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Subspace Structure Regularized Nonnegative Matrix

Factorization for Hyperspectral Unmixing
Lei Zhou, Xueni Zhang, Jianbo Wang, Xiao Bai, Lei Tong, Liang Zhang, Jun Zhou, and Edwin Hancock

Abstract—Hyperspectral unmixing is a crucial task for hy-
perspectral images (HSI) processing, which estimates the pro-
portions of constituent materials of a mixed pixel. Usually, the
mixed pixels can be approximated using a linear mixing model.
Since each material only occurs in a few pixels in real HSI,
sparse nonnegative matrix factorization (NMF) and its extensions
are widely used as solutions. Some recent works assume that
materials are distributed in certain structures, which can be
added as constraints to sparse NMF model. However, they only
consider the spatial distribution within a local neighborhood
and define the distribution structure manually, while ignoring
the real distribution of materials that is diverse in different
images. In this paper, we propose a new unmixing method
that learns a subspace structure from the original image and
incorporate it into the sparse NMF framework to promote
unmixing performance. Based on the self-representation property
of data points lying in the same subspace, the learned subspace
structure can indicate the global similar graph of pixels that
represents the real distribution of materials. Then the similar
graph is used as a robust global spatial prior which is expected
to be maintained in the decomposed abundance matrix. The
experiments conducted on both simulated and real-world HSI
datasets demonstrate the superior performance of our proposed
method.

Index Terms—Hyperspectral unmixing, linear mixing model
(LMM), nonnegative matrix factorization (NMF), subspace struc-
ture, similar graph.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) analysis [1]–[5] is one

of the fastest-growing technologies in recent years.

However, due to low spatial resolution or specific imaging

mechanism, the acquired hyperspectral images often contain
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mixed pixels which span surface areas containing several

types of materials. To effectively exploit hyperspectral data,

hyperspectral unmixing (HU) [6]–[9] has become an basic

preprocessing for effective HSI analysis.

The objective of hyperspectral unmixing is to decompose

mixed pixels into components with the reference spectral

signatures of each of the materials present (endmembers), and

to determine their corresponding fractions (abundances). Ex-

isting unmixing algorithms mainly exploit one of two mixture

models, namely a) a linear model or b) a nonlinear model.

Nonlinear mixing models [10], [11] assume that the observed

pixel is mixed by a nonlinear function of the component

spectral signatures of the endmembers which are weighted

by the corresponding abundances. However, the process of

nonlinear combination is usually difficult to model physically

and to recover in real world applications. In recent years,

linear mixing model (LMM) [12] has therefore been more

widely adopted in most works on hyperspectral unmixing. The

reason for this is the balance between model accuracy and

tractability. LMM is based on the assumption that different

endmembers are mutually independent, so that the observed

HSI is a linear combination of the endmembers and their

corresponding abundances.

Abundant LMM unmixing algorithms have been proposed.

Some of these focus on the endmember extraction from statis-

tical and geometrical aspects, such as Pixel Purity Index [13],

N-FINDR [14], alternating projected subgradients [15], Ver-

tex Component Analysis [16], independent component anal-

ysis [17], and minimum-volume-based unmixing algorithm-

s [18], etc. Other methods address the problem of abundance

estimation under the assumption that the endmembers are

available [19]. With the almost universal success of deep

learning, there are also examples of deep neural network

based hyperspectral unmixing methods [20]–[22]. However,

these methods depend on the availability of large amount of

training data with groundtruth. In this paper, we focus on

blind unmixing which learns the endmembers as well as their

abundances simultaneously. Nonnegative Matrix Factorization

(NMF) [23], [24] is the most commonly used method for

blind source separation. It aims to decompose mixed data

through the product of two nonnegative matrices. This is

done by minimizing the reconstruction error as measured by

Euclidean distance. However, the solution of NMF is usually

not unique if there are no further constraints [25]. To alleviate

this problem, two kinds of constraints are commonly used on

the abundance matrix.

The first is the sparsity constraint for abundance matrix.

This is based on the fact that the pixels of HSI are mostly
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mixed by a relatively small number of endmembers. Therefore,

[26], [27] presented a spare coding method on the abundance

matrix for hyperspectral unmixing. In this paper, Lp denotes

the p norm. In fact, provided Lp(0 ≤ p ≤ 1) then the

regularizer has the effect of leading to a sparse solution.

Moreover, the sparsity of the Lp(
1

2
≤ p ≤ 1) solution is

negatively correlated with p, but the sparsity of the solution

for Lp(0 ≤ p ≤ 1

2
) is not sensitive with the change of

p. Therefore, Qian et al. [28] utilized the L1/2 regularizer

on the abundance matrix to constrain the sparseness. It has

been proved that the L1/2 regularizer is more efficient in

computation compared to the L1 regularizer, and the solution

is also closer to the groundtruth. In addition, to avoid the

influence of noise, many norm-based robust NMF methods

have been proposed. The L2,1 norm is commonly integrated

into sparse NMF to achieve robustness for pixel noise and

outlier rejection since it is rotationally invariant [19], [29],

[30]. Additionally, the L1,2 norm is also effective for solving

band noise problems [31], [32].

The second type of contraint incorporates information con-

cerning the spatial distribution into abundance estimation, and

has proved useful in improving the unmixing results. This is

due to the fact that endmembers are distributed to form co-

herent geometric structures, and two correlated pixels usually

have similar fractional abundances for the same endmembers.

Therefore, the total variation (TV) regularizer [33]–[35] was

incorporated to promote piece-wise smooth transitions in the

abundance matrix for neighboring pixels of the same endmem-

ber category. In [36], abundance separation and smoothness

constrained NMF (ASSNMF) was proposed for hyperspectral

unmixing. The abundance separation acted on the spectral

domain, and the abundance smoothness constraint was used on

the spatial domains to exploit the spatial information. Due to

the spatial structure learning ability of manifold method, [37]

incorporated manifold structures learning into the NMF model

to separate similar neighboring pixels. Inspired by the denois-

ing method [38], Lu et al. proposed a structure constrained

sparse NMF (CSNMF) method [39] which exploited clustering

based approach to find the potential structure information.

