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A Learning Gaussian Process
Approach for Maneuvering
Target Tracking and Smoothing
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Model-based approaches for target tracking and smoothing es-
timate the infinite number of possible target trajectories using a
finite set of models. This article proposes a data-driven approach
that represents the possible target trajectories using a distribution
over an infinite number of functions. Recursive Gaussian process, and
derivative-based Gaussian process approaches for target tracking,
and smoothing are developed, with online training, and parameter
learning. The performance evaluation over two highly maneuvering
scenarios, shows that the proposed approach provides 80 and 62 %
performance improvement in the position, and 49 and 22% in the
velocity estimation, respectively, as compared to the best model-based
filter.
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[. INTRODUCTION

Multiple target tracking [ 1], [2] includes state estimation
of the targets of interest from a set of noisy measurements
and false alarms. Multiple target tracking is part of vari-
ous automation systems in diverse fields. The application
spectrum ranges from micro level, such as human cell
trackers [3], to macro level, e.g., tracking of aircrafts [1],
[2], [4], [5]. Other applications include oceanography [6],
sea surveillance systems [7], autonomous vehicles [8], area
security [9], and many more.

Multiple target tracking algorithms are sometimes clas-
sified as point, extended, and group target tracking [10],
[11]. The sensor generates multiple measurements for an ex-
tended target. Comparatively, scarce (in some cases single)
measurements for a point target are assumed. The process
of tracking of multiple point targets possessing similar
kinematics, can be performed as a one group and is called
group target tracking [10]. The point target tracking requires
estimation of the target kinematics such as position and
velocity, attributes and other parameters [5]. The extended
target tracking and group target tracking, in addition to the
abovementioned parameters of the point objects, estimate
the target shape, volume, orientation, and other similar
parameters. The approach presented in this article relates
to point target tracking.

Two major processes involved in point target tracking
are the data association, i.e., measurement to target/track
assignment, and the state estimation, which includes tar-
get state update using the assigned measurement [5]. The
performance of these two processes is interdependent. The
output of the data association is considered as an input
to the state estimation at the same time step. The output
of the state estimation is an input to the data associa-
tion process of the subsequent time step. Many multiple
target tracking approaches solve the data association and
the state estimation problems independently such as the
global nearest neighbor tracker [1], [2], [5], multiple hy-
pothesis tracker [12], and probabilistic data association
filter tracker [1]. Other approaches provide a simultaneous
solution, e.g., the multiscan Markov chain Monte Carlo data
association tracker [13] and the random finite sets based
approaches, such as the probability hypothesis density filter
trackers [14]. In all the multiple target tracking approaches,
the state estimation process can be treated as an independent
process. In this article, the measurement to track assignment
is assumed known and the solution to the state estimation
problem is provided.

Typically, the estimation problem is formulated within
a Bayesian framework. The target dynamics is considered
nonlinear in most applications. Sometimes, the measure-
ment process is also considered nonlinear. Different filtering
methods [1], [5] have been proposed which depend on the
extent of model nonlinearity, the required accuracy and the
available processing time. The focus of this article is in
real-time estimation only and for the first time, an online
data driven approach for point target tracking and fixed-lag
smoothing is proposed.
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A. Related Work

For linear target dynamics and measurement models, the
well-known Kalman filter (KF) [15] provides a recursive
optimal solution. For nonlinear models, many filters have
been proposed such as an extended KF [16], an unscented
KF [17], and an interacting multiple model (IMM) [18]
filter. The IMM has been shown to be one of the most cost
effective nonlinear filters [19]. The KFs based on different
nonlinear target dynamics models have also been proposed
for tracking nonlinear kinematics, such as the coordinated
turn [2] KF and Singer [20] Kalman Filter (KF). All of the
above approaches rely on an underlying target dynamics
model. A model, closest to the average target trajectory,
is chosen and the variations are captured using the model
noise. A highly maneuverable target such as an aircraft
can adopt an infinite number of trajectories. Additionally,
the model variations are expected to be large. In such
cases, the single model-based filters require a high model
noise variance to track the different trajectories. A high
noise variance degrades the estimation performance and
gives inaccurate estimates even when the target trajectory
matches the model. The multiple model-based filters are
an extension of the single model-based filters. These are
again limited in performance as all the possible trajectories
are not modeled exactly. A preliminary study on a non-
recursive model-free filtering, a Gaussian process motion
tracker (GPMT), was proposed in [21]. This is a Gaussian
process (GP)-based approach, which predicts and filters
the position and higher order position derivatives using
historical measurement data. The Gaussian Process Motion
Tracker (GPMT), includes training and learning stages,
models infinite number of target trajectories. The learning
stage proposed for the GPMT, is not recursive. In this article,
we propose a Recursive Gaussian Process* Motion Tracker
(RGP*MT)! for online model-free point target tracking. The
state estimation and learning of the GP hyperparameters
are performed recursively. The historical data is replaced
with an inducing point set representation for the recursive
filtering and smoothing.

