likert scale, the effect is rather strong. Scenario 3: if satisfaction is 

measured on a 0-100 scale and repurchase intent is measured as the “logged difference of the 

revenues from this customer over the last two years”, interpreting the effect and its size could 

be rather troublesome for most. 

To circumvent these problems, researchers often turn to standardized path coefficients 

which show the change in the dependent variable associated with an increase/decrease of one 

standard deviation in an independent variable, all other variables held constant.8 Apart from 

their easier interpretability when different scale formats for dependent and independent 

 
8 A standardized path coefficient equals the value of the unstandardized parameter times the ratio of the 

standard deviations of the independent to the dependent variable.  
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variables are used, standardized coefficients enable effect size comparisons among different 

independent variables, even when the latter are measured in totally different units. Note that 

for non-directional paths (i.e., covariances), standardized estimates are simply the (bivariate) 

correlations between the variables involved.  

Standardized parameters are particularly useful when researchers use numerical figures 

to measure directly observable dependent variables (e.g., sales figures). As these variables are 

often measured in thousands or even larger units, it is not uncommon to obtain 

unstandardized coefficients whose numerical values are statistically significant despite 

having nominally zero values. In such cases, it makes sense to report standardized 

coefficients that paint a more meaningful picture of the impact of the independent variable.  

Overall, we advise researchers to report both standardized and unstandardized 

parameters when presenting their results or, at the very least, to explicitly state what type of 

parameters are reported in the text or in relevant tables.  

 

2.4. Question 4: What is model identification? 

To estimate a model in SEM, one uses existing pieces of information (e.g., data inputs from 

surveys or experimental instruments) to generate new pieces of information (i.e., estimates of 

theoretically important parameters). In SEM, there are two types of information pieces 

provided in a dataset: the covariances between any pair of manifest variables and the 

variances of the latter (i.e., the observed variables’ covariances with themselves). In any 

structural equations model, the number of available pieces of information is given by the 

formula: s = k × (k + 1) / 2, where k is the number of manifest variables included in the 

model (regardless of which latent variable they are assigned to). Turning to the pieces of 

information a researcher needs to estimate, their number depends on the model setup (i.e., 

how many free and constrained parameters exist in the model). As further discussed in 
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Question 5, a model constraint decreases the pieces of information needed to be estimated by 

fixing a parameter’s value (e.g., a zero path) or by requiring it to have the same value with 

another parameter (in which case one obtains one estimated value for two or more 

parameters).  

Model identification refers to whether the researcher has enough pieces of information 

to obtain unique estimates of the parameters to be estimated (known as free parameters). The 

difference between available pieces of information (i.e., variances and covariances of the 

observed variables) and free to be estimated parameters represents what is known as the 

model’s degrees of freedom. For a structural equation model to be identified, the number of 

parameters that need to be estimated should always be less than or equal to the number of 

unique pieces of information provided by the data; in other words, the model should have 

non-negative degrees of freedom. Otherwise, the model is under-identified, that is, no unique 

parameter estimates can be obtained (and thus no testing of hypotheses is feasible). If the 

pieces of information provided by the data exactly equals the number of parameters to be 

estimated, the model becomes just-identified, meaning that unique parameter estimates are 

provided but the overall model fit (see Question 6) cannot be tested. Finally, if the available 

pieces of information exceed the number of parameters to be estimated, the model is over-

identified, that is, one can both obtain more than one set of estimates of the model parameters 

and use these additional estimates to test the model. For this reason, researchers are urged to 

develop over-identified models by ensuring that the following relationship holds: t < s, where 

t = number of parameters to be estimated and s = the total number of (unique) variances and 

covariances among the observed variables.  

The importance of model identification is illustrated in Figure 4. Imagine for a moment 

that the researcher’s goal is not to test the overall model earlier presented in Figure 2 but 

instead to simply test the supplier staff competence scale on its own merit. Let us further 
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assume that the researcher is considering three alternative scales: one with two items, one 

with three items and one with four items, and that the latent variable (ξ1) has been scaled by 

standardizing it (i.e., fixing its variance to 1). 