In [40], a clustered multitask network was proposed to solve

the unmixing problem, which also used the clustering method

to explore the distribution. Recently, spatial group sparsity

regularized NMF (SGSNMF) [41] utilized superpixels that are

obtained from image segmentation as a spatial prior to promote

hyperspectral unmixing.

Although the above methods try to exploit the spatial dis-

tribution of pixels, all these methods explore the correlations

of pixels within a local neighborhood, and most of them

are defined manually. However, each material usually occurs

in many different regions in the same hyperspectral image.

Thus the spatial distribution of a particular material is not

limited to local structures. Moreover, it is obvious that the

distributions of materials may be quite diverse in different

images. According to [42], each kind of land-cover material

in a remotely sensed hyperspectral image can be treated as a

different subspace. Although they might have different spectra

because of the varying illumination, topography, and other

imaging conditions. Therefore, the spatial distribution infor-

mation can be captured by the subspace structure [43]. This

not only represents the global distribution of the materials but

can also be learned from the corresponding image. Motivated

by this fact, we propose a new method aimed at incorporating

the subspace structure regularization into the sparse NMF-

based unmixing process. In contrast to deep subspace learning

method [44], [45], here we utilize a Low-Rank Represen-

tation (LRR) method [46], [47] to learn the similar graph

that represents the subspace structures for all materials and

which contains the correlations of all pixel pairs. Since the

LRR constraint can be incorporated into the NMF constraint,

this offers the advantage that we can optimize the subspace

learning and the hyperspectral unmixing simultaneously. As a

result the spatial prior is integrated through regularization into

sparse NMF and can be used to perform the hyperspectral

unmixing. Furthermore, based on the assumption that an

abundance matrix can be seen as the denoised feature vectors

of the original image, the learned abundance matrix can be

used to better learn the latent subspace structure. Hence, we

introduce a novel joint framework to simultaneously optimize

hyperspectral unmixing and subspace structure learning in a

manner which leads to mutual enhancement.

The main contributions of this paper are summarized as

follows:

1) We propose a new hyperspectral unmixing method

which learns the subspace structure of material re-

flectance to capture the global correlation of all pixels.

Then the global similar graph for materials is used

as a robust spatial prior to improve the quality of the

hyperspectral unmixing.

2) We design an objective function to integrate the spectral-

spatial based unmixing and subspace structure learning

into a single unified framework, in which they can

be jointly optimized by an iterative algorithm. The

joint framework can not only enhance the unmixing

performance but also provide better subspace clustering

results.

3) Experiments on both simulated and real-world HSI

datasets indicate the superiority of the proposed method,

which achieves comparable performance to state-of-the-

art methods for hyperspectral unmixing.

The remainder of this paper is structured as follows. Section

II describes the background of the LMM and NMF algorithms.

Section III presents our proposed method and demonstrates the

implementation details. The experimental results on simulated

data and real-world HSI data are presented in Section IV.

Finally, we conclude this paper in Section V.

II. BACKGROUND

A. NMF for Hyperspectral Unmixing

The classic LMM for hyperspectral unmixing is based on

the assumption that the observed HSI is a linear mixture of

several endmembers. Consider a HSI Y ∈ R
L×N , where the

number of wavelength-indexed bands is L and the number of

pixels is N . Then the original data Y can be reconstructed by

a linear combination of endmembers as follow:

Y = AS+E (1)
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Fig. 1. Illustration of the concept of our method and several alternative methods. The original images are decomposed into two matrices: the endmembers
matrix and the abundance matrix. When maintaining the spatial structure for each pixel in the abundance matrix, different methods utilized different strategies.
Take the blue pixel marked with black box in the original image as an example, (a) TV regularizer considers its four neighborhood as the local structure; (b)
manifold regularizer uses heat kernel to capture the local structure; (c) segmentation-based regularizer learns a local neighborhood; (d) our proposed method
learns a subspace structure that represents the global distribution of each material.

where a) A ∈ R
L×P denotes the endmember matrix, in which

each column represents the spectral signature of the corre-

sponding endmember and P is the number of endmembers,

b) S ∈ R
P×N denotes the abundance matrix, in which each

column is the fractions of all endmembers in the corresponding

pixel and c) E is an additive Gaussian white noise.

Since the goal of hyperspectral unmixing is to estimate

the endmember and abundance matrices simultaneously, in

this task, we only know the matrix Y, and matrices A and

S are the unknown targets of unmixing. To avoid the large

solution space, two commonly adopted constraints can be

used on the matrices A and S [48]. The first is the so-

called abundance sum-to-one constraint, which restrict the

proportions of each endmember sum to one. Another is the

nonnegativity constraint, which restrict elements in both the

endmember and abundance matrices must be greater than or

equal to zero.

With the nonnegativity constraint, NMF is a good way to

decompose the original image into the endmember and abun-

dance matrices simultaneously. By reconstructing the original

image Y through endmember matrix A and abundance matrix

S, the target of optimization can be defined as:

C(A,S) =
1

2
‖Y −AS‖2F s.t. A > 0,S > 0 (2)

where ‖·‖F represents the Frobenius norm.

The multiplied iterative algorithm is commonly used to

solve this objective function. When applied to Equation (2),

the multiplicative rule leads to the following two interleaved

equations:

A = A. ∗YST ./ASST (3)

S = S. ∗ATY./ATAS (4)

where (·)T denotes the matrix transposition, .∗ denotes

element-wise multiplication and ./ denotes element-wise divi-

sion.

