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A B S T R A C T

This study explores how formal measures of landscape wildness (i.e. absence of human artefacts, perceived
naturalness of land cover, remoteness from mechanised access, and ruggedness of the terrain) correlate with
crowdsourced measures of landscape aesthetic quality as captured in Scenic-Or-Not data for Great Britain. It
evaluates multiple linear regression (MLR) and two spatially varying coefficients models: geographically
weighted regression (GWR) and multiscale geographically weighted regression (MGWR). The MLR provided a
baseline model in an analysis of national data, exhibiting the presence of spatially autocorrelated residuals and
suggesting that geographically weighted models may be appropriate. A standard GWR was found to exacerbate
local collinearity between covariates, both overfitting and underfitting the model with highly varied and loca-
lised results. This was due to its single one-size-fits-all bandwidth and the assumption that all relationships
between the target and predictor variables operate over the same spatial scale. MGWR relaxes this assumption by
determining parameter-specific bandwidths, mitigating the local collinearity issues found in a standard GWR and
resulting in more spatially stable and consistent coefficient estimates. The findings also indicated that the re-
lationship between some covariates (such as remoteness) and perceived landscape quality varied little spatially,
while clear gradients were found for other covariates. For example, naturalness was stronger in the north and
west, ruggedness was stronger in the south and east, and the absence of human artefacts was weaker in Scotland
and the north than in England and the south. Overall, the study showed that MGWR is more sensitive than GWR
to the spatial heterogeneity in the statistical relationships between landscape factors and public perceptions.
These findings provide nuanced understandings of how these relationships vary spatially, underscoring the value
of such approaches in landscape scale analyses to support policy and planning. The discussion section of this
paper considers the MGWR as the default geographically weighted model, assessing the potential for the use of
crowdsourced data in landscape studies. In so doing, it illustrates how such approaches could be used to explore
both subjective and objective landscape evaluations.

1. Introduction

The aesthetic quality of landscapes has a clear positive correlation
with human health and well-being, and aesthetics have been recognised
as a key benefit of landscapes in ecosystem service modelling (Zoderer,
Tasser, Carver, & Tappeiner, 2019). However, aesthetic preferences
vary widely across social and cultural contexts (Dramstad, Tveit,
Fjellstad, & Fry, 2006; Zube & Pitt, 1981), making objective evaluations
difficult. As a result, there is a long-standing tension between objectivist
and subjectivist paradigms in landscape assessment (Daniel, 2001). At
the heart of this ideological rift lies the question of whether a land-
scape’s quality is determined by inherent physical landscape properties,
or by how it is perceived (Lothian, 1999). The objectivist paradigm is

based on landscape’s visual properties and biophysical features, often as
defined by specialists such as landscape architects. This is the most
prevalent approach in formal landscape assessment practices. The
subjectivist model focuses on human perceptions, opinions and pre-
ferences. However, there is a general consensus is that landscape
quality is derived from the interaction between biophysical and per-
ceived components (Daniel, 2001). Integrated approaches linking both
subjectivist and objectivist considerations provide a basis for enhancing
landscape planning and decision making, and an analytical framework
is needed to link the two paradigms and handle discrepancies between
them. However, effective landscape assessments involving both expert
and non-expert perspectives also pose a challenge, as demonstrated by
the landscape character assessments (LCA) (Swanwick, 2002) in the
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United Kingdom. This approach uses a classification system to assess
and value landscapes in a two-phase process: characterisation and
evaluation. Characterisation sub-divides the landscape into distinct
areas based on the visual continuity of physical characteristics (such as
geology, landform, and land cover), applied through the lens of spatial
hierarchical mapping. Evaluation occurs through in situ site visits,
during which landscape character descriptions are formulated qualita-
tively. The practice of LCA often fails in its stated aim of centring public
perceptions, as both phases are typically undertaken by professionals
and therefore do not capture collective or public landscape perceptions
(Butler & Berglund, 2014; Conrad et al., 2011). The disconnect between
public and professional perceptions in this field illustrates the need for
integrated assessment frameworks, accommodating both subjectivist-
based landscape evaluations (i.e. non-expert opinions) and objectivist-
based ones (i.e. expert opinions).

In recent decades, the increased availability of crowdsourced geo-
information offers the potential for new avenues of research to further
understand links between perceptions and objective landscape mea-
sures. Such data has already been applied in numerous research areas,
including place preferences (Gliozzo, Pettorelli, & Haklay, 2016), va-
lues (van Zanten et al., 2016) and perceptions (Dunkel, 2015). The
Scenic-Or-Not campaign in the UK (http://scenicornot.datasciencelab.
co.uk) captures public evaluations and perceptions of landscapes using
photographs. Scenic-Or-Not data have been used to investigate the
impact of scenic environments on human well-being (Seresinhe, Preis,
& Moat, 2015) and happiness (Seresinhe, Preis, MacKerron, & Moat,
2019), enabling a clearer understanding of public perceptions regarding
landscape composition and scenic beauty (Seresinhe, Preis, & Moat,
2017). The dataset is geo-referenced with national coverage, enabling
spatial analyses of how public preferences and aesthetic perceptions are
related to objective indicators of landscape quality.