The GP regression method has been applied to many
areas involving time series prediction [22], [23]. Target state
filtering and smoothing is also a time series application but
the Gaussian Process (GP)-based methods have not been
studied widely by the target tracking community. GP meth-
ods have been proposed for localization [24], [25]. However,
the target trajectory in these works is not considered highly
maneuverable. This article focuses on both highly maneu-
verable and less agile targets. Some GP-based methods have
been proposed for extended object tracking [26], [27]. These
methods represent the object shape using a GP, whereas
the target kinematics estimation is performed using model-
based approaches for point target tracking. The approach
proposed in this article is for the kinematics estimation
of point targets. An overlapping mixture of GP, proposed

'The » indicates that the RGP*MT is a recursive algorithm, whose hyper-
parameters are learnt online.

AFTAB AND MIHAYLOVA: LEARNING GAUSSIAN PROCESS APPROACH FOR MANEUVERING TARGET TRACKING

in [28], provides a solution to the data association problem
of point targets. To the best knowledge of the authors, this is
the first work on a GP-based model-free approach for online
target kinematics filtering and smoothing.

B. Contributions

The key contributions of this article are as follows.

1) A data-driven approach is proposed for online point
target tracking. The proposed approach is shown
to estimate well the unknown and nonlinear target
trajectory using the recursive update of the GP hy-
perparameters (see Section III-B).

2) A model-free recursive approach is proposed for the
estimation of the derivative of a GP. This approach
can also be extended in the same way to recursively
update the higher order derivatives of the GP. The
proposed approach is demonstrated by estimating the
velocity of a point target (see Section III-C).

3) A recursive point target smoother is proposed for
online position and velocity smoothing (see Sec-
tion III-D). The proposed smoother can be extended
for smoothing of the higher order derivatives of the
GP in the same way.

4) The proposed filters and smoothers are shown to be
robust to the measurement noise model parameters.
This is achieved by augmenting the state vector
with the measurement noise variance parameter. This
parameter is recursively updated at each time sam-
ple (see Section III-E). A simulation-based study
is also carried out to demonstrate the robustness of
the proposed approaches to the measurement noise
variance changes (see Section IV-F).

5) The performance evaluation of the proposed ap-
proach is done under challenging scenarios and
compared with model-based approaches (see Sec-
tion IV).

The remaining part of this article is structured as follows.
Background knowledge for GP and recursive GP methods
is given in Section II. The proposed tracker and smoother
are introduced in Section III. The performance evaluation
and results are presented in Section IV. Finally, Section V
concludes this article.

[I. BACKGROUND KNOWLEDGE
A. GP Regression

A GP is a stochastic process defining a distribution over
possible functions that fit a set of points. A GP is a nonpara-
metric method [23] which can have different probability
distributions to fit data to the unknown functions. Most
commonly, the squared exponential and Gaussian kernels
are used. The GP is defined by two functions, a mean and a
covariance kernel. It is assumed that any finite realizations
of the GP are mutually independent normally distributed
with the given mean and covariance kernel. The parameters
of the mean and the covariance kernel are called hyper-
parameters. In a regression problem, the function/model
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selection is done using the hyperparameters and the given
data also called training data. The hyperparameters are
determined using the training data and the process is called
learning.

Suppose a one-dimensional (1-D) output r is nonlinearly
dependent on a 1-D input u. The nonlinear mapping and the
observation model are given as

fw) ~ GP(m(u), k(u, u')) (H
€~ N(,0°I 2

r= f(u),
z2=fu)+e,

where f is a nonlinear function, u and ' are either the train-
ing or the testing input data, GP(m(u), k(u, u’)) represents
a GP with a mean m and a covariance kernel k, z is the
observation vector, f(u) represents the true function values
at input vector u, € denotes the measurement noise vector
whose elements are independent and identically distributed
(i.i.d.) Gaussian random variables with variance o2 and
I denotes an identity matrix. The n-dimensional identity
matrix is written as I,,. However, often we will not indicate
its dimension.