B. NMF with Sparsity Constraints

There are several drawbacks of the traditional NMF model

(2). Firstly, it is nonconvex, which means it is hard to get

the globally optimal solution. Secondly, the solution of this

objective function is not unique, this is because AS can

be replaced by (AD)(D−1S) for any nonnegative invertible

matrix D. Therefore, the classical NMF model will make

the unmixing process unstable. To solve this problem, more

computationally tractable constraints are incorporated into

NMF.

Due to the fact that each endmember does not occur over

the entire image, in most cases the abundance map is sparse.

Consider NMF subject to a sparsity constraint, the objective

function consists of the reconstruction error and sparsity

constraint can be defined as follow:

C(A,S) =
1

2
‖Y −AS‖2F + λf(S) (5)
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where λ is a regularization term.

Many varieties of regularizer f(·) exist such that sparsity

is encouraged. In this paper, we choose to use the L1/2

regularizer, which is an alternative to the L1 regularizer. It

has been proved in [28] that the L1/2 regularizer is more

efficient in computation compared to the L1 regularizer, and

the solution is closer to the groundtruth. The L1/2 regularized

NMF model is defined as:

C(A,S) =
1

2
‖Y −AS‖2F + λ ‖S‖

1/2 (6)

III. APPROACH

In this section, we propose a new method that utilizes

both sparsity constraint and spatial information. First, we

describe the spatial information used, and which is obtained

by learning subspace structure from the original image. Then

a joint framework is proposed to simultaneously perform

hyperspectral unmixing and subspace structure learning.

A. Proposed Method

The traditional spectral-based NMF methods for hyperspec-

tral unmixing usually independently processes the HSI pixels,

while ignoring the spatial correlation of pixels. However, as

mentioned in Section I, spatial auto-correlation is important

prior knowledge for boosting the performance of hyperspectral

unmixing. In previous works, several spatial regularization

terms have been introduced. They are based on the assumption

that pixels distributed in a local group are more likely to

have the same mixed pattern in the abundance matrix. By

taking benefit from the spatial structure constraints, the perfor-

mance of hyperspectral unmixing has been greatly improved.

However, these methods only utilize the local similarity of

image pixels to achieve good performance while ignoring

the global similarity over the entire image. In most cases,

specific materials are distributed in different regions in the

HSI. Hence, the global structure similarity shall be considered

in the unmixing task.

Fig. 1 is an illustration of hyperspectral unmixing models

that take different spatial regularization into consideration. By

rescaling the original 3D hyperspectral image cube into a 2D

matrix where each column denotes the spectral signature of

a pixel, the observed image is expected to be approximated

by two matrices: the endmember matrix and the abundance

matrix. Since the endmembers are distributed in certain struc-

ture in the original images, such structure information are

expected to be kept in the abundance matrix. Several spatial

structures used in recent works are compared in the right

of Fig. 1. In this figure, the pixels that consist of the same

set of endmembers are represented in one color. We can see

that there are three materials in the observed hyperspectral

image, which are represented as “blue”, “yellow” and “green”

respectively, and they occur in different regions in the whole

image. Consider the blue pixel marked with a black box

in the original image, different methods capture different

spatial information with different spatial structures. Fig. 1(a)

shows the spatial information used by TV regularizer. It only

correlates four neighbors of a pixel to promote piece-wise

smooth. Instead of using Euclidean distance to measure the

spatial structure, manifold regularizer in Fig. 1(b) tries to

exploit the latent manifold structure of the data using heat

kernel. As for the spatial group sparsity regularizer showed in

Fig. 1(c), superpixels that obtained by segmentation are used

to represent the spatial neighborhood. However, as mentioned

before, our proposed subspace structure regularizer considers

the correlation of the pixels over the entire image. It aims to

explore the global structure of data to enhance the hyperspec-

tral unmixing process, as shown in Fig. 1(d).

Subspace structure learning methods are based on the self-

representation property that data points lying in the same

subspace can be approximated as a linear combination of

the data points from the same subspace. Therefore, the sub-

space structure of hyperspectral image can capture the global

correlation of similar pixels which can be used as a robust

spatial prior for unmixing. In our research, we make the

assumption that each type of endmember forms a subspace,

and all variations of endmember in the same type form the

data points in the subspace.

To exploit the expected global subspace structure, we first

introduce low rank representation (LRR), which is a clas-

sic subspace learning method. Consider the data set Y =
[y1,y2, ...,yN ] in R

L, according to the self-representation

property, each data points can be self-represented by them-

selves:

Y = YZ

where Z = [z1, z2, ..., zN ] is the self-representation matrix,

each zi is the representation coefficient of yi. By looking for

a low-rank representation of Z, the global structure of data Y

can be obtained:

min
Z

rank(Z),

s.t. Y = YZ (7)

whose optimal solutions Z∗ is called the lowest-rank repre-

sentations of data Y. However, it is difficult to solve this

optimization problem, since the rank function is discrete. As

the nuclear norm is a good convex approximation of matrix

rank, the optimization problem can be transformed as follow:

min
Z

‖Z‖
∗

s.t. Y = YZ (8)

Here, ‖Z‖
∗

is the nuclear norm which is the sum of the

singular values of the matrix.

Since the self-representation matrix Z contains the corre-

lation of all pixels, it is natural to preserve this similarity

in abundance matrix. In other words, the pixels in the same

subspace in the original image should exist in the same

subspace in the abundance matrix.

Based on the fact that there are many mixed pixels in HSI,

hyperspectral unmixing is widely used as a crucial preprocess-

ing step for HSI analysis [49] since the obtained abundance

can be seen as a denoised feature representation. Therefore,

it is better to preserve the latent subspace structure from the

unmixed abundance map instead of the original images. By
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incorporating the subspace regularizer into the sparse NMF

model, the optimization problem can be formulated as:

J(A,S,Z) = min
A,S

1

2
‖Y −AS‖2F + λ ‖S‖

1/2 + µ ‖S− SZ‖2F
s.t. A ≥ 0,S ≥ 0,1T

KS = 1T
N (9)

where the first two terms are reconstruction error and sparsity

constraint, and the third term constrains the subspace structure

of the abundance matrix.