Wilderness-related research has developed several formal methods
for measuring landscape character by wilderness and wildness, and
many people intuitively associate the concept of wilderness with certain
aesthetic values (Carlson, 2019). The term ‘wilderness’ can be under-
stood in multiple ways: it is partially a human construct based on ro-
mantic notions about nature and landscape, and partly an ecological
reality of intact ecosystems devoid of human influence (Nash, 1982).
Although there is little wilderness (in the term’s truest sense) left within
Great Britain, the concept of a wilderness continuum – an idea which
models anthropogenic environmental modification using inherent un-
derlying landscape characteristics (Fritz, Carver, & See, 2000) – is still a
useful tool for mapping the spectrum of relative wildness. So-called
‘wild land areas’ refer to large natural areas that are relatively un-
disturbed by human activity (Carver, Comber, McMorran, & Nutter,
2012). Aesthetic values, meanwhile, are more closely related to per-
ceptions of scenic beauty. Many studies use multi-criteria approaches to
capture and link the various spatial characteristics of wilderness areas.
These assess wilderness quality based on four principal characteristics:
absence of modern human artefacts, perceived naturalness of land
cover, remoteness from mechanised access, and rugged and physically
challenging nature of the terrain (Carver et al., 2012; Carver, Evans, &
Fritz, 2002; Comber et al., 2010; Fritz et al., 2000). These four in-
dicators can be used to identify landscapes that are highly valued and
thought to merit conservation due to their wilderness qualities. It is
unclear whether these formal wildness measures could contribute to
landscape aesthetic assessments, and to what extent these indicators are
associated with the public’s landscape preferences. Nonetheless, such
approaches have been adopted by the United States National Park
Service to model, map and monitor variations in wilderness character
(Carver, Tricker, & Landres, 2013).

Previous studies that have examined the relationships between
measures of landscape values or qualities and features (topography,
land cover, etc.) have typically applied global statistical models. In
these models, the relationships between input variables are assumed to
be spatially invariable (Makeschin, Koschke, Frank, Fürst, & Witt, 2013;

Schirpke, Tasser, & Tappeiner, 2013; van Zanten et al., 2016). How-
ever, the relationships between landscape-related predictor and re-
sponse variables may vary in different locations (i.e. exhibit process
spatial heterogeneity). Spatially-varying coefficient models such as
geographically weighted regression (GWR) can be used to identify and
explore these relationships, supporting an enhanced understanding of
geographical processes (Brunsdon, Fotheringham, & Charlton, 1996).
GWR uses a moving kernel to generate subsets of the data from which
local regression models are determined. It has been applied in several
landscape studies to understand local processes (Hong & Jeon, 2017;
Luo & Wei, 2009; Su, Foody, & Cheng, 2012; Sun, Xie, & Chen, 2018).
The critical consideration in any GWR analysis is the specification of
the kernel size, or bandwidth. This determines the number of ob-
servations that are included in each local subset, thus establishing the
degree of spatial smoothing in the model’s outputs. GWR bandwidths
can be implemented at a fixed or an adaptive distance (where adaptive
includes the same number of observations in each subset). They are
optimally determined using some measure of model fit such as Akaike
Information Criterion (Akaike, 1973) or leave-one-out cross-validation
(Bowman, 1984; Brunsdon et al., 1996; Cleveland, 1979). Although a
standard GWR can capture process and relationship heterogeneity, its
single kernel size assumes that each response-to-predictor relationship
operates over the same spatial scale. Multiscale geographically
weighted regression (MGWR) relaxes this assumption and identifies the
individual scale at which each response-to-predictor relationship op-
erates (Fotheringham, Yang, & Kang, 2017; Yang, 2014), thus eluci-
dating geographic processes.

This study explores how measures of wildness (Carver et al., 2012)
correlate with crowdsourced perceptions of landscape aesthetics from
Scenic-or-Not using both non-spatial and spatial statistical models. The
aim is to better understand the relationship between objective and
subjective measures of landscape quality – with particular attention to
variations across space and spatial scale – to develop a more holistic
model for landscape character assessments. To this end, bivariate cor-
relations were initially evaluated, and the global relationships were
examined through multiple linear regression (MLR). A GWR was then
applied to examine spatial non-stationarity in the relationships. The
analysis was refined by applying an MGWR to examine the differing
scales of the relationships.