 

Insert Figure 4 about here 

 

In the case of the two-item scale, the researcher has three available pieces of 

information from the data (i.e., the variances of the two items x1 and x2, and their covariance) 

but needs to estimate four measurement parameters (i.e. the two loadings λ11 and λ21 and the 

variances of the corresponding errors δ1 and δ2). In this case, the model cannot be estimated 

because it has negative degrees of freedom. In the case of the three-item scale, the researcher 

has as many available pieces of information (i.e., the variances of the three items x1, x2 and 

x3, and the three covariances between the items) as those s/he needs to estimate (i.e., three 

loadings λ11, λ21 and λ31 plus the three variances of the error terms δ1, δ2 and δ3). This makes 

the model just-identified, that is, all parameters can be estimated but the model cannot be 

tested as the degrees of freedom are zero. Finally, in the case of the four-item scale, the 

researcher has ten pieces of information (i.e., the variances of the four items x1, x2, x3 and x4, 

and the six covariances among the items). The last case leads to an over-identified model 

with two degrees of freedom which allow testing the model’s fit.  

The above example illustrates that whether a model will be over-, just-, or under-

identified is not something one learns after conducting the analysis. Instead, it is something 

that a researcher can (and should) check before collecting any data to avoid unpleasant 

surprises (which would be preventable if identification issues had been considered in 

advance). It also illustrates that scales with a limited number of indicators might create 

problems of identification when estimating measurement models. In general, four options 
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exist to overcome identification problems: (1) setting some parameters to fixed values (e.g., 

by removing a structural path), (2) setting parameters equal to each other (e.g., specifying two 

loadings to be the same), (3) introducing additional information (e.g., adding an indicator) or 

(4) embedding the model within a bigger model (e.g., while the two-indicator measurement 

model in Figure 4 is under-identified, a model with two latent variables with two indicators 

each, is over-identified with 1 degree of freedom).  

 

2.5. Question 5: What are constraints in SEM? 

There are two types of parameters in SEM: free parameters and constrained parameters. Free 

parameters are those that researchers want to estimate in order to assess the quality of their 

measures and test their hypotheses; typical free parameters are the loadings and error 

variances of manifest variables and the hypothesized paths between two latent variables. 

Constrained parameters, on the other hand, are parameters that are specified to have either a 

fix numerical value (e.g., zero) or parameters that have the same value with some other 

parameter in the model (e.g., two manifest variable loadings set equal). 

Recalling the discussion of Question 4, it is evident that constraints affect model 

identification. As constrained parameters do not need to be estimated, they increase the 

model’s degrees of freedom. More specifically, introducing a constraint will always lead to a 

deterioration of model fit (even if insignificant) while relaxing a constraint will always lead 

to an improvement in model fit (even if insignificant). Furthermore, models that are under- or 

just-identified can become over-identified through the introduction of constrained 

parameters; and over-identified models can turn to under- or just-identified ones by relaxing 

constrained parameters. Although introducing arbitrary constraints in a model purely to 

achieve model identification is generally ill-advised and alternative options should be 

considered to solve identification issues (e.g., avoiding single item measures), doing so might 
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be justified in some cases (e.g., when one can make a reasonable assumption that all items of 

a reflectively-measured latent variable carry equal loadings).  

Apart from model identification issues, model constraints are important for theory 

testing purposes and should be assessed with care because they can have serious implications 

for the theoretical soundness and the practical relevance of obtained results. Unfortunately, it 

is common practice for researchers to either introduce constraints that should not be included 

in the model based on theoretical arguments or freeing constraints by allowing the estimation 

of relationships that should conceptually be set to zero. Typical examples of the former case 

include setting the covariance between two exogenous variables to zero (which can be 

harmful as exogenous variables should almost always be allowed to correlate in a model) or 

setting measurement error variances equal to zero (which implies lack of measurement error 

in manifest indicators). Typical examples of the latter case include allowing the free 

estimation of the covariance between the structural error terms of two endogenous variables 

(which should not be allowed unless based on theoretically-grounded arguments of the 

presence of a common omitted predictor variable) or allowing the free estimation of error 

covariances between manifest indicators measuring the same latent variable (which implies 

the undesirable presence of other sources of common variation beyond the latent variable, 

and thus, questions regarding the validity of the construct’s measurement). All these actions 

lead to artificial inflation or deflation of model fit indices in ways which do not enhance the 

theoretical value of the model. 