Note that we would also want to simultaneously learn and

optimize the subspace structure. Therefore, a joint framework

on hyperspectral unmixing and subspace learning can be

represented as follows:

J(A,S,Z) = min
A,S

1

2
‖Y −AS‖2F + λ ‖S‖

1/2

+µ ‖S− SZ‖2F + τ ‖Z‖
∗

s.t. A ≥ 0,S ≥ 0,1T
KS = 1T

N (10)

where the first three terms are the objective of spectral-spatial

hyperspectral unmixing and the last two terms learn the latent

subspace structures of the materials.

B. Optimization

Obviously, the presented optimization problem is noncon-

vex. To iteratively solve this problem, we first define an

auxiliary variable L, then the optimization problem (10) can

be transformed to the following problem:

J(A,S,Z) = min
A,S

1

2
‖Y −AS‖2F + λ ‖S‖

1/2

+µ ‖S− SZ‖2F + τ ‖L‖
∗

s.t. A ≥ 0,S ≥ 0,L = Z,1T
KS = 1T

N (11)

Here we consider the auxiliary variable L as a denoising

version of Z, then we can add the L = Z constraint to the

objective function, and the objective problem can be relaxed

as:

J(A,S,Z) = min
A,S

1

2
‖Y −AS‖2F + λ ‖S‖

1/2

+µ ‖S− SZ‖2F +
1

2
‖L− Z‖2F + τ ‖L‖

∗

s.t. A ≥ 0,S ≥ 0,1T
KS = 1T

N (12)

Subsequently, we utilize the multiplicative iterative

method [24] to solve the above problem (12). Four steps are

iteratively updated with other variables fixed: 1) endmember

matrix estimation, 2) abundance matrix estimation, 3) recon-

struction, and 4) low-rank self-representation learning. The

details of each steps are as follows.

1) Endmember estimation: In this step, we use the La-

grange multiplier method to estimate the endmember matrix

with other variables fixed. Then the objective function is

reformulated as

J(A) = min
A

1

2
‖Y −AS‖2F + Tr(ΨA)

s.t. A ≥ 0 (13)

where Ψ is the Lagrange multiplier. To solve this prob-

lem (13), a common method is to separate this equation and

set the last term to 0. We can obtain the following equations

with the Karush-Kuhn-Tucker (K-K-T) conditions:

∇AJ(A) = ASST −YST +Ψ = 0 (14)

A. ∗Ψ = 0 (15)

By simultaneously multiplying both sides by A on the e-

quation (14), and then substituting equation (15) into equa-

tion (14), the endmember matrix A can be updated as:

A←− A. ∗YST ./ASST (16)

2) Abundance estimation: When the endmember matrix

is updated, we fix matrix A. Then the objective function for

abundance matrix estimation can be written as:

J(S) = min
S

1

2
‖Y −AS‖2F + λ ‖S‖

1/2

+µ ‖S− SZ‖2F + Tr(ΓA)

s.t. S ≥ 0,1T
KS = 1T

N (17)

The same with endmember estimation, the Lagrange multiplier

method is adopted to solve problem (17). Where Γ is the

Lagrange multiplier with size K ×N . In the same manner,

the following equation is obtained by the K-K-T conditions:

∇SJ(S) = ATAS−ATY +
λ

2
S−1/2

+2µS(I− Z)(I− Z)T + Γ = 0 (18)

S. ∗ Γ = 0 (19)

Similarly, we multiply both sides by S on the equation (18)

and substitute equation (19) into equation (18), the abundance

matrix S can be updated as:

S←− S. ∗ATY./(ATAS+
λ

2
S−1/2 + 2µS(I− Z)(I− Z)T )

(20)

3) Reconstruction: In this step, we solve the reconstruction

problem with endmember matrix A and abundance matrix S

fixed. The objective function is as follows:

J(Z) = minµ ‖S− SZ‖2F +
1

2
‖L− Z‖2F (21)

By solving the above equation, we can get the following

updating rule:

Z←− Z. ∗ (STS+
2

µ
L)./(STSZ+

2

µ
Z) (22)

4) Low-rank self-representation learning: In the fourth

step, the low-rank self-representation matrix is optimized by

the following objective function:

J(L) = τ ‖L‖
∗
+

1

2
‖L− Z‖2F (23)

This problem has a closed-form solution and can be solved

via the singular value thresholding operator [50].

Then, we solve the objective function (12) with a multi-

plicative iterative method. The entire process is summarized in

Algorithm 1. Finally, we analyze the computational complexity

of the proposed method. Compared with standard NMF, there
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are two more steps to compute the self-representation matrix

Z and auxiliary variable L. Since the dimension of Z and

L is N × N , the additional computational cost for Z and L

is O(PN2) caused by the SVD operator. The computational

complexity of standard NMF is known as O(LPN). There-

fore, the overall computational complexity of our method is

O(LPN+PN2) which is similar with the standard NMF and

is faster than L1/2-NMF with O(LPN+P 2N2) computation-

al complexity [28].

Algorithm 1: Subspace structure regularized sparse NMF

Input: A hyperspectral image Y.

Output: Endmember matrix A, abundance map S, and

self-representation matrix Z.