2. Data and methods

2.1. Scenic-Or-Not data (response variable)

The Scenic-Or-Not data are freely available. At the time of writing,
the dataset includes 212,212 images covering nearly 80% of the
Ordnance Survey (OS) 1 km2 grid squares of Great Britain. Each grid
square contains at least three ratings. The dataset uses Geograph geo-
referenced photographs taken and uploaded by members of the public.
Scenic-Or-Not participants are presented with randomly selected pho-
tographs and are invited to rate each one on a scale of 1–10, wherein 1
is the least scenic and 10 is the most scenic. The mean scenic rating,
which captured an average measure of public perceptions of landscape
scenic beauty, was used as the response variable in the scenic quality
regression models of this study. However, these methodologies feature
some limitations: in most cases, landscape visual aesthetic quality or
preference values were given for a single photograph, which was as-
sumed to capture the local landscape characteristics present in a 1 km2

region. The mechanism of representative image selection for each grid
cell in Scenic-Or-Not is unclear, and visual inspection of some photo-
graphs reveals potential sources of bias in subject choice and framing.
For example, a focus on a barn in the composition of a rural landscape
photograph for aesthetic effect may misrepresent the local landscape.
Such biases illustrate the problem of the uncertain reliability and
quality of crowdsourced datasets (Comber, Mooney, Purves, Rocchini,
& Walz, 2016; Oteros-Rozas, Martín-López, Fagerholm, Bieling, &
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Plieninger, 2018). Additionally, the image locations reported in the
Scenic-Or-Not dataset may vary by 100 m from those reported in
Geograph, and some Scenic-Or-Not images may have been removed
from the Geograph repository altogether. Thus, the measures captured
via Scenic-Or-Not may be representative of the landscape scenic quality
of a broader area with better accuracy.

2.2. Wildness components (predictor variables)

Formal measures of wildness quality, as described in full by (Carver
et al., 2012) in the context of Scotland and later extended across the
United Kingdom, were used as explanatory variables of landscape
aesthetic quality. Overall, wildness quality can be defined by four at-
tributes: absence of modern human artefacts, perceived naturalness of
land cover, remoteness from mechanised access, and rugged and chal-
lenging terrain. These were calculated over a 25 m grid and sum-
marised below:

• Absence of modern human artefacts (absence):

This indicator measures the visual absence of man-made structures
in a 360-degree arc at a given location. Structures were extracted from
OS MasterMap data and included linear features (e.g. railways and
roads), non-natural vegetation (e.g. hard-edged plantation forestry),
built features (e.g. buildings and structures), engineering structures
(e.g. pylons and hydro-electric/reservoir drawdown lines), and novel
industrial features (e.g. wind turbines). The absence measure at each
location was derived from the proportions of these structures within the
360-degree field of view (FOV) in a GIS-viewshed. The cumulative
percentage of the view that was obstructed by man-made features based
on the horizontally and vertically visible proportions of the features was
calculated over a digital surface model (DSM). This voxel viewshed
approach accounts for the effects of visual distance decay and relative
size (Carver & Washtell, 2012).

• Perceived naturalness of land cover (naturalness):

The evaluation of naturalness was based on a reclassification of the
Land Cover Map 2007 (LCM2007) (Morton et al., 2014), using ancillary
forest data from the National Forest Inventory (https://www.gov.uk/
guidance/access-forestry-commission-datasets). Each LCM2007 class
was allocated a naturalness score of 0–5 based on its level of human
intervention (see Table 1). These allocations were visually checked
against aerial photography and local knowledge to identify any in-
consistencies. The area weighted mean naturalness score was calculated
within a 250-metre radius for each grid cell.

• Remoteness from mechanised access (remoteness):

Remoteness refers to the time needed to walk to a destination from
the nearest road access. This measurement accounts for the effects of
distance, relative gradient, ground cover, and barrier features such as
open water and steep terrain. It is essentially an adaption of Naismith’s
rule (Naismith, 1892) which allocates 15 min of walking time for 1 km
on horizontal surfaces, plus 10 min for every 100 m of ascent. The rule
includes an assumed speed of 5 km per hour over flat terrain (i.e. slopes
between °0 and °5 ) and corrections for the slope and angle at which the
terrain is crossed. For example, it features penalties of 30 min for every
300 m of ascent and 10 min for every 300 m of descent on slopes
greater than °12 . Table 2 details the derivation of the factors that were
used to generate the cumulative cost surface.

• Rugged and physically challenging nature of the terrain (rugged-
ness):

This indicator was devised to capture physical variations in terrain

morphology, as well as weather conditions caused by the nature of the
terrain (in cases where the challenging weather at high altitudes can
influence human perceptions). The OS landform profile 10-metre digital
elevation model (DEM) was used to initially derive indices of terrain
complexity that account for gradient, aspect and relative relief.
Ruggedness was calculated from 2 standard deviations of terrain cur-
vature within a 250-metre radius of the target cell, combined by linear
summation with altitude from the DEM, to reflect the weather condi-
tions at higher locations with lower temperatures and greater wind
speeds.

Hereafter, the response and the explanatory covariates are referred
to simply as ‘scenicness’, absence, naturalness, remoteness and rug-
gedness.

2.3. Sampling scheme

To overcome potential sampling bias, the Scenic-Or-Not data were
aggregated over 5 km hexagonal grid cells. Hexagonal grids enable the
exploration of more subtle spatial patterns than square grids due to
their more consistent connectivity (Wang, Ai, Shen, & Li, 2020).

The median values of both response and explanatory variables
within the cells were determined for each of the 11,786 grid cells. Fig. 1
shows the spatial pattern of the aggregated data for the scenicness re-
sponse and the standardised covariates.