Researchers typically focus more on free parameters as these correspond to theoretical 

relationships to be tested. In doing so, they often miss constrained parameters that become 

part of the model “by default” (i.e., without being consciously/intentionally constrained by 

the researcher). To illustrate this point, Figure 5 shows that, in the illustrated model earlier 

presented in Figure 2, there are two parameters (γ21 and γ22) – the direct paths from supplier 



19 

 

staff stereotype dimensions to repurchase intention – that have been set to a fixed value 

(namely, zero). These constraints imply that the authors do not theoretically expect any effect 

of supplier staff competence or warmth on repurchase intent that is unaccounted by supplier 

satisfaction; in other words, supplier satisfaction is hypothesized to fully mediate the impact 

of competence and warmth on repurchase intent. These constraints thus have theoretical 

relevance and can be potentially challenged by reviewers. Specifically, if one can make a 

theoretical case about the inclusion of these direct paths in the model, then these constrained 

parameters should be set free and tested along with the other free parameters. Moreover, their 

contribution to significantly improving model fit should be noted. Thus, authors who choose 

to exclude these paths from estimation (i.e., assume they are zero as in Figure 5), should have 

a compelling theoretical argument at hand for doing so and make this argument available to 

reviewers when describing their model.  

 

Insert Figure 5 about here 

 

Overall, we advise authors to (1) be fully aware of the constraints included in their 

models, (2) be prepared to theoretically defend them, and (3) not relax model constraints 

using favorable changes in model fit as the only justification for doing so.  

 

2.6. Question 6: What is model fit? 

One of the main concerns of researchers when using SEM is whether their model has a good 

overall fit. Although most authors know that they need to report model fit statistics and 

reviewers require them to reach “make or break” decisions on manuscripts, the concept of fit 

is perhaps the most misunderstood concept in SEM. While most researchers know that, in 
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broad terms, model fit captures the extent to which a hypothesized model is “in harmony” 

with the empirical data, few understand the exact notion of fit in the context of SEM.  

Model fit captures the degree to which the data used to estimate the model (i.e., the 

sample covariance matrix S) resembles the form that the data should have had if the 

hypothesized model were true in reality (i.e., the implied covariance matrix �̂�)9. Thus, model 

fit involves the comparison of two covariance matrices: the covariance matrix of the manifest 

variables based on the actual data and the covariance matrix of the manifest variables implied 

by the model. The bigger the resemblance or congruence between those two covariance 

matrices, the better the overall fit of the model. The formal test of this congruence (i.e., that 

S = �̂�) is provided by a χ2 statistic with degrees of freedom equal to the degrees of freedom in 

the hypothesized model.  

Unfortunately, relying only the χ2 test results to assess model fit is problematic as the 

test is affected by departures from multivariate normality, is sensitive to sample size, and also 

assumes that the model fits perfectly in the population. As a result, over the years, a long list 

of additional fit indices have been proposed in the literature along with proposed threshold 

values for judging the acceptability of the model.10 While this is not the place to discuss the 

merits and shortcomings of different fit indices, researchers should always use multiple 

indices when evaluating overall model fit and avoid “cherry-picking” fit statistics to paint a 

more favourable picture of their models. Thus, from an author’s perspective, the inclusion or 

exclusion of any fit index should not be made on the grounds of impression management but 

for purposes of striking a balance between parsimony and transparency in reporting. 