Given an n-dimensional training data set, D, =
{(gl, uy), (25, Up)s -5 (2, u,)}, the GP regression equa-
tions at new input locations are

Elf @*)] = m@ ) +Kyu(Kuu + 0°1,) '@ —m@)) (3)
CLf )] = Kyw — Kuowu(Kyu + 0°1,) " Kyyr “4)

where E[-] denotes the mathematical expectation op-
erator, f(u*) = [f(u}), f(u3), .. .,f(u?)]T represents the
function prediction vector at the new input vector u* =
[u’l*,...,ul*]T, E[f(@*)] and C[f(u*)] represent, respec-
tively, the predicted mean and the predicted covariance,
z=12,.2y.-.-.2,)" and w =[u;, u,,...,u,]" are the n-
dimensional measurement and input training data vec-
tors, respectively, m(u) = [m(u,), m(u,), .. ., m(gn)]T rep-
resents the n-dimensional GP mean vector, K, denotes the
GP covariance matrix between the input vectors p and g, -~
represents the matrix inverse. A GP covariance matrix
between a j-dimensional vector # and the /-dimensional
vector u* is given as

k(up, uy)  k(uy, u3) k(uy, uy)
k(uz, uy)  k(uz, u3) k(uz, uy)

wr = . ) . Q)
k(uj, uy)  k(uj, us) k(uj, uy)

The above GP formulation is applicable to multiple dimen-
sional inputs and outputs in a similar way.
The derivatives of the mean function and covariance
kernel are required and are defined as
T
] (6)
U=u;

om(u)
ou

S(m(u)) = [%

U=u
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Ok (u,uy) ok(u,uy)
du _ o du _
u=u, u=u,
Au(Kuu*) = (7)
ok (u,u}) ok (u,u})
du u=u; du u=u;
9%k (u,u*) 92k (u,u*)
udu* | u=u, udu* | u=u,
u*=uy ut=u;
2 . . .
AL K= : .. : (3
9%k (u,u*) 3%k (u,uy)
Qudu* | u=u; A2 udur | u=u;
u*=uy ut=u;

where ém(u) denotes the partial derivative of the mean func-
tion, A, (K,,~) and Aﬁu, (K, ) represent, respectively, the
first- and second-order derivative of the covariance matrix,

denotes the variable that is evaluated at cr.

and ‘
o

B. Recursive GP Regression

GP regression is a powerful estimation method with
high-computational training and learning stages. The com-
putations scale as O(n’) for the n—dimensional training
data. The learning requires solving a nonconvex optimiza-
tion problem. Typically, an analytical solution to this opti-
mization problem is not available. Most of the existing nu-
merical solutions are not applicable in real time. In [29], an
online approach for GP regression has been proposed. Two
methods have been proposed in [29] by assuming bounded
input domain. The first one addresses the computational
complexity of the training process and is termed as online
regression or recursive GP (RGP). The second method, in
addition to the training, provides online learning and is
called online learning or recursive GP* (RGP*). The input
domain is sampled at discrete points and the input vector
representing the sparse grid points is called basis vector u.
The mean and the covariance at the sparse grid points form
the sparse GP representation. The sparse GP representation
is updated using the measurements received at each time
sample.

C. RGP With Online Regression

This section summarizes the RGP with online regression
proposed in [29]. Consider the GP model of (1) and (2). The
unknown function f is represented by a multivariate Gaus-
sian distributed vector of N inducing points f = f(u) =
[f(u1), ..., f(uy)]" with an initial distribution po(f) =
N (;L{; , C{; ). At each time sample, the inducing point dis-
tribution is updated using the corresponding measurements
and the prior distribution, assuming known hyperparame-
ters. The required conditional distribution p(f|z;.x) cannot
be updated using the GP regression (3) and (4). First,
because, the GP regression is a prediction method whereas
a measurement update is required. Second, the GP regres-
sion requires complete training data whereas a recursive
update of a prior distribution is required. The conditional
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distribution is expanded as follows for the recursive update:

pflze) = / ¢ p@lf. ) pFI) - Pl )dF
©)

where f = f (u{ ) denotes the functional evaluation at the

measurement input vector u{ and c is a normalization

constant. The product p(f| ) - p(flz1k—1) represents the
predictive distribution. The RGP recursion equations are

Prediction :
Je =K1 Ku (10)
Bi=Kj~JiK,,; (11
[LZ =m(u{)+Jk (ﬂi_l —m(u)) (12)
¢/ =B+ 5.0 7 (13)
Estimation
M, =@ + o2 (14)
af =i + M, (2 - i) (15)
¢ —¢l —me! (16)
cff =¢l g7 (c]) el (17)
G =l J7 (¢] + 021)_1 (18)
il =il + G (z— i) (19)
¢l =€l Gl (20)

where u denotes the input basis vector, u{ represents the
input vector corresponding to the kth measurement vector
Zx,JJx and By, are matrices derived from the GP regression (3)
and (4), respectively, and " represent, respectively, the pre-
dicted and filtered variables, u/ and C/ are, respectively,
the sparse GP mean and covariance of the modeled non-
linear function f at u, Gy is the gain matrix, o is the
measurement noise variance hyperparameter, g/ and ¢/
represent, respectively, the estimated mean and covariance
of the unknown function evaluated at the measured location
vector u{: ,C { 7 is the cross-covariance between fand f,and
M is the Kalman gain matrix.