2.4. Data analysis

A multiple linear regression (MLR) model was constructed to model
the relationships between the predictor and target variables as follows:

∑= + +
=

y β β x εi
j

m

j ij i0
1 (1)

where for observations indexed by = ⋯i n1, , , yi is the target
variable, xij is the value of the jth predictor variable, m is the number of
predictor variables, β0 is the intercept term, βj is the regression coeffi-
cient for the jth predictor variable and ∊i is the random error term. The
coefficients βj are commonly estimated by the ordinary least squares

Table 1
Land cover naturalness scores, adapted with permission from (Carver et al.,
2012).

LCM2007 class Naturalness score

Broad-leaved woodland: semi-natural 5
Broad-leaved woodland: mixed 4
Broad-leaved woodland: planted 3
Coniferous woodland: semi-natural 5
Coniferous woodland: mixed 4
Coniferous woodland: planted 3
Arable and horticultural 2
Improved grass 2
Neutral grass 3
Calcareous grass 3
Acid grass 4
Bracken 4
Dwarf shrub heath 4
Bog 5
Inland water: natural 5
Inland water: raised 4
Inland water: impounded 3
Montane habitats 5
Inland rock 5
Built up areas 0
Supra littoral rock 5
Supra littoral sediment 5
Littoral rock 5
Littoral sediment 5
Saltmarsh 4
Sea/Estuary 5
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(OLS) method. A MLR model frequently suffers from two commonly
observed effects in spatial data: spatial autocorrelation of observation
and process spatial heterogeneity (Anselin, 2010). To overcome these
effects, a GWR can be applied (Brunsdon et al., 1996). A GWR is similar
to a linear regression, except that it calculates a series of local linear
regressions rather than a global one. It uses data falling within a moving
window or kernel at a series of discrete locations, such as grid cells. In
this process, it gathers data from nearby locations and thereby gen-
erates local and spatially varying coefficient estimates. A GWR model
has locations associated with the coefficient terms and can be expressed
as:

∑= + +
=

y β u v β u v x ε( , ) ( , )i i i
j

m

j i i ij i0
1 (2)

where u v( , )i i is the spatial location of the ithobservation and
β u v( , )j i i is a realization of the continuous function β u v( , )j at pointi. As
with the linear regression model, the set of εi obeys an independent
normal distribution with a zero mean and common variance σ2.

Critical to any GWR is the specification of the kernel, which selects
and weights data to be used in each local model. This geographical
weighting process produces data nearer to the kernel’s centre, making a
greater contribution to the estimation of local regression coefficients at

each local regression calibration point. The bandwidth can either be
specified as a constant (fixed) distance value or as an adaptive one, in
which the number of nearest neighbours is fixed. In this study, a
Gaussian kernel was used to determine the optimal fixed bandwidth.

However, a uniform bandwidth specified in a standard GWR may be
inappropriate in situations in which different predictor variables op-
erate over different spatial scales and, therefore, have unique spatial
relationships with the target variable (Fotheringham et al., 2017; Yang,
2014). A standard GWR, as previously outlined, ignores these differ-
ences and identifies a best-on-average scale of relationship non-statio-
narity for a single kernel bandwidth. This approach may be limited
because it implicitly assumes the same spatial scale for each predictor,
and these scales may be incorrect. To rectify this problem, a mixed (or
semiparametric) GWR (MX-GWR) can be applied (Brunsdon,
Fotheringham, & Charlton, 1999; Mei, Xu, & Wang, 2016), in which
some relationships are assumed to be stationary (i.e. globally fixed as in
a standard OLS), whereas others are assumed to be non-stationary (i.e.
locally varied as in a standard GWR). However, a mixed GWR only
partially addresses the problem, as locally-varying relationships are
assumed to operate at one of two spatial scales. Consequently, a mul-
tiscale GWR was proposed by (Fotheringham et al., 2017; Yang, 2014).
In a MGWR model, an individual bandwidth is determined for each
predictor variable. This allows the scale of relationship non-stationarity

Table 2
The calculations of walking time for the remoteness indicator.

Data source Specific type Speed (km/h) Cost (second) Criteria

Ground cover influence LCM2007
OS MasterMap

Heather and forest 3 = ∗T S1.2 Δ self-defined
Bog 2 = ∗T S1.8 Δ
Other types 5 = ∗T S0.72 Δ
Crossable rivers 0.03 = ∗T S120 Δ
Roads and tracks 15 = ∗T S0.24 Δ

Gradient influence DEM Uphill (slope > °0 ) + 10mins/100 m of ascent = ∗ + ∗T a SΔ 6 ΔH Naismith’s rule

Slight downhill (- °5 < slope < °0 ) 5 = ∗T a SΔ Langmuir’s correction

Moderate downhill (- °12 < slope < - °5 ) − 10min/300 m of descent = ∗ + ∗T a SΔ 2 ΔH

Steep downhill (slope < - °12 ) + 10min/300 m of descent = ∗ − ∗T a SΔ 2 ΔH
Barrier influence OS MasterMap Unfordable rivers (i.e. polygons) self-defined

where T is time in second.
SΔ is the horizontal cell distance/resolution in metres.
HΔ is the vertical elevation difference between cells in metres.

a is the horizontal cost factor according to different land cover types.