 

9 Formally, the implied covariance matrix �̂� is the covariance matrix that would be obtained if values of 

the fixed parameters and estimates of the free parameters were substituted into the measurement and structural 

equations which were then used to generate a covariance matrix.  
10 Amongst the most popular fit indices are the RMSEA (Root Mean Squared Error of Approximation), 

the NNFI (Non-Normed Fit Index – also known as the Tucker-Lewis Index (TLI)), the CFI (Comparative Fit 

Index) and the RMSR (Root Mean Squared Residual). For a more detailed discussion of alternative fit indices 

and acceptable cut-off values per fit index, see Niemand & Mai (2018), Iacobucci (2010) and Steenkamp & Van 

Trijp (1991). 
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Conversely, reviewers should avoid overreliance on a couple of “popular” fit statistics (e.g., 

RMSEA or CFI), familiarize themselves with the strengths/weaknesses of particular fit 

indices in particular conditions (e.g., how sample size or number of estimated parameters can 

inflate or deflate a certain fit index) and appreciate that a value in one fit index that falls 

slightly short of conventional thresholds does not render a model automatically invalid if 

other fit indices show satisfactory values.  

The above discussion has focused on the assessment of the overall fit of the model i.e. 

on global fit. However, in addition to global fit, researchers are (and should be) interested in 

individual parameter estimates and their implications for measurement quality and the 

validity of their theoretical predictions (known as local fit). It is important to appreciate, in 

this context, that a model with an acceptable global fit can have a fair share of “bad” local fit 

indices (e.g., non-significant path estimates) and, conversely, a model with a poor global fit 

can have most (if not all) structural path coefficients significant. Thus, for a model to be 

supportive of one’s theory, both local and global fit need to be satisfactory. Importantly, 

global and local fit should be assessed both for the measurement model and for the structural 

model and researchers should appreciate the fact that sources of poor fit observed during 

measurement model assessment will inevitably spill over to structural model fit. 

 

2.7. Question 7: What is an independence and a saturated model? 

In a typical structural equations model, there are some parameters that are free to be 

estimated (e.g., hypothesized paths) and some parameters that are constrained to some fix 

value (e.g., zero covariances among error terms). When assessing overall fit in SEM, one 

sometimes needs a reference model. Two widely used reference models are the independence 

model and the saturated model. An independence model is one that does not allow any 

covariances among the observed variables, implying that every variable is orthogonal to all 
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the others. Such a model has the maximum degrees of freedom and the highest parsimony 

because most parameters are fixed to zero and thus almost nothing needs to be estimated 

(apart from the variances of the observed variables). A saturated model, on the other hand, is 

one where all observed variables are allowed to covary with each other and all available 

pieces of information are used to estimate the model parameters, making the model just-

identified (i.e., having zero degrees of freedom). In other words, an independence model is a 

model full of constrained parameters while a saturated model is a model full of free 

parameters. Thus, any model with some free and some constrained parameters (i.e., the 

typical case of a model researchers try to estimate) can be seen as a more constrained version 

of the saturated model and a less constrained version of the independence model. If the 

independence and the saturated models are seen as the two ends of a road, each step from the 

independence model toward the saturated model requires setting a parameter free to be 

estimated at the exchange of one degree of freedom. In this sense, a degree of freedom can be 

understood as the price a researcher must pay to obtain an estimate of a parameter previously 

constrained to a fixed value. Conversely, every time a free parameter is constrained (i.e., set 

to a fixed value or equal to another free parameter), there is a gain of one degree of freedom.  

More often than not, researchers do not explicitly mention in their manuscripts the 

relevant independence and saturated models or their corresponding fit statistics. Although 

such reporting is not directly needed to assess how good their proposed model is in terms of 

hypothesis testing and theory development, independence and saturated models are important 

because many of the global fit indices commonly used rely on comparisons between a 

hypothesized model and the relevant independence/saturated models. For instance, one of the 

most widely reported fit index in SEM is the Comparative Fit Index (CFI) which is calculated 

by comparing a candidate model with an independence model. Although we would not advise 

extensive reporting on independence and saturated models, it is still important for researchers 



23 

 

to understand the essence of those models when assessing the overall fit of their hypothesized 

model.  

