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Bootstrap analysis of the correlations between neutron skin thickness

and the slope of symmetry energy

A. Pastore

Department of Physics, University of York, Heslington, York, Y010 5DD, UK

This work illustrates the use of bootstrap methods to quantify the statistical uncer-

tainties on the correlation coefficients between the slope of the symmetry energy and
the neutron skin thickness in heavy nuclei. By using several energy density functionals, I
discuss the density dependence of such a correlation and its evolution with isospin asym-

metry. In particular, I observe that the correlation between the slope of the symmetry
energy and the neutron skin is present not only at saturation density, but over a much
larger density range.

Keywords: nuclear matter, nuclear-structure models, bootstrap

PACS numbers:21.65.Mn 21.60.Jz nuclear-structure models

1. Introduction

The equation of state (EOS) of dense nuclear matter is the key ingredient to study

the properties of massive astrophysical objects as neutron stars .1 Several studies

have shown that there is a strong correlation between properties of the EOS in

infinite nuclear matter (INM) and various features of a neutron star (NS), such as

the density, pressure, radii, maximum mass, cooling rate, and the crust-core tran-

sition.2–15 Although properties of INM can not be measured directly, it is anyhow

possible to relate some of them to observables of atomic nuclei: for example, infor-

mation on nuclear incompressibility can be inferred by studying the behaviour of

giant monopole resonances.16,17

In recent years, a series of articles on the possible correlation between the slope of

the symmetry energy L0
18 and the neutron skin thickness, ∆rnp, in heavy nuclei has

attracted a lot of attention:19–22 thanks to this strong correlation, by performing

accurate measurements of neutron skins thickness23 it would be possible to put

strong constraint on the resulting value of L0 for a given nuclear model.

All these analysis are based on the use of a simple statistical estimator, the

Pearson coefficients24

r =
cov(X,Y )

σXσY

. (1)

cov(X,Y ) is the covariance of two data-sets X,Y having variance σ2
X , σ2

Y respec-

tively. The coefficient r can take any value in the range [−1, 1]. When r ≈ +1(−1),

2
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one says that the two data-sets are correlated (anti-correlated) and, if r ≈ 0, one

says that the two data-sets are not correlated. It is worth noting that the results

obtained with Eq.1 could be sometimes misleading since the correlation could be

driven artificially by few outliers in the data-set. For more details, I refer to Ref. 25.

To prevent such a problem, in Ref. 26 a more rigorous hypothesis testing has been il-

lustrated. To this purpose is thus necessary to evaluate both the Pearson coefficient

and its error bars. The latter should not be derived under the approximation of nor-

mality of the underlying distribution of the estimator via Fisher transformation27

because this hypothesis breaks down if some outliers are present. See discussion in

Ref. 26

To avoid such a problem, I illustrate a different statical approach based on non

parametric bootstrap (NPB). NPB has been firstly introduced by Efron in 197928

and it relies on a very simple idea: given a data-set and a particular estimator (as

for example the correlation coefficient in Eq.1); one builds new series of data-sets by

resampling the original one. By applying the same estimators to the resulting data-

sets, one gets the empirical distribution of the estimator. The hypothesis done by

Efron is that such empirical distribution follows closely the true one. Having then

access to the distribution of the estimator, it is possible to assess the error bars

without postulating the type of the distribution as done using Fisher transforma-

tion. NPB is nowadays a common methodology used in several domain of science

and a vast literature on the topic is available.29–33

The aim of the present article is to apply the NPB for a systematic assessment

of the correlation between L0 and ∆rnp and in particular to evaluate how such a

correlation evolves in function of other important quantities as the density of the

nuclear medium and isospin asymmetry.

The article is organised as follows: in Sec.2 I introduce the models used to extract

the information on neutron skin thickness, while I give a short introduction to NPB

in Sec. 3. The results of my analysis are presented in Sec.4 for the 208Pb case and

extended in Sec.5 to other isotopic chains. In Sec.6, I briefly discuss the correlation

with the symmetry energy and the role of the selected data-set. In Sec.7, I present

my conclusions.