Fig. 1. The standardised Scenic-Or-Not ratings (scenicness) and the four wildness components (i.e. absence, naturalness, remoteness and ruggedness) for Great
Britain aggregated over a hexagonal grid with a cell width of 5 km.
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to vary for each target-to-predictor variable relationship, as described
in Equation (3):

∑= + +
=

y β u v β u v x ε( , ) ( , )i i i
j

m

bwj i i ij i0
1 (3)

where bwj in βbwj indicates the bandwidth used to calibrate the jth

conditional relationship. The MGWR model calibration uses an iterative
back-fitting procedure; thus, the computational overheads are high
when handling a large number of observations (Oshan, Li, Kang, Wolf,
& Fotheringham, 2019).

3. Results

3.1. Exploratory analysis

The pairwise Pearson correlation analysis is shown in Fig. 2. It re-
veals significant positive associations between each wildness compo-
nent and scenicness. Naturalness has the highest correlation

= <γ p( 0.75, 0.001), and the scatter plot shows that the association
approximates to a linear relationship. Similar values were found for
absence = <γ p( 0.7, 0.001), ruggedness = <γ p( 0.62, 0.001), and re-
moteness = <γ p( 0.56, 0.001). There is little evidence of bivariate
correlation among explanatory variables except for that between ab-
sence and remoteness = <γ p( 0.76, 0.001). This correlation is

plausible; a lack of intervening man-made features is likely to be con-
founded by inaccessibility. Hence, two multiple regression analyses
were used to deduce whether remoteness acted as a confounder, cou-
pled with the diagnostics of collinearity. Variable collinearity may have
adverse effects on the estimation of MLR coefficients (O’Brien, 2007).
Local collinearity may be found in local data subsets in a GWR, even
when not observed globally (Wheeler & Tiefelsdorf, 2005). However,
more recent research has suggested that collinearity is unproblematic
where the correlation is< 0.8 or>−0.8 (Comber & Harris, 2018). The
robustness of GWR to the effects of multicollinearity has been also
demonstrated, particularly with a large sample size (A Stewart
Fotheringham & Oshan, 2016; Páez, Farber, & Wheeler, 2011).

3.2. Multiple linear regression

Two MLR models of scenicness were fitted, one with remoteness and
one without. The inclusion of remoteness mildly influenced the coeffi-
cient estimates of the other predictors (Table 3). The sign of the coef-
ficient estimate for remoteness was negative, contradicting the positive
correlation reported in the previous section but indicating interaction
amongst predictors. The variance inflation factor (VIF) diagnostics for
each predictor confirmed the lack of collinearity in both models with all
VIFs values below 10 (Belsley, Kuh, & Welsch, 1980). A marginally
improved model fit with all covariates was found, as indicated by the
adjusted R-squared and corrected Akaike information criterion (AICc)

Fig. 2. Pearson pairwise correlation, scatterplots and distributions of the input data (significance indicated by ***<0.001, **<0.01, *< 0.05).
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values (see Table 3). The model had an adjusted R-squared of 0.71,
suggesting that the 71% variation in public scenic ratings can be ex-
plained by them. The coefficient estimates in Table 3 indicate that all
covariates are significantly associated with scenicness. Absence, nat-
uralness, and ruggedness exhibited significantly positive relationships
with scenicness, while remoteness exhibited a negative one. However,
the MLR coefficient estimates should be interpreted with caution as the
model residuals were found to be spatially autocorrelated (Moran’s
I = 0.267, p < 0.001; Jarque-Bera statistic = 15074, p-value <
0.001). The map of residuals (Fig. 3) highlights areas where the global
model overestimated (red) and underestimated (blue) landscape scenic
beauty, showing some evidence of clustering (and, therefore, spatial
autocorrelation). The overpredictions tended to occur in urbanised re-
gions, including major cities in England, Wales and Scotland, whilst the
underpredictions emerged predominantly in rural regions. The map of
outliers (i.e. where t-values are greater than +1.96 or less than −1.96)
(Fig. 3) indicates that negative outliers were largely found along the
coastline. Positive ones were clustered around the Lake District and the
Northwest Highlands, both of which are scenic mountainous landscapes
with high cultural value. A plausible explanation could be that cultural
and topographical characteristics not captured by the covariates (e.g.

agro-pastoral scenery and terrain openness) may positively influence
perceptions of aesthetic value in these areas. The Koenker’s studentised
Breusch-Pagan statistic was used to further determine if there was a
non-constant variance in the residuals. It was found to be statistically
significant (BP = 2337.7, df = 4, p-value < 0.001), indicating that
the relationships between some or all of the predictors and the response
were non-stationary. This finding emphasizes the need for methodolo-
gies such as the GWR and MGWR, which can explore spatial hetero-
geneity in data relationships and account for the spatial autocorrelation
of the input variables. The following analyses and comparisons were
undertaken using all four covariates.