To summarize, the inducing points distribution at k — 1
is used to find the predictive distribution of f in (10)—(13).
The prediction step utilizes the GP regression of (3) and (4).
The predicted distribution is updated using the measurement
vector zx to give the posterior distribution using a KF [15]
in (14)—(16). The product of Gaussians is evaluated for the
estimated distribution of the inducing points in (18)—(20).

D. RGP With Online Learning

This section summarizes the RGP with online learning
proposed in [29]. Consider the GP described by (1) and (2).
The hyperparameters are assumed unknown and learned

online within the state space framework

_ k-1
01 | =Ax |:0 :| + i (21)
- —
e 1
Vi =AXp—1 + v (22)
I O
Ar=10 I|, w~Nw.C) (23)
Ji O

where x; denotes the state vector, y, is an augmented vector
composed of the state vector and the function prediction
at the measured locations, 8, = [, o]’ represents the
hyperparameters vector, i, denotes the hyperparameters
vector of the GP mean and covariance functions, f and
f are, respectively, the function evaluation at the inducing
points and measured locations, Ay is the state update matrix,
O denotes a zero vector/matrix of appropriate dimensions,
v; is the additive Gaussian noise vector with independent
and identically distributed (i.i.d.) elements and with the
following parameters:

(0] 0O 0 O
w=110|, ¢C;=10 0 O 24)
by 0O O B

where b, = m(u{) —Jim@u) and J; and Bj; are given
by (10) and (11), respectively. The RGP* recursion begins
with s sigma points selection around the mean hyperparam-
eters vector ;LZ_I. In [29], the unscented transform [30] is
used for sigma points selection. Given an ith sigma point 6),
with weight w!, the predicted state vector and covariance
matrix corresponding to the ith sigma point are in the form

f i 0

, +8 (6 — ,

M’{I :Ak ,- ”’k—l k (i k ”l’k—l) + ©y ,- (25)
Ok ok 0/(
¢/ -5 o

Cyi —A k—1 k—1 T C’ 26

k g 0;[ o o[* o[l_ ar (26)

-1

Se=C{’, (Cl) 27)

where u;" and Ci” represent, respectively, the state mean and
the state error covariance corresponding to the ith sigma
point, Cz_l represents the covariance of the hyperparam-

eters vector and CZ{ , and C{fl are the cross-covariance
matrices between the hyperparameters vector and the sparse
GP representation f. The combined prediction variables are
calculated next, as follows:

N
y _ i i
My = E :wkﬂk
i=1

Ch = D wi — Dy — k)" +C7)

i=1

(28)

(29)

where u{{ and Ci denote, respectively, the mean and co-
variance of the augmented vector y. The state vector x;
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is decomposed in to an observed, o; = [0, (f;)717, and
unobserved vector, ux = [(f;)", 7} ]”. The mean vector and
covariance matrix corresponding to this decomposition are

f
My
we 7%
A Laul I (30)
Ry Mgy
2
o "'f]
cl, ¢ cf, ¢
uo o .
Cy _ Z—Ck _ CZ{] CZ_] CZ_] Ck_ (31)
L e™e | T et con o o7
k“k C., Gl G, ¢
el el e

where u and p represent, respectively, the mean of a vector
and a scalar, C* is the covariance matrix of vector a, Cc% is
the cross-covariance between vectors @ and b, C* and C%
denotes the covariance between scalar a and vector b and
C“ is the variance of the scalar variable a. The measurement
model (2) is reformulated in the form

4= fWH ol B~N@O 1) (32)
to make o explicit. In (32), B is assumed to be a random
variable sampled from the standard Gaussian distribution
(which is with a zero mean and covariance equal to 1) scaled
by o, 7' and ] are, respectively, the mth measurement of
Zr and its corresponding input location, o is the noise vari-
ance (hyperparameter). The 8 noise is assumed uncorrelated
with . The mean and the covariances corresponding to the
model (32) are given as

W =i (33)
C:=Cl + Vol +EloP =€ +C7_, + (ul_)* (34)
C¥ = Cloy, zi] = Cloy, f] (35

where C[-] and V[-] represent, respectively, a covariance
and variance function, uf{ and CfC denote, respectively, the
mean and covariance of the predicted measurement vector
and C}* is the cross-covariance between the observed state
and the predicted measurement. It is assumed that 0 and f
are jointly Gaussian. The KF equations used to update the
observed and unobserved states are