Initialize A, S, and Z. Let L=Z ;

while the stopping criteria is not reached do

1) fix the others and update A by Equation (16);

2) fix the others and update S by Equation (20);

3) fix the others and update Z by Equation (22);

4) fix the others and update L by solving problem

(23)

C. Convergence Analysis

In this section, we analyze the convergence of the proposed

updating algorithm. Since we solve the optimization problem

by an iterative strategy, to guarantee the convergence of the

update rule, we need to prove the nonincreasing property of

the objective function in each update step. To formulate this

problem, we use Ak, Sk, Zk, Lk to denote the values of the

k-th iteration and Ak+1, Sk+1, Zk+1, Lk+1 to denote the

values of the (k+1)-th iteration. Then, the proof problem can

be written as

J(Ak+1,Sk,Zk,Lk) ≤ J(Ak,Sk,Zk,Lk) (24)

J(Ak+1,Sk+1,Zk,Lk) ≤ J(Ak+1,Sk,Zk,Lk) (25)

J(Ak+1,Sk+1,Zk+1,Lk) ≤ J(Ak+1,Sk+1,Zk,Lk) (26)

J(Ak+1,Sk+1,Zk+1,Lk+1) ≤ J(Ak+1,Sk+1,Zk+1,Lk)
(27)

Since the same problems (24) (25) (27) have been proved

in [28] and [34], here we only give the proof for problem (26).

Similar to [34], we consider each column of Z independently

to prove this problem due to the column separability of the

objective function (21). Let z, l denote the same column of

Z, L, respectively. Then the objective function becomes

J(z) = minµ ‖S− Sz‖2F +
1

2
‖l− z‖2F (28)

To prove the nonincreasing property of the objective func-

tion, we first introduce an auxiliary function G(z, zk) which

meet the conditions G(z, z) = J(z) and G(z, zk) ≥ J(z).
Then J(z) is nonincreasing when use the following updating

rule

zk+1 = argmin
z

G(z, zk) (29)

since

J(zk+1) ≤ G(zk+1, zk) ≤ G(zk, zk) = J(zk) (30)

Following [28], G can be defined as

G(z, zk) = J(zk) + (z− zk)(∇J(zk))T

+
1

2
(z− zk)K(zk)(z− zk)T (31)

where K(zk) is a diagonal matrix which is defined as

K(zk) = diag((STSzk +
2

µ
)./zk) (32)

Since G(z, z) = J(z), the Taylor expansion of J(z) is

J(z) = J(zk) + (z− zk)(∇J(zk))T

+
1

2
(z− zk)(STS+

2

µ
I)(z− zk)T +O(z) (33)

where O(z) denotes the higher-order terms of the Taylor

expansion. Then the condition G(z, zk) ≥ J(z) is satisfied

if

1

2
(z− zk)(K(zk)− STS− 2

µ
I)(z− zk)T ≥ 0 (34)

According to [27], K(zk)−STS− 2

µI is a positive semidef-

inite matrix with the nonnegative z. As aforementioned, next

we only need to prove that the update rule (22) is coincident

with selecting the minimum of G(z, zk). This can be solved

by making the gradient to be 0

∇zG(z, zk) = ST (Szk − S) +
2

µ
(zk − l)

+K(zk)(z− zk) = 0 (35)

then, it can be calculated

z = zk −K−1(ST (Szk − S) +
2

µ
(zk − l))

= zk − zk./(STSzk +
2

µ
zk). ∗ (ST (Szk − S) +

2

µ
(zk − l))

= zk − zk./(STSzk +
2

µ
zk). ∗ (STSzk +

2

µ
zk − STS− 2

µ
l)

= zk./(STSzk +
2

µ
zk). ∗ (STS+

2

µ
l) (36)

which is coincident with the update rule of (22). That is to say,

the proposed update algorithm can make the objective function

decrease monotonically at each iteration until convergence has

been reached.

D. Implementation Issues

Then, we discuss several issues during the algorithm imple-

mentation. As aforementioned issue, the optimization problem

is not convex with both A and S, and an iterative optimization

strategy with the above updating rules is proposed to solve it.

Therefore, the initialization of the matrix is crucial. Two ini-

tialization methods are frequently used: random initialization

and vertex component analysis-fully constrained least squares

(VCA-FCLS) initialization. Compared to random initialization

that setting elements to random values between [0, 1], the latter

that using VCA [16] to recognize endmembers as the input of
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Fig. 2. The spectral curve of the 9 endmembers selected from the USGS
mineral spectra library on the simulated datasets.

A and then utilizing FCLS [51] to obtain the initial S, is more

effective. In this paper, we use VCA-FCLS initialization in all

the experiments. For self-representation matrix Z, we initialize

it using LRR on the original image Y.

Another important issue is how to meet the basic full

nonnegativity constraint and additivity constraint. Since the

updating rules maintain the sign of matrix values, the former

constraint can be satisfied as long as the initial matrix is

nonnegative. In terms of full additivity constraint, we exploit

a similar method as [28]. We augment the original data matrix

Y and the endmember matrix A by a row of constants:

Yf = [Y; δ1T
N ]

Af = [A; δ1T
K ] (37)

where δ is a weight parameter that determine the impact of

the additivity constraint. When the larger δ, the more accurate

the result. However, the convergence will be non-uniform. In

practice, δ = 15 is a good choice.

Two stopping criteria are adopted for our iterative optimiza-

tion. One is to set the maximum numner of iterations. We

set this to 3000, in common with most alternative iterative

NMF methods. The second stopping criteria is the difference

in the gradients of the objective function between successive

iterations:

‖∇C(Ai,Si)‖22 ≤ ǫ‖∇C(A1,S1)‖22 (38)

where ǫ is set to 10−3. If the gradient difference is small

enough, the optimal solution is obtained.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of our proposed method, we

conducted experiments on both simulated and real-world

Fig. 3. Abundance maps for the simulated dataset. To demonstrate the
effectiveness of our proposed subspace structure constraints, each abundance
map consists of four smaller maps built from endmembers in the same
subspace.