2. Neutron skin

Neutron skin thickness is defined as the difference between the radial extension of

the neutron density against the proton one. This quantity has been very difficult to

access experimentally and only recently thank to new pion-scattering methods,23

it is now possible to measure it with very high accuracy.

From the theoretical point of view, the neutron skin thickness is usually ex-

tracted using a two-parameter Fermi function (2pF). The matter density of neu-

trons and protons is parametrised as
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Fig. 1. (Colors online) Evolution of neutron skin as a function of isospin asymmetry Iasym = N−Z
N+Z

in different isotopic chains and different functionals. Filled symbols refer to the 2pF while open
ones refer to Helm model calculations. See text for details.

ρq(r) =
ρ0q

1 + exp[(r − Cq)/aq]
. (2)

where q = n, p is the isospin index that stands for neutron (n) and proton (p);

ρ0q, Cq, aq are adjustable parameters. For a more detailed discussion I refer to

Ref. 20 .

Although the matter densities can be extracted using several many-body meth-

ods, the tool of choice to describe the systematic behaviour of nuclei along the whole

nuclear chart is the nuclear energy density functional (NEDF) theory.34 In the

present article, I will use a variety of functionals both non-relativistic as Skyrme35

and Gogny36 and relativistic37 adjusted using various optimisation procedures.38

By performing Hartree-Fock-Bogoliubov (HFB)39 calculations using various func-

tionals, I obtain the fully self-consistent matter densities and then fit the parameters

of the 2pF to extract the resulting neutron skins.

In Ref 40, a different approach based on Helm model was proposed to extract

neutron skin thicknesses. The main advantage of the Helm model is to obtain more
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robust results that are independent on shell fluctuations in nuclear matter interior.41

See Appendix A for details.

Apart from the very specific case of halo-nuclei,42,43 there is no a priori reason to

select 2pF over Helm model to extract the neutron skin thickness, as a consequence

I will use both in my analysis.

In Fig.1, I show a systematic comparison of the neutron skin as a function of

isospin asymmetry Iasym = N−Z
N+Z

calculated using different functionals: the zero-

range Skyrme SLy4,44 the finite-range Gogny D1M interaction45 and the relativistic

Lagrangian DD-ME2.46 It is worth noting that for the D1M and DD-ME2 model,

the pairing interaction is fixed and derived from a complete fitting procedure. The

SLy4 functional, being fitted on double-magic nuclei only, leaves some freedom in

adjusting the strength of the pairing interaction. In the present article I used the

finite range interaction expressed in its separable form47 adjusted to reproduce

the pairing gaps of the Gogny D1S interaction in infinite nuclear matter.48 I have

checked, in Sn isotopes, that modifying the pairing interaction so that the pairing

gap in 120Sn varies between 1 to 2 MeV leads to a total change in the neutron skin

of less than 3%. The role of pairing may be more important when approaching the

drip-line, but in the present article I will study mainly very well bound nuclei and

thus a very detailed analysis of pairing correlation is not necessary.

From Fig.1, I observe that 2pF and Helm model are very close to each other when

Iasym ≈ 0 and they start to deviate remarkably when Iasym > 0.15. In general, both

methods provide similar trends, roughly independently on the selected functional,

apart from the ending regions of each isotopic chains. It is important to observe

that the difference between the skins extracted via 2pF and Helm model is not a

simple constant shift, but one can clearly observe an isotopic dependence. It is thus

important to keep both models for the following analysis.

3. Non-parametric bootstrap

Non-parametric bootstrap is a statistical method used to evaluate the bias of some

particular estimators28 . NPB is based on the simple assumption that any exper-

imental data-set contains informations about its parent distribution thus, if the

data-set is sufficiently large, one can simply replace the original parent distribution

via the empirical one obtained from the sample. The latter is then approximated

via Monte Carlo methods by performing resampling of the original data-set.