Ry = i} + Ex(ze — p3) (36)
¢y =C, — E,CiE] (37)
wi = iy + Li(Rg — i) (38)
Cl=C' | +L(C, —CHLT (39)

where Ey = C%*(C%)~' and Ly = C;’(€}) " are the Kalman
gain matrices for the observed and unobserved state updates,
respectively, and C l,:o is the predicted cross-covariance ma-
trix between the unobserved and observed states and is a
submatrix of C{. The state vector and the covariance matrix
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are updated as given below

u f
w A
;= o | = (40)
‘ [h’ﬂ‘k’] [ﬂi}
¢t LCh
Cr = X K 41
¢ [thkL,{ thkh] “1)

where BT = [1, Oy, 1, Oy, represents a 1 x Ny-dimensional
zero vector, and Ny, is the number of measurements received
at k.

[ll.  PROPOSED DATA-DRIVEN RECURSIVE TRACKING
APPROACH

A GPMT was proposed by us in [21]. The GPMT deals
with 2-D (x and y) data. It can be extended to any number
of dimensions in a similar way. The GPMT assumes that
the target motion, in the x and y directions, is mutually
uncorrelated. However, both coordinates are correlated in
time. Furthermore, it is assumed that the motion correlation
in time is limited to the recent past and is uncorrelated
with distant past. The filter has a sliding window of data
and as a result, the computational complexity of the GP
training is reduced for online processing. In target tracking,
the higher order position derivatives are also estimated. The
first-order GPMT (FO-GPMT?) was proposed in [21] for
the velocity estimation. The same approach can be extended
for estimating other higher order derivatives. Importance of
Learning. A fixed set of hyperparameters allows tracking
of a limited set of target trajectories. The hyperparameters
need to be learned for tracking a relatively wide set of target
trajectories. In [21], a maximum likelihood (ML) based
approach was adopted for learning. The computational cost
of this approach [21] is high and the GPMT processing is not
in realtime. A recursive GPMT (RGP*MT) is proposed in
this article to reduce the computational time of the learning
process. As a result, the RGP*MT provides realtime target
state estimation.

The GPMT is summarized next followed by the pro-
posed approach.

A. GP Motion Tracker

The GPMT is a GP-based approach for position predic-
tion and filtering of nonlinear target dynamics. It is based
on the following assumptions.

1) Cross-coordinates coupling is weak enough to be
ignored.

2) Coordinate autocorrelation is available in time.

3) The temporal correlation with input points in distant
past is weak.

4) The measurement noise variance is the same for all
the measurements.

The cross-coordinate coupling is ignored according to 1.
The coordinates are coupled when a target maneuvers [31].

2The prefix FO is removed from hereon for brevity.
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The effect of ignoring this coupling in a model-free ap-
proach such as GPMT has not been studied yet. The co-
ordinate coupling can be included by extending the pro-
posed approach using a coupled GP [32]. The GPMT can
estimate any number of output dimensions. For tracking
of x and y coordinates, a 2D-GPMT is proposed in [21]
and summarized in this section. The GPMT formulation for
x-coordinate is presented below, since tracking of the y and
other coordinates is done in the same way. The x-coordinate
is represented using a GP

x = f5@t), f°~GPY0, k1)
Z=ft)+€, € ~N©O )

(42)
(43)

where x represents the horizontal Cartesian coordinate or
the output (position) variables, f* denotes the unknown
nonlinear function, GP denotes the GP representation, z;
represents the measurement vector consisting of samples
corresponding to time vector, €; denotes an additive Gaus-
sian noise vector whose elements are i.i.d. with variance
denoted by o2. In the proposed approach the squared expo-
nential covariance kernel [23] is adopted.

The measurements are stored and used for the GP
training. Training data older than the d most recent mea-
surement samples, also called depth of the tracker, are
assumed uncorrelated and removed. The position prediction
and update equations for all output dimensions are similar.
The prediction and filtering of the x coordinate, using the GP
regression (3) and (4) can be performed with the sequence
of equations

i = K K, 'z}, (44)
(@)* = Kii — Ku, K, K, 45)
i =Kk, 'z (46)
@) = K — Ku K, K], @)

where K, = [Kuyq +0214], T=k, ty=[k—d, k—d+
Lo k=17, t,=lk—d+1Lk—d+2,....kI", pn*
and (¢*)* denote, respectively, the position mean and vari-
ance. The GPMT prediction is explained in Fig. 1.