Fig. 4. Visualization of self-representation matrices for different endmembers.

dataset. The compared hyperspectral unmixing methods in-

clude baseline methods VCA-FCLS [16] and NMF [23],

sparsity-based methods L1/2-NMF [28] and graph-regularized

L1/2-NMF (GLNMF) [37], spatial information based methods

SGSNMF [41], TV-RSNMF [34], Multilayer NMF method

MLNMF [52] and sparsity-constrained deep NMF with total

variation (SDNMF-TV) [35]. The results were evaluated with
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TABLE I
SAD VALUES AND RUNNING TIMES OF THE DIFFERENT METHODS WITH THE SIMULATED DATA.

Method VCA-FCLS NMF L1/2-NMF GLNMF MLNMF SGSNMF TV-RSNMF SDNMF-TV Ours

SNR=10dB 0.1315 0.1802 0.1774 0.1809 0.1325 0.1392 0.1193 0.1183 0.1104

SNR=20dB 0.0366 0.0485 0.0344 0.0361 0.0340 0.0348 0.0509 0.0324 0.0297

SNR=30dB 0.0102 0.0152 0.0133 0.0124 0.0201 0.0238 0.0200 0.0105 0.0107

SNR=40dB 0.0024 0.0035 0.0027 0.0026 0.0028 0.0236 0.0037 0.0023 0.0019

Time(s) 72.2 125.4 160.1 187.2 425.8 116.3 190.4 573.5 153.7

TABLE II
RMSE VALUES OF THE DIFFERENT METHODS WITH THE SIMULATED DATA.

Method VCA-FCLS NMF L1/2-NMF GLNMF MLNMF SGSNMF TV-RSNMF SDNMF-TV Ours

SNR=10dB 0.2397 0.1974 0.1977 0.2092 0.1085 0.1052 0.2256 0.0954 0.0873

SNR=20dB 0.1129 0.0914 0.0585 0.0625 0.0612 0.0623 0.0942 0.0593 0.0545

SNR=30dB 0.0532 0.0420 0.0408 0.0415 0.0387 0.0398 0.0386 0.0352 0.0312

SNR=40dB 0.0179 0.0155 0.0151 0.0142 0.0253 0.0396 0.0134 0.0132 0.0122
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Fig. 5. Performance of our proposed method with respect to different λ and
µ when SNR = 20 dB.

two commonly used measures to assess the quantitative un-

mixing performance: spectral angle distance (SAD) and root-

mean-square error (RMSE). The SAD compares the similarity

of the estimated signature Âk and the groundtruth endmember

Ak, and is defined as:

SADk = arg cos(
AT

k Âk
∥

∥AT
k

∥

∥

∥

∥

∥
Âk

∥

∥

∥

) (39)

The RMSE is defined as:

RMSEk = (
1

N

∥

∥

∥
Sk − Ŝk

∥

∥

∥

2

)1/2 (40)

where Ŝk is the groundtruth abundance matrix for the k-th

endmember. As stated above, in general, a smaller SAD or

RMSE corresponds to a better result.

A. Experiments on Simulated Data

1) Simulated Data: The simulated dataset in this experi-

ment was generated according to the Hyperspectral Imagery

Synthesis (EIAs) toolbox [53]. It is a free software for

users to generate simulated hyperspectral images flexibly by

controlling several parameters, such as a certain number of

groundtruth endmembers, the size of the abundance map, spa-

tial distribution of materials and different kinds of noises. We

randomly selected the endmembers from the USGS mineral

spectra library, and generated the corresponding abundance

maps according to the Gaussian field. To demonstrate the

effectiveness of utilizing the global spatial information, we

designed the abundance map by mosaicing four smaller abun-

dance matrix together so that each material occurs in different

regions of the entire hyperspectral images. Fig. 2 shows

9 selected endmembers and Fig. 3 shows the groundtruth

abundance maps built from the 9 endmembers. Here, the

simulated dataset has a size of 100× 100 pixels and 224

spectral bands.

2) Parameter Analysis: There are two key parameters

λ and µ in our proposed method, where λ measure the

sparsity constraints and µ is for subspace structure regu-

larization. Firstly, we discuss the influence of these two

parameters on the simulated dataset at the circumstance of

SNR=20 dB. In this experiment, we changed λ at the in-

terval {0.0005, 0.001, 0.003, 0.01, 0.05, 0.1, 0.2, 0.3} and µ at

the interval {0.0001, 0.001, 0.01, 0.1} to test our proposed

method. We set parameter τ as 0.001 the same with [34].

The performance of our method for different parameter λ and

µ is shown in Fig. 5, where (a) displays the SAD results and

(b) displays the RMSE results. In general, SAD and RMSE

results with respect to λ and µ reveal the same trend. When

λ and µ both are near zero, the results are stable. It should be

noted that when λ and µ both are zeros, the results correspond

to classic NMF. As λ increases it gradually converges to

local minima. When λ is too large, the results will be worse

than NMF. Similar trend can be seen in parameter µ. This

indicates the effectiveness of the sparsity constraint as well as

the subspace structure constraint. With the proper choice of

parameter values, the SAD and RMSE can be significantly

decreased. Relatively, parameter µ is more robust than λ,

which can be seen more obviously in RMSE results.

Since the parameter µ is not sensitive to the results, its
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(a) (b)

(c)

Fig. 6. Three real-world hyperspectral images. (a) HYDICE Jasper Ridge dataset; (b) HYDICE Urban dataset; (c) AVIRIS Cuprite dataset.

value is set as 0.01 for our experiments. As for the sparse

regularization parameter λ, we utilize the same strategy in [28]

to determine its value:

λe =
1√
L

N
∑

l=1

√
N − ‖Yl‖1 / ‖Yl‖2√

N − 1
(41)

Usually, the optimal parameter λ is smaller than λe. Therefore

we can search it at the interval [λe/10, λe]. We set the value

of λ as 0.1 in the simulated date experiments.