3.3. Standard GWR and multiscale GWR

As collinearity may be present in local subsets under the GW fra-
mework (Wheeler & Tiefelsdorf, 2005) despite a global absence, the
GWR and MGWR analyses were coupled with the local collinearity di-
agnostic tests using the mgwr Python package (Oshan et al., 2019).
Fig. 4 shows the variability of the local condition numbers (CN) for both
the GWR and the MGWR models. In the GWR model, some areas
(predominantly in Southern England) were highly affected by colli-
nearity, with many areas having a CN greater than 30. These numbers

Table 3
The coefficient estimates and associated p-values of the MLRs with and without remoteness.

MLR without Remoteness MLR with Remoteness

Variable Coefficient Estimate Standard Error t-value p-value VIF Coefficient Estimate Standard Error t-value p-value VIF

Intercept 4.606 0.006 778.220 0.000 – 4.606 0.006 779.099 0.000 –
Absence 0.421 0.007 57.440 0.000 1.533 0.454 0.010 47.222 0.000 2.641

Naturalness 0.489 0.008 62.630 0.000 1.741 0.496 0.008 62.732 0.000 1.787
Remoteness – – – – – −0.048 0.009 −5.261 0.000 2.415
Ruggedness 0.303 0.007 42.890 0.000 1.423 0.303 0.007 42.942 0.000 1.423

Adjusted R2 = 0.709, AICc = 23,027 Adjusted R2 = 0.710, AICc = 23,001

Fig. 3. The quantile-classified residual map (left) and the outlier map (right)
highlights areas where the global model overestimated (red) and under-
estimated (blue) landscape scenic beauty.

Fig. 4. The diagnostic tests of the local collinearity for the GWR (left) and the
MGWR (right) models using quantile breaks.
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are indicative of significant collinearity amongst the predictor variables
(Belsley et al., 1980; Gollini, Lu, Charlton, Brunsdon, & Harris, 2015).
This collinearity may be caused by the single GWR bandwidth, which
can increase collinearity between variables (Oshan & Fotheringham,
2018). All of the local MGWR models were found to have CNs of less
than 3.

Bandwidth selections for both the GWR and MGWR models were
optimised using a cross-validation approach under a Gaussian
weighting kernel. Table 4 summarises the spatial distribution and
variation of the coefficient estimates from the two analyses, along with
the MGWR bandwidths. The GWR and MGWR improve the fit as ex-
pected (GWR: adjusted R2 = 0.818; MGWR: adjusted R2 = 0.831) over
the MLR (adjusted R2 = 0.710). However, it would be unwise to
compare the three models by their adjusted R2 only. Cross-model fits
can be compared more effectively using specific information criteria
such as the AICc, which accounts for both model parsimony and pre-
diction accuracy. Large improvements (decreases) in the AICc fit were
found using GWR and MGWR models (AICc = 18,430 and 18,313 re-
spectively) than that found using a MLR model (AICc = 23,001).
Overall, the GWR coefficient estimates show a higher variation than the
MGWR ones – as indicated by the interquartile range (IQR) – except for
the intercept. The low variation of the intercept could be caused by the
single average bandwidth of the GWR model, which is narrower than
the bespoke bandwidth for the individual predictor but wider than the
bandwidth for the intercept from the MGWR.

Figs. 5 and 6 show the mapped GWR and MGWR coefficient esti-
mates for the intercept and each covariate along with their statistical
significance (i.e. t-values over 1.96 or below −1.96), as indicated by
the grid outlines, creating darker areas on the maps. Comparisons of
coefficient surfaces can deepen understandings of spatial and scale
variations. Some marked differences between the standard GWR and

MGWR models are present. First and foremost, all of the covariate
coefficient estimates in the GWR model inflect from negative (red) to
positive (blue), indicating both negative and positive associations with
scenicness. Nearly all of the coefficient estimates in the MGWR model
are positive, with some highly localised negative values for absence
(highlighting the limitations of a standard GWR with a 15.2 km band-
width, which may misrepresent parameter-specific relationship scales).
This is confirmed by the MGWR bandwidths of 32.9 km for absence,
118.6 km for naturalness, 1944.2 km for remoteness, and 48.7 km for
ruggedness. Similarly, the GWR model has the largest variation in
coefficient estimates for remoteness (IQR = 0.704), with its effects
changing in sign for England in particular but with little significance.
The MGWR output for remoteness shows limited variation, indicating a
largely stationary process. This stationary quality is reflected by its
wide bandwidth; it has a weak relationship with scenicness compared
to the other covariates. This weak correlation is plausible given that
remoteness is mainly concerned with landscape accessibility. While
accessibility is essential for stimulating people’s perceptions of a land-
scape, it does not necessarily contribute to an area’s scenic attractive-
ness.