Following Ref 26, one assumes to have a data-set formed by n independent

quantities X = (x1, x2, . . . , xn) and a real-valued estimator of the parameter θ̂.

The origin of the data is not specified and thus it could be derived either from a

real experiment or from a simulation. The case of correlated data has been discussed

in Refs 49, 50. From X, one re-samples the data creating a series of new data-sets

called X∗. It is then possible to apply the estimator to this new set θ̂∗ and thus

obtain its empirical distribution. Once one has such a distribution is then possible

to extract informations concerning error bars.
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It is important to notice that during the re-sampling of the original data-set,

repetitions are allowed. For a data-set of size n, one can evaluate the number of

possible combinations as

(

2n− 1

n

)

=
(2n− 1)!

n!(n− 1)!
. (3)

Although there is no clear consensus in the literature on what would be the optimal

value for n. It is clear that a too small value of n will give rise to a very limited

amount of combinations and as such little information will be extracted from the

method. It is worth mentioning, that NPB introduces an additional bias σB to

the estimator that scales as 1
NB

where NB is the number of Bootstrap samples

generated. By taking NB ≈ 3 · 104, as done here, the bias is then negligible. One

can thus impose as a safe condition that the number of available combinations

should be much larger than NB . As a consequence a value of n larger than 10 will

be enough. See Refs. 51, 52 for more details.
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Fig. 2. (Colors online) Neutron skin thickness in 208Pb as a function of L0 for various models as
given in Tab 1. Filled symbols refer to the 2pF while empty ones refer to Helm model calculations.
See text for details

4. Results for 208Pb

In this section, I study the correlation between slope of the symmetry energy at

saturation density and ∆rnp in 208Pb. The interest in this nucleus is also related to

the important effort done by the experimental community to improve the accuracy

of the measurements of ∆rnp.
23,53,54

To extract ∆rnp, I performed various Hartree-Fock (HF) calculations using se-

lected functionals. In particular I considered 58 Skyrme functionals, 2 Gogny inter-
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actions and 6 Lagrangians. In Tab. 1, I report the complete data set as well as the

main infinite nuclear matter properties around saturation density ρ0. The choice of

the data set has been data to cover as much as possible the different families of func-

tionals: the selected Skyrme functional include explicit 3-body terms,55 higher order

gradients56 and additional density-dependent terms.57,58 The Lagrangian used in

this work contains a variety of model: density dependent,46 point-coupling59 and

non linear density-independent models.60 For a quick overview and comparison

among the different models employed here, I refer the reader to Ref. 18 for Skyrme

models and Ref. 60 for relativistic ones.

The slope of the symmetry energy is defined as the first derivative of the sym-

metry energy J(ρ) evaluated at saturation density, J0 = J(ρ0),

L0 = 3ρ0
∂J(ρ)

∂ρ

∣

∣

∣

∣

ρ=ρ0

(4)

The typical range of variation of L0 is quite large 18,60 with an interval spanning

L0 ∈ [−500, 250] MeV. Clearly such a range of variation is probably too large

especially when comparing with results extracted from ab-initio methods where

one finds a value of L0 ≈ 60 MeV.7 As a consequence, it is possible to use such

an information to define a more reasonable interval of variation for L0. In the

present article, I selected functionals having an L0 in the window L0 ∈ [0, 120].

This choice is arbitrary, but it is compatible with the vast majority of current

available constraints on this quantity (including error bars) coming from terrestrial

or astrophysical measurements.61

By mean of a parabolic expansion,62,63 one can write the EOS of asymmetric

nuclear matter64 as
E(ρ,Iasym)

A
= E(ρ)

A
+

Esym(ρ)
A

Iasym, where E(ρ)
A

is the EOS of

symmetric nuclear matter. The last term of this expression is usually written as a

Taylor expansion around saturation density 65

Esym(ρ)

A
≈ J0 + L0

(

ρ− ρ0
ρ0

)

+ . . . (5)

By accurately constraining the value of J0 and L0 is thus possible to have a better

understanding of the properties of the EOS in asymmetric matter around satura-

tion. I refer to Ref. 66 to discuss the extra derivative terms appearing in Eq.5 and

not reported here for simplicity.