 

2.8. Question 8: What is a modification index? 

When researchers estimate SEM models, they are often interested in model modification, that 

is, post-estimation alterations in the model that substantially improve overall model fit. Such 

alterations include the estimation of a new model by freeing one or more constrained 

parameters (see Question 5). When one previously constrained parameter is set free to be 

estimated, one degree of freedom is lost (because one needs to estimate one more parameter 

with the same available pieces of information) and the model fit (always) improves (because 

one “coaxes” the sample covariance matrix and the implied covariance matrix to become 

more similar).  

A modification index is a statistic that shows the minimum improvement in model fit 

(in the form of chi-square reduction) that would be achieved if the model was re-estimated 

with a specific, previously constrained parameter set free to be estimated, while the rest of the 

model remains unchanged (modification indices are usually accompanied by the estimate of 

the expected value of that parameter as well). The presence of many and sizable modification 

indices implies that the original model is misspecified, meaning that many of the 

relationships that should have been included in the model as free parameters were not (and 

were thus wrongly specified as zero relationships or as values equal to another freely 

estimated parameter).  

SEM software automatically produces lists of the larger modification indices in its 

effort to help researchers identify which model changes would make the model fit 

significantly better on the available data. Unfortunately, researchers have often been using 

these indices in an inappropriate manner, resulting in models with acceptable global fit but 
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lacking in theoretical soundness. Given that (1) modification indices provide specific 

information on which parameter(s) should be set free, and (2) setting any parameter free 

always leads to a better fit, it is, unfortunately, rather common for researchers to continuously 

re-specify their original models post-hoc by allowing the free estimation of paths they have 

previously constrained until a favorable global fit is achieved. This “end justifies the means” 

approach, though, violates the principles of theory testing and leads to the development of 

data-driven models that cannot be theoretically justified and would rarely replicate on 

different samples. This is because modification indices capture purely statistical adjustments 

to a model based on the idiosyncrasies of the specific sample at hand and do not consider 

whether such adjustments also make theoretical sense. For example, modification indices 

may suggest introducing error covariances or allowing cross-loadings of indicators, 

adjustments which in the vast majority of cases cannot be theoretically justified. As a result, 

one of SEM’s biggest strengths (i.e., identification of a model’s key misspecifications) has 

unfortunately become also one of its big weaknesses. 

Bearing the above in mind, the weight is with the author to provide (and with the 

reviewer to require) convincing theoretical justifications not only for the hypothesized paths 

in a model but also for the non-hypothesized ones (i.e., zero paths). Moreover, authors should 

not modify their models post-hoc unless they (1) explicitly underscore the exploratory nature 

of their work, and/or (2) are able to replicate their revised model on fresh data from 

subsequent studies and, in particular, test the previously identified paths by modification 

indices as free parameters.  

 

2.9. Question 9: What are nested models? 

Imagine two SEM models (e.g., Model A and Model B) that have exactly the same manifest 

and latent variables. Now, assume that in Model A the relationships among latent variables 
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are set free to be estimated while in Model B some relationships between latent variables 

have been constrained by setting them to zero. In this case, we would call B a model nested in 

A, because Model B can be obtained after constraining one or more parameters of Model A 

to a fix value (e.g., zero) or setting them equal to some other parameter. There can be several 

models nested within a particular model because there are numerous types and number of 

parameters that can be constrained, leading to several nested models that correspond to 

different representations of the relationships among the model constructs.  

Figure 6 presents several nested models. Model A is a model where all latent variables 

are directly connected with any other latent variable in the model (i.e., all potential structural 

paths are free to estimate). Models B1, B2 and B3 are three models which are all nested in 

Model A. Model A reduces to Model B1 if the paths (b), (e), and (f) are constrained to zero. 