The MGWR bandwidths for the intercept and the other covariates
indicate their degree of localness in their relationships with perceived
landscape scenic beauty. The intercept operates at a highly localised
scale of 5.7 km, with a similar spatial pattern to that observed in the
map of MLR residuals (Fig. 3). This suggests that much of the residual
autocorrelation may have been captured by the locally varying inter-
cepts which could help guide further data acquisition and analysis. The
MGWR coefficient estimates for absence are similar to the GWR esti-
mates because the MGWR bandwidth of 32.9 km is broadly similar to
the GWR bandwidth of 15.2 km. The difference between the GWR and
MGWR is in the significance of those relationships; however, a greater

Table 4
The coefficient estimates arising from the GWR and MGWR models (1Q = 1st quartile, Med = median, 3Q = 3rd quartile, IQR = interquartile range).

GWR Bandwidth: 15.2 km MGWR
Parameter 1Q Med 3Q IQR Bandwidth (km) 1Q Med 3Q IQR

Intercept 4.636 4.821 5.103 0.467 5.7 4.440 4.648 4.956 0.516
Absence 0.148 0.387 0.547 0.399 32.9 0.151 0.326 0.486 0.335

Naturalness 0.217 0.353 0.504 0.287 118.6 0.308 0.336 0.355 0.047
Remoteness −0.090 0.086 0.546 0.636 1944.2 0.035 0.035 0.035 0.000
Ruggedness 0.264 0.429 0.628 0.364 48.7 0.217 0.325 0.444 0.227

GWR: adjusted R2 = 0.818, AICc = 18,430; MGWR: adjusted R2 = 0.831, AICc = 18,313

Fig. 5. The GWR coefficient estimates for the intercept and each wildness covariate with the significance of coefficient estimates denoted by black shaded outlines.
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number of locations have significant coefficient estimates obtained
from the MGWR calibration.

The MGWR results shown in Table 4 demonstrate that absence has a
relatively strong relationship with scenicness (a median coefficient es-
timate of 0.326). However, this relationship was somewhat localised; it
occurred with a MGWR bandwidth of 32.9 km and considerable local
variation, as shown by the IQR of the local coefficient estimates
(0.335). Naturalness has a similar median coefficient value (0.336) and
a wider bandwidth (118.6 km). However, it also has a low IQR (0.047),
indicating weak spatial variation and overall tendencies towards a
global trend. The coefficient estimates for ruggedness has a median
value (0.325), a moderate IQR (0.227), and a localised bandwidth
(48.7 km), indicating that the relationship between this variable and
scenicness varies locally within the study area. The maps in Fig. 6 il-
lustrate the spatial variation of the coefficient estimates derived from
the MGWR calibration. The MGWR coefficient estimates for naturalness
show a clear pattern, with a strongly positive effect in Scotland, sug-
gesting that naturalness may be of particular importance in areas that
are widely renowned for their natural beauty. Comparatively, a decline
in East of England suggests that public perceptions of scenic beauty in
England may be context-dependent – what is perceived as naturalness
in an urban setting might not be seen as such in a more natural context.
Likewise, there are clear differences from west to east in Wales. The
MGWR ruggedness coefficient estimates highlight two areas with high
values: the Lake District, which comprises many areas with rugged
characteristics, and East of England, which does not. In some of the
most rugged landscapes, such as the Northwest Highlands, the asso-
ciation was weakly positive. This also suggests that the effects of rug-
gedness on landscape scenic beauty are relative and context-dependent.

4. Discussion

4.1. Model estimation

In this study, a MLR was fitted as a baseline model after confirming
that the variable collinearity was not an issue globally. The MLR model
did not account for spatial context and its residuals exhibited auto-
correlation, emphasizing the applicability of spatially varying coeffi-
cient models such as GWR. Consequently, a standard GWR was used to
explore the local variations of the relationships between the response
and predictor variables under a single kernel bandwidth, which resulted
in significant levels of local variable collinearity (T. Oshan et al., 2019).
The MGWR analysis, incorporating variable-specific bandwidths, was

found to eliminate local collinearity with a greater number of locations
at which the covariates were found to be significant. MGWR has thus
been advanced as the default geographically weighted model (Comber
et al., 2020; Fotheringham et al., 2017; Lu, Brunsdon, Charlton, &
Harris, 2017; Murakami et al., 2018; Wolf, Oshan, & Fotheringham,
2018) as it makes fewer assumptions about the spatial scales of pro-
cesses related to individual covariates, reducing susceptibility to colli-
nearity.

Of the MGWR estimates, absence has a weaker relationship with
scenicness in Scotland than in England, whereas naturalness showed
strong to weak gradients running north to south and west to east.
Absence has a stronger relationship with scenicness in parts of the
Midlands, East of England and Southwest Wales, with the remainder of
Great Britain either weakly positive or largely non-existent, particularly
Scotland (the landscape with the fewest human modifications). Yet,
there are clear exceptions to this pattern. One such exception was
Scotland’s Central Lowlands – where the country’s largest cities (i.e.
Edinburgh and Glasgow) are located – and the Orkney Islands.
Remoteness was found to have a weak relationship with scenicness and
varied little, and ruggedness was a stronger predictor of scenic beauty
to the south and east – almost the inverse of naturalness. These results
suggest that, aside from remoteness, the factors associated with
crowdsourced measures of landscape aesthetic quality vary by location
and the local landscape contexts. In areas with high urban density,
ruggedness and the absence of human of artefacts have a greater impact
on public landscape preferences. Perceived naturalness, by contrast,
was more strongly associated with scenic beauty in areas with a sparser
population and fewer urban centres. While recognizing that the wild-
ness covariates may not fully capture landscape aesthetic values (for
example, by failing to capture the cultural aspects of landscapes)
(Tieskens, Van Zanten, Schulp, & Verburg, 2018) these findings high-
light strategies for future landscape enhancement and conservation
throughout the United Kingdom.