4.1. Bootstrap analysis

Having introduced the basic idea of bootstrap and the data-set used for the analysis,

I now perform the statistical analysis. In the two panels of Fig.2, I represent the

results of the HF calculations using 66 values obtained with the chosen data-set:

on the x-axis I report the values of the slope of the symmetry energy L0 extracted
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at saturation density and on the y-axis the neutron skin thickness defined either

using the simple 2pF (filled symbols) and Helm model (empty symbols).

On the vertical axis, I have reported the most recent experimental value from

Ref. 23 with its confidence interval. On horizontal axis, I have reported the accept-

able value for L0 as given in Ref. 18. In this case such an interval is not based on a

direct measurements thus it has not the same statistical meaning of the confidence

interval of the experimental measurement on the y-axis, but it can be viewed in a

Bayesian approach as a prior knowledge acquired during several previous studies.61

By a simple visual inspection of Fig.2, one observes that all points lie on a

line, independently on the way one extracts ∆rnp (2pF or Helm). To quantify such

a relation, I calculate the Pearson coefficient for the two models.67 The result is

r = 0.94 for the 2pF and r = 0.93 for the Helm model. The number alone has

no meaning, since to determine if there is or not a correlation one has to make an

hypothesis testing in a statistical sense.24 To this purpose it is crucial to determine

the confidence interval of such an estimator.

I apply NPB to the two data-sets following the procedure described in Sec.3.

By performing NB = 3× 104 Monte-Carlo iterations on the two data-sets, I obtain

the distribution shown in Fig.3. Since Helm and 2pF results turn out to be quite

similar, I report in the figure only the 2pF ones. The vertical lines indicate the 95%

confidence interval. I obtained

r̄ = 0.94+0.04
−0.04 2pF

r̄ = 0.93+0.04
−0.04 Helm

(6)

It is worth observing that the random re-sampling of the original data-set pro-

duces new sets of data where some of the points are either omitted or repeated.

This is an excellent test to check the robustness of the selected data-set against

possible outliers that may artificially drive the correlation. I refer to Ref. 26 for a

specific example.

On the same figure, I also illustrate the distribution of the Spearman estimator.68

The latter is a non-parametric measure of rank correlation. It assesses how well the

relationship between two variables can be described using a monotonic function.

Using different statistical tests is important since a given estimator can be fooled

by a particular structure of the data-set. I apply the same NPB to this new test.

The average values of Spearman coefficient ρ̄ are

ρ̄ = 0.90+0.05
−0.07 2pF

ρ̄ = 0.90+0.07
−0.07 Helm

(7)

In both cases, i.e. using r̄ or ρ̄, and for both 2pF and Helm model, it is possible

to safely reject the null-hypothesis of non-correlated data with an accuracy larger

than 95%. I conclude that the data set I used is robust and the correlation I observe

is not associated with the specific choice of the data-set.



July 26, 2020 17:48 WSPC/INSTRUCTION FILE skin

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

C
o

u
n

ts

Pearson
Spearman

Fig. 3. (Colors online) Distribution of the correlation coefficients of the bootstrap data set for
the 2pF model using Pearson and Spearman correlation tests in 208Pb. Vertical lines indicate the
interval containing 95% of the counts. See text for details.

These results simply confirm the findings in Ref. 19, but for a different group

of functionals. This means that the observed correlation does not depend on the

specific choice of the functionals used to form the data-set.

At this stage of the analysis it is also important to observe that for a given

functional the resulting value of the skin strongly depends on the adopted model

(Helm or 2pF) used to calculate ∆rnp, as a consequence the value of L0 constrained

using possible experimental values will be model dependent. Such an additional

source of uncertainty should then be properly taken into account in future analysis.