3) Performance Comparisons: Inevitably real-world hyper-

spectral images are easily corrupted by noises, which is a

great challenge for unmixing. Therefore, different levels of

white Gaussian noises was added to the simulated data, which

exist in most hyperspectral images. We choose the noise level

as {10, 20, 30, 40} dB. Table I presents the SAD values of

different methods under different noise levels. We can see that

unmixing methods that integrate spatial information like TV-

RSNMF and SDNMF-TV have lower SAD values compared

to methods that only use sparsity constraints in most cases.

This indicates the effectiveness of the utilization of spatial

relationships. It can be seen that our method outperforms all

the compared methods on different noise levels except when

SNR=30dB, as the VCA-FCLS is slightly better than our

method. This may be caused by some specific noise which

influences the subspace clustering result. In most cases, as

the mixed noise increases, the unmixing problem becomes

more difficult, our method has more obvious advantages. This

verifies that the subspace regularizer, which captures the global

spatial relationship, is useful in the hyperspectral unmixing

task. Similar results can be seen in Table II, which displays

the RMSE values of different methods. In order to demonstrate

that the improvement introduced by our method is not at the

cost of excessive computational cost, we provide the average

running time of different methods. The last row of Table I

shows the average running time on different noise levels, we

can seen that our method is more efficient than most compared

methods that define the distribution structure manually. In

addition, the time cost of our method is significant superior to

the multilayer and deep NMF methods.

To further validate the effectiveness of our proposed sub-

space structure regularizer, we present the visualization of self-

representation matrices of randomly chosen points in different

endmembers. As shown in Fig. 4, the lighter areas indicate

larger weight in the self-representation matrix. It can be seen

that the subspace structure is mostly approximate with the

abundance map. Therefore, the learned subspace structure can

be used as a robust global spatial prior for unmixing.

B. Experiments on Real Data

In this section, we validate our method on the real-world

hyperspectral images. We conducted unmixing experiments on

three public hyperspectral datasets: the Hyperspectral Digi-

tal Imagery Collection Experiment (HYDICE) Jasper Ridge

dataset, the HYDICE Urban dataset, and the AVIRIS Cuprite

dataset. Specifically, we obtain the groundtruth following [16].

For the Cuprite dataset, the reference endmember signatures

were chosen from the USGS digital spectral library.

1) HYDICE Jasper Ridge dataset: Jasper Ridge is a widely

used hyperspectral data for evaluating the unmixing method,

which contains 512× 614 pixels. There are 224 spectral

bands from 380 to 2500 nm. Since the groundtruth of this

hyperspectral image is difficult to obtain, we only used a part

of image with 100× 100 pixels. Specifically, the first pixel of

the chosen part is (105, 269). To avoid the atmospheric effects

and dense water vapor problems, we removed related bands

(1-3, 108-112, 154-166, 220,224), remaining an image of 198

bands, which is the same with other hyperspectral unmixing

methods. As shown in Fig 6(a), the endmembers of Jasper

Ridge are “Tree”, “Soil”, “Water” and “Road”.

Quantitative evaluation is presented in Table III which

shows the mean SAD and RMSE values of different hyper-

spectral unmixing methods. As a representative solution, NMF

balances the estimation of endmembers and abundance matrix

compared with VCA-FCLS. They both only use non-negative

constraints. L1/2-NMF and GLNMF add different kinds of
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Fig. 7. Clustering results on Jasper Ridge dataset when the number of clusters is set as 2, 3 and 4, respectively.
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Fig. 8. Comparison of the library spectra with the endmember signatures
extracted by our method on the Jasper Ridge dataset.

sparsity constraints and obtain better results. This may because

sparse constraints is more effective for unmixing problem,

and it can detect expressive endmembers [54]. However, these

methods often have poor RMSE performance since they only

focus on endmembers. The utilization of spatial information

solves this problem to a certain degree. Neighbor-based TV-

RSNMF and deep NMF with total variation SDNMF-TV both

have great performance, and SDNMF-TV is slightly better

than the other compared methods. It can be seen from Table III

that our proposed method that learns spatial information from

original images rather than design manually achieve better

performance for real-world hyperspectral unmixing. In gen-

eral, our proposed method achieves the lowest mean SAD

values as well as the lowest mean RMSE compared with the

other methods. This validates the superiority of the proposed

subspace regularizer.

The qualitative unmixing results are shown in Fig. 8 and

Fig. 9. From Fig. 8, we can see that the endmember signa-

tures extracted by our method is almost coincident with the

reference signatures obtained from the spectral library. Fig. 9

Fig. 9. Abundance maps of 4 different endmembers obtained using our
method on the Jasper Ridge dataset. From left to right and from top to bottom
are Water, Soil, Road and Tree, respectively.

displays the abundance map obtained by our method. The

corresponding endmember is illustrated with dark pixels. From

Fig. 9, we can see the results quite agree with the four targets,

“Water”, “Soil”, “Road” and “Tree”, respectively.

Simultaneously, we obtained the clustering results. Since

our method can jointly learn the subspace structure of the

dataset, then the clustering result can be obtained by a standard

spectral clustering algorithm. Fig. 7 shows the results when

the number of clusters is set as 2, 3 and 4 respectively. It can

be seen that the clustering results conform to the real image

intuitively.

2) HYDICE Urban dataset: HYDICE Urban dataset is

another widely used hyperspectral image. It includes 307×307
pixels, and each pixel has 210 spectral bands ranging from
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Fig. 10. Abundance maps of 12 different endmembers obtained using our method on the Cuprite dataset. From left to right and from top to bottom are Sphene,
Andradite, Muscovite, Montmorillonite, Buddingtonite, Kaolinite-2, Alunite, Dumortierite, Kaolinite-1, Pyrope, Chalcedony and Nontronite, respectively.