Thus, assuming that the same indicators have been used to measure the latent variables in 

both models, Model B1 has three degrees of freedom more than Model A. Model A also 

reduces to Model B2 if path (c) is constrained to zero (resulting in one degree of freedom 

more than Model A). Finally, Model A reduces to Model B3 by constraining paths (b) and (e) 

to zero.11 Note that Models B1-B3 represent different theoretical propositions. Model B1 is a 

serial mediation model where the impact supplier’s staff warmth on repurchase intent is 

expected to be fully mediated through supplier’s staff competence and satisfaction with the 

supplier. Model B2 suggest that only supplier staff warmth (but not competence) impacts 

satisfaction with the supplier. And Model B3 suggests that satisfaction with the supplier fully 

mediates the impact of both supplier staff competence and warmth on repurchase intentions.  

 

Insert Figure 6 about here 

 
11 Model B3 is very similar to the model in Figure 2, the only difference is that supplier staff warmth is 

now modeled as an antecedent of supplier staff competence.  
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To sum up, given two models, as long as (1) the same variables are included, and (2) 

one model can be obtained through restricting one or more parameters of the other, the 

models are nested and thus formal fit comparisons can show which of the two receives 

stronger empirical support with the data at hand. Such fit comparisons employ what are 

known as chi-square difference (Δχ2) tests and involve subtracting the χ2 value of the less 

restricted model from the χ2 value of the more restricted model. This difference is also 

distributed as a χ2 statistic with degrees of freedom equal to the difference in the degrees of 

freedom of the two nested models.  

Note that nested model comparisons often provide ammunition to authors when 

counteracting reviewer comments that cast doubt on their theoretical model setup. Quite often 

reviewers doubt the need for the inclusion of some structural paths or come up with 

alternative theoretical models to the authors’ proposed ones. If these rival models are nested 

within the same overall model as the authors’ originally proposed model, authors can engage 

in formal chi-square comparisons and establish on empirical grounds which of the proposed 

rival models is more consistent with the data at hand.  

 

2.10. Question 10: What are equivalent models?  

Two models are called equivalent when they include the same observed variables but also 

have the same number of constrained and free parameters (and thus the same number of 

degrees of freedom). In other words, equivalent models differ only in terms of their model 

structures (i.e., in terms of which specific parameters are set free or are constrained). Despite 

having different theoretical setups and implications, equivalent models have identical overall 

model fit (and thus cannot be compared by means of chi-square difference (Δχ2) tests as is the 

case for nested models – see Question 9). Thus, choice among equivalent models must be 

made based on their theoretical plausibility rather than statistical criteria.  
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An example of two equivalent models is shown in Figure 7. One researcher could 

theoretically argue that the correct model is Model A where supplier staff warmth acts as a 

causal antecedent of supplier staff competence which, in turn, influences the level of 

satisfaction with the supplier and, through it, intention to repurchase. Another researcher 

could instead argue that it is competence what precedes warmth in the causal chain toward 

satisfaction and repurchase intent and, therefore, that the “correct” model is Model B. Testing 

which of these two mediation models is superior is not possible using chi-square comparisons 

for the simple reason that these two models have the same model fit and the same degrees of 

freedom. 

 

Insert Figure 7 about here 

 

The existence of equivalent models should serve as a reminder to researchers that their 

models are not unique in terms of their fit to empirical data and that there can be many other 

models with the same variables but different structures that will produce exactly the same fit. 

Thus, just because a well-fitting model is obtained authors should not automatically assume 

that theirs is the only model or the “true” model that is consistent with the empirical data at 

hand.  

 

3. Conclusion 

SEM is a powerful analytical technique that has been increasingly attractive to IMM 

researchers over the last years. Nevertheless, IMM authors often struggle in understanding, 

using, and reporting the results of their SEM analyses appropriately. This results in 

intentional or unintentional misuse of the method and, subsequently, threatens the validity of 

published research findings. The purpose of the present paper was to provide a common 
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denominator for every IMM researcher using SEM by offering some non-technical 

explanations to key concepts of the method and thus effectively provide the common ground 

needed for the IMM community to safeguard its research contributions.  