4.2. Density dependence

In the previous section, I have studied the correlation between L0 and the neutron

skin in 208Pb. The correlation is very robust against the particular choice of the

data-set, i.e. the choice of the NEDF used to perform the study and it is also

robust in respect to the particular choice of the method used to extract ∆rnp (2pF

or Helm) and statistical estimator (Pearson or Spearman).

Since the nuclear density within a nucleus is not a constant, but it exhibits

a strong position dependence, it is thus worth considering how the neutron skin

of 208Pb correlates, eventually, to the slope of the symmetry energy calculated at

various densities. For completeness, I recall that L(ρ) is calculated as

L(ρ) = 3ρ
∂J(ρ)

∂ρ
, (8)

where J(ρ) is the symmetry energy. In Fig.4, I show the evolution of L(ρ) as a

function the density of the infinite medium for a subset of the functionals used in

the current work. A very striking feature of Fig.4, is that each functional shows a



July 26, 2020 17:48 WSPC/INSTRUCTION FILE skin

10

0.4 0.6 0.8 1 1.2 1.4 1.6
ρ/ρ

0

20

30

40

50

60

70

80

L
(ρ

) 
[M

eV
]

BSk16
BSk18
BSk19
BSk20
BSk21
F+
F-
F0
KDE
KDEv1
LNS1
Sefm081
SGII
SIII
SKA
SkM*
SLy5

Fig. 4. (Colors online) Density dependence of the slope of the symmetry energy for a set of Skyrme
functionals.

peculiar density dependence: for some functionals going from low to high density,

L(ρ) increases and for other functionals it decreases. In general one observes that in

the low density region the spread is smaller than the one observed in high density,

but the strong functional dependence is evident. This is not surprising since the

explicitly density dependence of L(ρ) is not typically constrained during fitting

procedures as a consequence one observes such a large variance.

In Fig.5 (left panel), I show the scatter plot ∆rnp extracted via 2pF model as

a function of L(ρ) for different values of the density of the infinite medium. One

observes a striking by eye linear correlation between ∆rnp and L at various density

values. A similar results has been obtained using the Helm model and thus not

reported in the figure.

To be more quantitative, in the right panel of Fig.5, I show the evolution of the

Pearson coefficient for the different values of the density including the error bars

corresponding to 95% confidence level as extracted via NPB methods. I actually

observe a very strong correlation, i.e. r > 0.9, with reasonably small error bars

on a large density interval ρ ∈ [0.5ρsat, ρsat]. On the same figure I also report the

Spearman test ρ̄ with very similar outcome. I actually observe that the maximum

of the correlation between ∆rnp and L takes place at ρ/ρsat ≈ 0.6−0.7 where both

tests give a very high value of correlation. Similar conclusions apply when using the

Helm model to extract ∆rnp. A similar conclusion was also obtained in Refs.69,70

but using different methodologies.

At very low density, an anti-correlation seems to appear, but the error bars are

so large that it is not possible to reject with enough accuracy the null hypothesis

of non-correlation.

Given the behaviour of L(ρ) shown in Fig.4 and the outcomes of Fig.5, I conclude

that there is a persistent correlation between L and ∆rnp in 208Pb, but the exact

values of density of infinite nuclear matter at which one should calculate L is not
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Fig. 5. (Colors online) Left panel: neutron skin thickness in 208Pb as a function of L(ρ) for data-

set defined in Tab.1 at six distinct values of the density, solid lines are obtained with a linear
regression simply to guide the eye. Right panel: evolution of Pearson coefficient r̄ and Spearman

coefficient ρ̄ as a function of the density at which L is calculated according to Eq.8 for 208Pb. See
text for details.

clearly determined.

5. Isospin dependence

5.1. Doubly-magic nuclei

The previous analysis on 208Pb points in the direction of strong correlation between

neutron skin and slope of symmetry energy over a quite large density interval and

different models. I repeat the analysis for other relevant doubly-magic nuclei as
40Ca, 48Ca, 56Ni and 132Sn.