400-2500 nm. Here, noisy bands (1-4) and water-absorption

(76, 87, 101-111, 136-153, and 198-210) bands were removed,

resulting in an image of 162 bands. The groundtruth in-

cludes six endmembers: “Asphalt”, “Tree”, “Grass”, “Roof#1”,

“Roof#2”, and “Concrete road” as shown in Fig 6(b).

Similar to the previous experiment, Table IV shows the

mean SAD and RMSE values. We observe that the proposed

subspace learning regularized NMF method outperforms al-

l the other methods. In this experiment, TV-RSNMF and

SDNMF-TV that use spatial information obtain slightly better

results than sparse-based methods. This indicates the effec-

tiveness of spatial relationships for complex image unmixing.

3) AVIRIS Cuprite dataset: Cuprite dataset contains 224

spectral bands cover the range of 400-2500 nm. A total of 188

bands remained by removing noisy bands (1-2 and 221-224)

and water-vapor absorption bands (104-113 and 148-167). In

this experiment, a spatial size of 250× 191 was tailored,

which contains 14 kinds of minerals [16]. Since there are only

tiny differences between signatures of several minerals, the

estimated number of endmembers was reduced to 12 for the

unmixing. It is shown in Fig 6(c).

Table V compares the SAD results of different hyperspectral

unmixing methods. We use bold to indicate the best and
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TABLE III
SAD AND RMSE VALUES AND RUNNING TIMES OF DIFFERENT METHODS ON THE JASPER RIDGE DATASET.

VCA-FCLS NMF L1/2-NMF GLNMF MLNMF SGSNMF TV-RSNMF SDNMF-TV Ours

SAD 0.3001 0.3457 0.1891 0.2903 0.1602 0.1686 0.2330 0.1523 0.1466

RMSE 0.2367 0.2126 0.1912 0.2185 0.1835 0.1897 0.2279 0.1735 0.1653

Time(s) 31.4 89.5 108.3 121.8 242.1 80.5 135.9 274.5 99.6

TABLE IV
SAD AND RMSE VALUES AND RUNNING TIMES OF DIFFERENT METHODS ON THE URBAN DATASET.

VCA-FCLS NMF L1/2-NMF GLNMF MLNMF SGSNMF TV-RSNMF SDNMF-TV Ours

SAD 0.3966 0.3721 0.2674 0.3129 0.2431 0.2410 0.2559 0.2375 0.2307

RMSE 0.2764 0.2417 0.1726 0.2274 0.1706 0.1744 0.1904 0.1642 0.1593

Time(s) 124.3 253.2 341.8 352.6 895.2 203.4 318.3 975.3 289.4

TABLE V
SAD VALUES AND RUNNING TIMES OF DIFFERENT METHODS ON THE CUPRITE DATASET.

Method VCA-FCLS NMF L1/2-NMF GLNMF MLNMF SGSNMF TV-RSNMF SDNMF-TV Ours

Alunite 0.1094 0.1164 0.1245 0.1090 0.0958 0.1072 0.1032 0.0980 0.1099

Andradite 0.0568 0.0806 0.0732 0.0665 0.0743 0.1062 0.0810 0.0673 0.0711

Buddingtonite 0.1215 0.3762 0.1173 0.1130 0.1319 0.1197 0.1141 0.1141 0.1059

Dumortierite 0.0759 0.1216 0.0974 0.0798 0.0856 0.0761 0.0997 0.1015 0.0959

Kaolinite-1 0.0985 0.1072 0.1356 0.0994 0.0991 0.0778 0.0771 0.1075 0.0963

Kaolinite-2 0.0603 0.0901 0.0549 0.0624 0.0775 0.0844 0.0489 0.0753 0.0740

Muscovite 0.2130 0.2739 0.1443 0.1002 0.0745 0.1498 0.1427 0.0989 0.1306

Montmorillonite 0.0983 0.0922 0.0535 0.1030 0.0921 0.0595 0.0599 0.0800 0.0616

Nontronite 0.0733 0.4640 0.0744 0.0733 0.1177 0.1254 0.0702 0.1277 0.0784

Pyrope 0.1711 0.1817 0.0931 0.2455 0.1045 0.0605 0.0705 0.1118 0.0610

Sphene 0.0577 0.1155 0.2618 0.0552 0.0508 0.3159 0.2737 0.0642 0.1930

Chalcedony 0.0992 0.0992 0.0698 0.1450 0.1387 0.0980 0.1207 0.1477 0.0988

Mean 0.1022 0.1765 0.1083 0.1044 0.1001 0.1147 0.1055 0.0995 0.0981

Time(s) 53.2 102.1 153.5 169.3 410.2 93.5 174.5 493.5 142.8

underline for the second best performance for each end-

member. As shown in Table V, our method outperforms

the compared methods for the mean SAD values. Different

methods are good at estimating different endmembers, this

might be because most of the endmembers in this dataset are

tiny and fragmented, the spatial structure is not so obvious

and unified. For endmembers like “Buddingtonite”, “pyrope”

and “Chalcedony”, our proposed method has great advantages.

Since the Cuprite dataset has no groundtruth, we only show the

grayscale abundance maps obtained by our method in Fig. 10.

Compared to the original image shown in Fig 6(c), the results

can be verified intuitively.

V. CONCLUSION

In this paper, we have proposed a spatial information based

NMF by learning the subspace structure from the original

image for blind hyperspectral unmixing. The presented model

effectively exploits the subspace structure of the abundance

map to constrain the NMF method. We first incorporate the

subspace structure regularizer into the sparse NMF model as

a spatial prior to improve the unmixing performance. The

learned subspace structure can capture the global distribu-

tion of materials in different image regions. Then, we have

integrated the spectral-spatial based unmixing and subspace

structure learning in a single unified framework and presented

a multiplicative iterative method to optimize it. We compared

our method with plenty classical and state-of-the-art NMF

based hyperspectral unmixing methods on both simulated

and real-word HSI datasets. Both quantitative and qualitative

results demonstrate the effectiveness of our method.
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