The derivative of a GP is also a GP [23]. The existence
of a Derivative of a Gaussian Process (DGP) depends on
the differentiability of the covariance kernel. A squared
exponential kernel is infinitely differentiable and as many
position derivatives can be predicted and filtered. Based on
the works of [33] and [34], a firstorder GPMT (FO-GPMT)
was proposed in [21] and is in the form

it = AiKnK, 'z 48)
@) = AL(Kw) — A(Ku)K, [A:(Kx,))T (49)
ik = AiKuK, 'z (50)
(3 = AL (Kn) — Ar(Kup K, A7 (Kz)l" (51)

where 1 and (¢*)? denote, respectively, the velocity mean
and the variance.

= Target trajectory

®  Measurement
31 O GPMT prediction
@ Inducing point
+  RGP*MT prediction
Z 2 1 x  RGP*MS estimate
2t
k=9,d=6
0 f f f f f f f f f
o 1 2 3 4 5 6 7 8 9
Sample Number
Fig. 1. This figure illustrates the GPMT, RGP*MT, and Recursive

Gaussian Process* Motion Smoother (RGP*MS) approaches for output at
k = 9 using a sliding window width d = 6. The target trajectory (solid
red line) is sampled at 8 points and the prediction is done for k = 9. The
GPMT uses d = 6 measurement samples (black dots), 3 < k < 8, as
training data. It predicts the trajectory at 9th sample shown as black
empty circle. The RGP*MT uses d = 6 inducing points (blue encircled
plus) to predict the trajectory shown as blue plus. The RGP*MT filtering
at k = 9, updates the inducing points based on the new measurement
sample. The RGP*MS estimates or the smoothed estimate (blue cross)
are the inducing points that are no more part of the training data. After
processing of the 9th sample, the training data at k = 3 is removed and
the data of sample k£ = 9 is added. The removed inducing point becomes
the RGP*MS smoothed estimate.

B. Recursive Gaussian Process Motion Tracker (RGP*MT)

The RGP*MT is an online state estimation approach
for point target tracking. Consider again (42) and we will
present the derivations for the x coordinate. Similar deriva-
tions hold true for the y coordinate and other states. The
GPMT assumptions 1, 2, 3, and 4 are also valid for the
RGP*MT. It is further assumed that the function values at
the d most recent measurement samples are represented
by a set of d inducing points. This GP representation is
different from the sparse GP of [29]. A bounded input
domain is assumed in [29], whereas the input dimension
for the proposed approach is right unbounded. Using 3, the
input location of the inducing points are chosen to be same
as that of the d most recent measurements and the input
locations of distant past are ignored.

The target is assumed to follow an unknown nonlinear
trajectory from time ¢ = 0 to = f;y.x. The input domain
is sampled using a fixed equidistant grid also called in-
ducing points. Unlike [29] where multiple measurements
are received at random input locations, the measurements
are received in a sequence starting at t =0 and going
toward f,,x. Moreover, a single measurement is received
per sample. In order to keep the training computational
complexity low and using three, a smaller set of inducing
points (near the measured location) are considered for the
state prediction and filtering. In this way, the inducing points
represent the nonlinear function in the near vicinity of the
measured location. This reduced set of inducing points is
then used for the functional prediction and filtering at the
measured location. The processing time of the training was
reduced in the same way in GPMT [21]. However, the
locations of the inducing points can be chosen different
from the measured locations. This is not possible in the
GPMT [21]. Another advantage is that the location of the
inducing points can be learned at each measurement sample
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for optimal representation of the slice (of width d + 1) of
the underlying nonlinear function. As a result, the number
of inducing points can be reduced when the target motion is
uniform. Conversely, when it is exhibiting sharp maneuvers,
the inducing points can be increased. The whole process
also employs online learning of the hyperparameters which
makes the approach highly adaptive.

The inducing points are updated at each time step.
Consider the prior inducing points set locations at k are
represented by the d-dimensional prior input vector ¢; =
lk—d,k—d+1,...,k—1]". The inducing points store
an estimate of the nonlinear function f* in the vector
[ = fF (). The prior inducing points are the training data
for the function prediction at #; and k. The measurement
73, received at k, updates the set of inducing points and the
function prediction at the measured locations. The update
of the function at the measured location k is the position
estimate of the target. The position estimate at k, evalu-
ated using the inducing point set and the measurement, is
included in the inducing point set. The oldest, in terms of
time, inducing point is removed and a new point is added to
the inducing point. As a result, the total number of inducing
points is kept fixed. The new point is the function estimate at
k denoted as f = f*(k). The recursion starts at k = d + 1
sample. The initial distribution of the inducing points set and
the hyperparameters vector is determined using the first d
measurement samples, in the form

P =N ¢ =Ky, + (0] 1y)
PO =N, ch)

(52)
(53)

where p(-) is the probability density function, u,f and Cf
represent, respectively, the mean and covariance of the ini-
tial inducing point set and uf; and ng denote, respectively,
the mean and covariance of the initial hyperparameters
vector. The prior covariance Cf; differs from that proposed
in [29] since the inducing points are initialized and re-
cursively learned from noisy measurements. However, the
inducing points are not learned exactly due to the measure-
ment noise and the uncertainty in the inducing points is
represented with the following assumptions.