In Fig.6, I report the results of the neutron skin extracted via 2pF and Helm

model for these four doubly-magic nuclei. I observe that for 40Ca and 56Ni the

are scattered and no clear trend is observed. In this case, both the Pearson and

Spearman coefficients are very low and taking into account the error bars extracted

via NPB I can affirm they are compatible with zero for any density at which L(ρ)

may be calculate. As discussed in Ref. 25, in N=Z nuclei the strong correlation

disappears. This means that the possible proton skin is essentially governed by

other effects as Coulomb interaction and very little related to the slope of the

symmetry energy.

In the other two nuclei,i.e. 48Ca and 132Sn , the data nicely align although

the slope of the intercept has a strong isospin dependence. For 48Ca, I get r̄ =

0.88+0.05
−0.06 using 2pF model at saturation, while for 132Sn I obtain r̄ = 0.94+0.03

−0.04.

It is interesting to observe the evolution of such a correlation as a function of the

density at which L(ρ) is calculated. The results are presented in Fig.7 for both

Pearson and Spearman coefficients with error bar as extracted via NPB method.

For sake of simplicity I report only the results obtained with the 2pF model, but

the one obtained with Helm model give very similar results.
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Fig. 6. (Colors online) Neutron skin extracted via 2pF (full symbols) and via Helm model (open
symbols) as a function of the slope of the symmetry energy for different functionals and different
nuclei. See text for details.
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I observe that, in a very similar way as shown in Fig.5, the correlations between

L(ρ) and ∆rnp is quite robust and it extends over a wide range of densities, ρ ∈

[0.5ρsat, ρsat]

5.2. Isotopic chains

It is now interesting to focus on the possible isospin dependence of the L0,∆rnp
correlation by investigating its evolution along some isotopic chains. According
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to Ref. 71, it is possible to write a simple linear relation between L0 and ∆rnp
via a droplet model. In this way, one observes a clear linear dependence on the

neutron/proton asymmetry. This dependence has motivated the linear fit of Fig.2

done in Ref. 19 of various neutron skin thickness values obtained experimentally.

In this section, I will investigate the validity of such an approximation.

In the left panel of Fig.8, I show how the neutron skin for selected tin isotopes

correlates to the neutron skin calculated using 2pF model in 208Pb. Although the

alignment of the dots can be observe by naked eye, I have calculated using NPB

the correlation coefficients of these data-sets and in all cases I have found a Pearson

coefficient close to 0.99 with errors less than 1%. This means that all these data are

strongly correlated against each other. It is interesting to analyse the correlation

between 128Sn and 208Pb: the isospin asymmetry is Iasym ≈ 0.21 for both nuclei

The data deviate from the diagonal line (dotted line on the figure), the data-set of
124Sn aligns almost perfectly along the diagonal despite having an asymmetry of

Iasym ≈ 0.19.
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Fig. 8. (Colors online) Neutron skin in selected tin (left panel) and calcium (right panel) isotopes

against neutron skin in 208Pb. The dotted lines represents the diagonal and it is meant to guide
the eye of the reader.See text for details

In the right panel Fig.8, I repeat the same analysis but for calcium isotopes.

In this case the strong correlation at the diagonal point is with 48Ca that has

Iasym ≈ 0.16. This figure illustrates that the linear dependence discussed in Ref. 19,

it is an excellent first order approximation, but other effects may lead to deviations

from linearity. A first corrective term that should be included into a possible linear

fit, it is an explicit dependence on proton number as done in the simple droplet

model. See Ref.72 for details.

In Fig.9, I show the evolution of the Pearson coefficient between ∆rnp and L0

as a function of the isospin asymmetry for four different isotopic chains: 36−70Ca,
52−90Ni, 100−176Sn and 180−270Pb. It is worth noting that the length of the isotopic

chains is not equal for all functionals, this means that for extremely neutron rich

nuclei some functional do not predict the ground state to be bound and as such the

datum is removed from the data-set.
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The data are calculated using the 2pF to extract the neutron skin. I notice that

results obtained with Helm model follow very closely and thus I do not show them

on the figure, same conclusion applies for the Spearman estimator.