4.2. Limitations and future research

This analysis used data aggregated to 5-km hexagonal grid cells. All
analyses of spatial data are subject to the modifiable areal unit problem
(MAUP) (Openshaw, 1984a, 1984b). In brief, the MAUP posits that
statistical distributions, relationships and trends exhibit widely dif-
ferent properties when the same data are aggregated or combined over
various reporting units at different spatial scales. It describes the pro-
cess of distortion in calculations and differences in outcomes due to

Fig. 6. The MGWR coefficient estimates for the intercept and each wildness covariate with the significance of coefficient estimates denoted by black shaded outlines.
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aggregation (the scale effect), as well as the configuration of the zoning
system (the zoning effect) (Fotheringham & Wong, 1991). Future work
will examine the effects on the findings of different scales of aggrega-
tion and zonings, particularly in the context of determining optimal
MGWR bandwidth and the process scales they suggest.

A further limitation relates to the opinions captured in the Scenic-
Or-Not dataset. Each image in the Scenic-Or-Not database has at least
three ratings, but nothing is known about the demography of the con-
tributors. It is well known, however, that different groups interpret
landscapes in different ways (Comber et al., 2016) and that these in-
terpretations may or may not be representative of general public opi-
nion (Oteros-Rozas et al., 2018). The Scenic-Or-Not data may represent
a biased sample of landscape aesthetics preferences. Additionally, the
motivations of contributors for their scores were unknown. Finally, the
use of photographs as a proxy for the in-person experience of a land-
scape may cause bias associated with aesthetic considerations or
framing. Perceptions of an online photograph do not always relate to in
situ direct observations and perceptions (Palmer & Hoffman, 2001).

This work showed how spatially explicit approaches such as MGWR
support enhanced understandings of the relationships between land-
scape covariates and public landscape preferences. Such methods (in-
cluding the use of crowd-sourced data, such as the dataset provided by
Scenic-Or-Not), can be effective exploratory tools for spatially un-
packing socio-environmental relationships. These methods offer a
bridge between subjectivist and objectivist paradigms in support of
local planning. Landscape planners and practitioners might benefit
from using this technique to facilitate targeted management, thus
conserving valuable landscape characteristics and features. The iden-
tification of spatially varying relationships can also be used to guide
further data acquisition and analysis, augmenting the development of
more informed landscape policies. This supports integrated mapping
approaches for incorporating data from perception-based surveys. By
supplementing inputs into current LCA evaluations and complementing
current conceptual frameworks for CES (Kerebel, Gélinas, Déry, Voigt,
& Munson, 2019), such efforts sensitively connect both the human and
the natural components of landscapes.

5. Conclusions

This study explored the relationships between crowdsourced mea-
sures of perceived landscape scenic beauty as captured in the Scenic-Or-
Not dataset (scenicness), alongside components of formal landscape
wildness (i.e. absence of human artefacts, perceived naturalness of land
cover, remoteness from mechanised access and rugged and challenging
terrain). It used both non-spatial (standard regression) and spatial re-
gression (GWR and MGWR) models. The results of this analysis illus-
trate the limitations of a standard GWR, which is liable to overfit some
variables while underfitting others. The variable-specific, or bespoke,
bandwidths in the MGWR resulted in a more spatially nuanced model
with the potential to facilitate deeper understandings of landscape
processes and relationships.

Under a standard regression model, the model residuals (errors)
were found to be spatially autocorrelated. A standard GWR was un-
dertaken but was found to both overfit and underfit the model due to
the use of a single bandwidth for all variables. This resulted in highly
localised patterns of variation in the coefficient estimates, demon-
strating both positive and negative associations with perceived land-
scape beauty in different locations. To address this limitation, a MGWR
was undertaken to allow the parameter-specific scale of the relationship
between the target variable and each landscape factor to vary, enabling
local (spatially non-stationary) and global (stationary) relationships
between them. The MGWR results indicate that the relationship be-
tween remoteness and scenicness operates on a global scale, whereas
the relationships for absence, naturalness and ruggedness operate over
several degrees of localness. These findings support the use of MGWR as
an exploratory tool, reinforcing the notion that it should function as the

default geographically weighted model. It holds great potential for
bridging objectivist and subjectivist paradigms and supporting in-
tegrated landscape assessments. A standard GWR should only be un-
dertaken if there is evidence that the covariates have the same scale of
relationship with the target variable. Unfortunately, most existing ap-
plications of a GWR in landscape literature and practice do not do this.
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