1) The inducing points noise is modeled as an additive
random noise vector whose elements are i.i.d. with
variance (07})?.

2) The variance of the inducing point is of the order of
the measurement noise variance.

As aresult of the above assumptions, (10) is represented
as

Ji =K, Ku + (010" (54)
The initial value of the mean vector uZA is found with the
ML estimation based hyperparameters optimization with
the first d measurements. The inducing point vector and the
hyperparameters vector are combined to define the state vec-
tor x¥ = [(f)7, @)7]" and 6* = [o*, (*)T]". The state-
space model is given by (21) and (22). For recursive update
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of the inducing points, the prior at k is assumed to be
P 1zt ) =N(@F ,,€;_)) and that given the joint
distribution of the inducing points at#; and k, the likelihood
of the new measurement is independent of the previous
measurements. The posterior p(xf|z},) can be updated
using the decomposition [35] of the state into observable
o} = [of, (F)'1" and unobservable uf = [(f{)”, ()" 1"
parts

pxlziy) = / pulop)polzi)d f; (55)
Inference is done using the RGP* described in Section II-D.
The sigma points are chosen using the constrained un-
scented transform [36], which is different from [29]. The
constraints are applied on the hyperparameters to remain
positive at all times. The RGP* recursion is adopted under
the following equivalent notations:

(56)
(57)

u=t, ul =k Z=xi, f=J;
z=2. mk)=0, mty)=04.Jc=J,

to give the RGP* motion tracker (RGP*MT). Using (56)
and (57) and the prior distribution of x*, the posterior is
estimated using (21)—(41). The mean ﬂf and variance C‘,{ ’
of the function at k can be found after modifying the update
(40) and (41) and the new expressions are

al =n"Rg, W =1y — k" (58)
¢l =n'Cn (59)
cl' =weLt (60)

where C{Xf ' represents the cross-covariance vector between
the inducing points set and the estimate at the new input
location and 1, isa 1 x a unit vector. Let the posterior mean
and covariance from (40) and (41) are

P S A S o s SR

k ko Sk ko “k k

Then, the posterior distribution of the inducing points can
be determined by this posterior mean and covariance given
in (61). Let the elements of the updated inducing point set,
the covariance matrixkand the g[gss—covariance vector be
represented as /if, Co‘{i‘i, and é{if , respectively, where i =
{1,2,...,d}. The most recent inducing point is denoted
with the index d. The following operations are performed
on the updated inducing points set to get the modified set
and to also keep the number of elements constant

S e
L i3 ifi=1,2,....,d —1
pl=1" (62)
J24 ifi=d
ELIE D, j=(1, .. d — 1)
°f]'(+1]_”. . .
Elifi=(1,. . d—1}j=d
C-I{/.j — ‘];‘X j_ul l { }.1 (63)
coifi=dj=(1.....d -1
¢l ifi=j=d.
FEBRUARY 2021



In (62) and (63), the oldest inducing point is removed and
a new inducing point is added, using the estimates and the
corresponding cross-covariance matrix of the current time
step. The state vector x defined in (21) and (22) is built using
the new inducing point set and the updated hyperparameters
vector. The steps from (21) to (41) are repeated for the
estimates at the next sample. The RGP*MT recursion is
explained in Fig. 1.

C. Recursive Derivative of Gaussian Process* Motion
Tracker (RDGP*MT)

The recursion for a DGP has not been proposed in
the literature. In this section, a recursive estimation of
the first-order derivative of the x position is proposed. In
a similar way, the higher order derivatives of x and the
time derivatives for other coordinates can be derived. This
formulation is generic and can be applied to any derivative
of a GP regression. Consider the GP model defined in (42).
The DGP is given as

K_TO_ oy,
dt dt

A derivative of a GP is also a GP [23]. As described in
Section III-B, the input domain is sampled using a fixed
grid of inducing points. The location of the inducing points
is chosen the same as for the RGP*MT. Let the input vector
of the inducing points is #;, then the local estimates of the
DGP are stored in the following inducing points:

(64)

f=rwo. (65)
Consider the following initial distribution of the DGP:
Pa(F) = N €l = Kiy, + @)L). (66)