0 0.1 0.2 0.3 0.4
I
asym

-0.5

0

0.5

1
r

Ca
Ni
Sn
Pb

0.9

0.7

Fig. 9. (Colors online)Evolution of the Pearson correlation r̄ for various isotopic chains chains.
The neutron skin has been extracted using 2pF model. See text for details.

I observe that apart from the very low asymmetries, the correlation between

∆rnp and L0 is very robust in all nuclei and it is almost independent of the adopted

asymmetry and on the number of nucleons in the nucleus. This means that such a

correlation does not originates from particular shell effects, but it correlates to the

bulk properties of the functionals used for the calculations.

6. Symmetry energy correlation

Symmetry energy J0 is another important quantity used to constrain functional

parameters. In this section, I thus repeated the same analysis done before using

NPB to assess the correlation between J0 and ∆rnp. In Fig.10, I show the neutron

skins calculated using various functionals as a function of J0. In this case, I observe

that the data are quite scattered.

By considering only the 2pF model in 208Pb I find a Pearson correlation coeffi-

cient of r̄ = 0.800.07
−0.08 also very close to the Spearman estimator. On the right panel

of Fig.10 I show the evolution of such a correlation as a function of the density

at which J is calculated exactly in the same way as I did for L. For simplicity, I

only report the Pearson coefficient in 208Pb and 132Sn and 2pF results. The ones

obtained using Helm model are also very similar. In this case, I observe that below

0.8ρsat there is no correlation (or at least I can not exclude uncorrelated data),

while around saturation density and well above the system always exhibits a quite

good correlations. From this figure, I observe that there is a strong correlation in

the density range [1.1ρsat, 1.6ρsat]. If one wants to use these data to constrain J by

measuring skins, a particular attention should be paid to this possible ambiguity.
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Fig. 10. (Colors online)Right panel: neutron skin thickness in 208Pb calculated using 2pF model
agains symmetry energy at saturation density. Left panel: evolution of the Pearson coefficient in
208Pb and 132Sn as a function of the density at which J is calculated.

It is very instructive to plot in Fig.11 the density dependence of J for a set of

functionals used for the calculations. Similarly to Fig.4, there is no clear trend in

the data: in some functionals J grows with the density and in other the opposite

behaviour is observed. It is thus interesting to use a different data-set where other

nuclear matter properties are better constrained. This analysis is presented in the

following sub-section.
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Fig. 11. (Colors online) Density dependence of the symmetry energy J for a set of Skyrme func-
tionals.

6.1. Different data-set

In a recent article,18 a selection of Skyrme models have been done by using a series

of criteria derived from properties of nuclear matter around saturation density.

Only 16 Skyrme functionals out of 240 satisfy these criteria (with a 5% tolerance).



July 26, 2020 17:48 WSPC/INSTRUCTION FILE skin

16

I have reported them in Tab.2. By imposing several nuclear matter constraints, the

resulting data-set shows a very little variation of the parameter L0 at saturation

density, despite the allowed range of variation being quite large L0 = 58±18 MeV.18

In Fig.12, I show the evolution of J(ρ) and L(ρ) as a function of the density for the

selected functionals.

Compared to the results shown in Figs.4 and 11, one observes that the results

are less scattered. This is particularly evident for J(ρ), at least up to 1.6ρsat. The

slope of the symmetry energy still present some important variation at densities

above saturation although such a variation is strongly reduced respected to the pool

of functionals of Tab.1.
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Fig. 12. (Colors online) Evolution of symmetry energy (left panel) and its slope (right) panel as a
function of the density for the functionals given in Tab.2.