In summarising the main takeaways from the issues discussed above, we develop a list 

of guidelines for authors and reviewers/editors dealing with SEM-based manuscripts to 

achieve the highest possible accuracy and transparency when reporting or assessing the 

results of SEM applications (Table 2). These guidelines directly correspond to the ten 

fundamental concepts of SEM discussed in this article. Although this list is by no means 

exhaustive and it is expected that both authors and reviewers will delve into higher levels of 

analytical detail in their exchanges, we believe these guidelines represent the minimum level 

of reporting that a SEM-based manuscript should exhibit for an adequate representation of 

authors’ efforts and a fair account of reviewers’ requests. Although most manuscripts are 

expected to satisfy at least some of the guidelines presented in Table 2, we suggest that its 

contents are used as a checklist by authors before final manuscript submission and by 

reviewers as a reminder of areas where mistakes or inappropriate reporting are likely to take 

place.  

 

Insert Table 2 about here 
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Figure 1: Published papers using Structural Equations Modeling in Industrial 

Marketing Management (2005-2019) 
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Figure 2: An illustrative structural model 
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Figure 3: An illustrative measurement model 
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Figure 4: Model identification 
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Figure 5: Constrained and unconstrained (free) parameters 
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Figure 6: Nested models 
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Figure 7: Equivalent models 
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Table 1: SEM terms and notation 

 

Term Definition - description Notation 

Exogenous latent variable 

A latent (unobservable) variable that is used to predict 

other variable(s) in the model; exogenous variables are 

not explained by any other variable in the model (no 

arrows leading to endogenous variables). 

ξ (KSI) 

 

Endogenous latent variable 

A latent (unobservable) variable that is being predicted 

by the exogenous variable(s). There is at least one 

exogenous variable predicting it. It can also be 

predictor of other endogenous variables (in which case 

it is also called a mediator). 

η (ΕΤΑ) 

Manifest variable (indicator) 

A measured (observed) variable used as an indicator to 

measure some latent (unobservable) variable in the 

model. It can be an indicator of either endogenous or 

exogenous latent variables. 

x (exogenous variable indicator) 

y (endogenous variable indicator) 

Endogenous variable error 

The error (i.e., random disturbances) in the 

endogenous variable capturing variance unexplained 

by the variable’s predictors. 
ζ (ZETA; error of η) 

Manifest variable error 
The measurement error of the indicators (items) used 

to measure endogenous or exogenous latent variables.  

δ (DELTA; error of x) 

ε (EPSILON; error of y) 

Indicator loading  

The regressions weight linking manifest indicators to 

latent constructs (for reflectively-measured constructs). 

It shows how well the latent construct explains the 

indicator’s variance. It helps assessing the 

measurement model, the appropriateness of individual 

indicators and the psychometric properties of latent 

variables. 

λ (LAMDA) 
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Causal relationship 

A theoretical, directiuonal relationship between any 

two latent variables in the model. It can be a 

relationship between one exogenous and one 

endogenous variable or between two endogenous 

variables. It is depicted by a line with an arrow end 

entering the endogenous variable (unidirectional 

relationship). 

γ (GAMMA) 

Exogenous variable → Endogenous variable 

β (BETA) 

Endogenous variable → Endogenous variable 

Non-directional relationship 

A correlational (non-causal) relationship between two 

latent exogenous variables in the model. It is depicted 

by a double-arrow linking two exogenous variables. It 

captures the covariance between exogenous variables. 

φ (PHI) 
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Table 2: Guidelines to IMM authors and reviewers/editors 

 

Issue Advice to authors Advice to reviewers / editors 

Latent variables 

and scaling 

▪ Provide a detailed description of all latent variables and their 

corresponding manifest indicators. 

▪ Discuss your scaling procedure. 

▪ Identify which manifest indicator is used as scaling indicator. 

▪ Request a table with all manifest indicators and their psychometric 

properties (e.g., loadings, indicator reliabilities, etc.). 

▪ Check whether the scaling indicator has face validity in light of the 

construct’s conceptual definition and described content domain. 