In Fig.13, I show the evolution of the neutron skin obtained with 2pF model

in 208Pb as a function of L0 (top panel) and J0 (lower panel). From the bootstrap

analysis, I obtained a Pearson coefficient of r̄ = 0.880.09
−0.16 for the correlation with

L0 and r̄ = 0.590.38
−0.7 for the correlation with J0. I observe that the correlation with

L0 is still present in this data-set while the one with J0 is less certain, in particular

one can not exclude the case of uncorrelated data given the large error bar on the

estimator.

In Fig.14, I show the evolution of these two correlations as a function of the

density of nuclear matter at which J and L have been calculated. It is interesting to

note that the correlation with L is robust and I obtain the same conclusion already

presented in Fig.5, with a maximum of the correlation around ≈ 0.5− 0.6ρsat. The

correlation between the neutron skin and J is weak at low density and it starts to

become more and more important at higher densities with a maximum at 1.6ρsat.

the result is in qualitative agreement with the one presented in Fig.10, although

with some quantitative differences.
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Fig. 13. (Colors online) Neutron skin thickness in 208Pb as a function of L0 (top panel) and J0
(bottom panel) for the models given in Tab.2. The shaded area represents the region compatible
with most recent measurements of neutron skin.23
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Fig. 14. (Colors online) )Evolution of the Pearson correlation r̄ for the correlation between ∆rnp

and the slope of the symmetry energy and between ∆rnp and the symmetry energy. See text for
details.

7. Conclusions

In the present article, I have used the non-parametric bootstrap method to the

study of the correlation between the neutron skin thickness of heavy nuclei and

the slope of the symmetry energy. This statistical method allows me to assess

properties of the parent distribution thus making my conclusions more general and

less dependent on the particular choice of the specific composition of the data-set

employed in the calculations.

Although the numerical value of the neutron skin thickness changes when using

Helm or 2pF to perform calculations, I showed that the correlation between ∆rnp
and L is very strong. To this purpose, I have checked that the result do not depend

on the particular choice of the estimator (Pearson or Spearman).
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A second important result is that there is no a priori indication to evaluate the

correlation between ∆rnp and L by arbitrary selecting the slope of the symmetry

energy at saturation density: actually the analysis shows that the correlation is

valid over a wide range of densities [0.5 − 1]ρsat. Since the variation of L with ρ

is not model independent, one should pay particular attention before using such a

correlation to constrain possible values of L0 using information from ∆rnp. Such a

result confirms the findings of previous articles on the subject.69,70

I have also studied the possible correlation between the neutron skin thickness

and the symmetry energy. In this case the correlation is weaker, but still present.

More interesting the correlation seems to be more important at higher densities.

As a final comment, I stress that the results obtained here do not take into ac-

count the presence of error bars on the values of neutron skin extracted from HF(B)

calculations.Since all functional come from a minimisation procedure a proper error

propagation should be performed for each of the points used in the analysis. I refer

to Ref 73 for a more detailed discussion.
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Appendix A. Helm model

The Helm model has been introduced in Ref. 40 to study properties of nuclear radii.

The neutron skin is defined in this model as

∆RH
np =

√

5

3

(

R(H)
n −R(H)

p

)

, (A.1)

where R
(H)
q is defined as

R(H)
q =

√

3

5
(R2

0q + 5σ2
q ). (A.2)

The parameters R0q, σq with q = n, p are obtained by using the following equations
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R0q = 4.49341/q1q (A.3)

σ2
q =

2

q2m,q

ln
3R2

0qj1(qm,qR0q)

R0qqm,qF (qm,q)
. (A.4)

q1q and qm,q represent the first zero and the first maximum of the form factor of

the matter density defined as42

Fq(k) = 4π

∫

drj0(kr)ρq(r)r
2 . (A.5)

jl is the spherical Bessel function of order l.

Appendix B. Data set

In Tabs.1 and 2, I provide the detailed list of the functionals used in the present

article together with some basic properties of infinite nuclear matter as saturation

density, symmetry energy and its slope. These quantities have been calculated using

the formalism presented in Refs 18, 60.
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