Parameter 

estimation 

▪ Provide a full list of important (if not all) estimated 

parameters, accompanied by standard errors, t-values and 

significance levels. 

▪ Report parameter estimates for both measurement and 

structural models. 

▪ Assess the statistical and practical significance of reported 

parameters.  

▪ Assess the validity of the measurement model before proceeding 

with the assessment of structural parameters. 

▪ Ask for re-estimation of structural model if severe issues with the 

measurement model exist. 

Standardized 

parameters 

▪ Be consistent in your reporting of parameter estimates. 

▪ If both standardized and non-standardized parameters are 

reported, be clear on what is what. 

▪ Interpret the results appropriately depending on whether your 

report standardized or unstandardized parameters. 

▪ Report effect sizes. 

▪ Ask authors to clarify whether they report standardized or 

unstandardized parameters in text and/or in tables. 

▪  Require effect size estimates. 

▪  Consider the unit of analysis of the used scales and guide authors 

in reporting accordingly. 

Constraints 

▪ Design your model and identify how many parameters are free 

and how many parameters are constrained before testing. 

▪ Make sure that you have a theoretical explanation for your 

constrained parameters. 

▪ Ask authors to provide theoretical arguments for their decision to 

constraint a parameter that should not intuitively be constrained. 

▪ Check for dubious fixed or free parameters in the model (e.g., free 

estimation of error covariances between manifest variables of 

different latent constructs, zero covariances between exogenous 

variables). 

Model 

identification 

▪ Calculate your degrees of freedom before collecting data or 

testing the model. 

▪ In case of under-identified models, consider remedies such as 

restricting parameters that should theoretically be unrelated or 

search for latent construct scales with more items. 

▪ Report degrees of freedom in the model results. 

▪ Require the exact number of degrees of freedom for every 

estimated model.  

▪ Check whether authors’ reported degrees of freedom are in line 
with the described model setup and, if not, ask for a list of 

constrained parameters to identify discrepancies. 

▪ Assess the sample size in light of these degrees of freedom.  
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Independence / 

Saturated models 

▪ Check and potentially report model fit statistics of the 

independence and saturated models. 

▪ Ask for model fit statistics of the independence and saturated 

models if needed. 

Model fit 

▪ Include both global and local fit statistics. 

▪ When discussing the appropriateness of the overall model do 

not rely only on one fit index.  

▪ Require discussion of more than one fit statistics. 

▪ Check whether the reported indices are above the required 

thresholds. 

▪ Be aware of the sensitivities of each fit index (e.g., sample size, 

degrees of freedom) and comment appropriately. 

Model 

modification 

▪ Do not include additional paths after the first estimation of the 

model unless a clear theoretical argument for their inclusion 

can be provided. 

▪ Be transparent on which paths or parameters were set free 

post-estimation. 

▪ When extensive modifications are proposed, consider testing 

the updated model on a new sample. 

▪ Ask authors whether any modifications were made after the 

original model testing. 

▪ Ask for theoretical arguments for modifications and added paths 

across manuscript revisions. 

▪ Do not ask authors to consider inclusion of theoretically 

indefensible paths without strong reasons. 

Nested models 

▪  Test rival nested models if alternative theoretical possibilities 

exist or if asked by reviewers. 

▪ Use nested model comparisons to assess reasonable 

modifications such as inclusion of direct (on top of mediating) 

paths or to assess effect size differences between structural 

paths.  

▪ Make a theoretical case for the nested/rival model asked from the 

authors. 

▪ Make sure that the any models presented as nested are indeed 

nested. 

▪ Do not ask authors to provide empirical comparisons between non-

nested models using chi-square tests. 

Equivalent models 

▪ Do not treat equivalent models as nested. 

▪ Do not attempt chi-square comparisons between equivalent 

models as they are impossible. 

▪ Counter rival equivalent models using theoretical arguments. 

▪ Do not ask authors to test among equivalent models in an empirical 

manner (e.g., chi-square comparisons) 

 