The posterior distribution is updated recursively using the
Bayes law and the Chapman—Kolmogrov equations given
as

ol = L PG T FOP(Fo P e Ddf,
k\&1:k/) —

Ck

(67)

where z is the measurement, fi represents the function
evaluation at the measured location, and ¢ is the normal-
ization constant. It is assumed that the hyperparameters
have been learned during the position filtering step, i.e.,
RGP*MT. Hence, the posterior update is independent of
the hyperparameters. The DGP inducing points and the
velocity inference and filtering at time k is done recursively
following the RGP formulation given in Section II-B and
the following equivalence:

7 . - P .
u=ty, u =k, fr=Ff fi="Fe, mk) =0
. ] Z — 25 ) 2(0})?
i) = 04, 5 = 2—HL (@) = ==

where T is the sampling time and z; is a pseudomeasurement
with measurement noise variance (('7,?)2. Using the RGP
recursion given in Section II-C, the filtered inducing points

set and the derivative of the function at k are
S PN Y i
IL{ =pl, & =C, ¢ =cl

il = i,

N

¢l =el.

At the end of the recursion, the inducing points are updated,
similarly to (62) and (63), as follows:

X

L o, oifi=1,2,...,d—1
=" (68)
ploifi=d
¢, j=(1, .. d — 1)
. it .
N eI, d—1)j=d
¢l = = b (69)
Cf/“f fi=dj=1{,....d—1)
¢l ifi=j=d.

An alternative way of determining the derivatives (also used
in Section 1V) is from the inducing points and the learned
hyperparameters of the RGP*MT. The inducing points and
derivatives can be represented by a multivariate Gaussian
distribution [34]

f;;i N mty) | | Kee, + (0710 Ai(Kp7)
fr Sm@) |  AiKw)  A:(Kw) |)
(70)

The predicted and filtered variables of the first-order deriva-
tive process given the inducing points are

1l = 50n) + AKa)K; (R —m@e)  (71)

cl = AL (Kir) — A(Kn, K, (A7 (K1 (72)

Al = s(m@) + AKaK; (B —m@))  (73)

o = ALK — AKigK, (A Ki)T . (T4)

D. Recursive Gaussian Process* Motion

Smoother (RGP*MS) and Recursive Derivative of
Gaussian Process* Motion Smoother (RDGP*MS)

Training data for the GPMT prediction and update steps
are the recent measurements. Comparatively, the RGP*MT
prediction is based on the inducing points set. The RGP*MT
update step is performed using the inducing points set and
the current measurement. The inducing points set is updated
during each measurement update. This update, given by
(38) and (39), is similar to a fixed-lag-recursive-smoother.
The smoother lag is d measurement samples long according
to (62) and (63). As shown in [29], this smoother is similar to
the augmented Kalman smoother of [37], with an additional

measurement update step. fi /1 and Cf1 "in (62) and (63) are,
respectively, the smoothed posmon and the correspondlng

variance evaluated at ¢'. Similarly, jt Af " and Cf” in (68)
and (69) are, respectively, the smoothed ve1001ty and the
corresponding variance. As for the derivative GP, an alter-
native way of smoothing is through the use of (73) and (74)
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and setting7 =k —d andt, = [k, k—1,....,k—d + 1] .
The RGP*MS is also explained in Fig. 1.

E. Measurement Noise Uncertainty Analysis

The proposed RGP*MT and RGP*MS does not require
prior knowledge of the measurement noise variances. This
is achieved by setting the measurement variance as a hy-
perparameter. The measurement noise variance is recur-
sively estimated at each step. As a result, the proposed
filter and smoother are robust to the measurement noise
errors, provided that the noise is additive Gaussian. The
performance of the proposed approaches is studied using
different measurement noise variances and the results are
presented in Section IV-F.

. Sparsity and the Inducing Points

The RGP*MT, RGP*MS, RDGP*MT, and RDGP*MS
proposed in this article extend further the sparse GP [38],
for target tracking and with studies on the impact of the
noise parameters on the approaches’ performance. A typical
sparse GP application has a bounded input domain, whereas
the proposed approaches in this article are based upon a
right unbounded input domain. Second, a typical sparse
GP application requires an estimate across the whole input
domain. In target tracking, the interest lies at the current
and future time, i.e., at a specific slice of the input domain.
Finally, in a typical sparse GP application the training data
is available on both sides of the test data. Conversely, in
the assumed target filtering problem, the training data is not
available on the right side of the input domain.

The proposed approaches introduce sparsity through the
inducing points and the parameter d. The inducing points
locations are proposed to be the same as those of the mea-
surements. These can be chosen different from the measure-
ment locations as well. The distance between the inducing
points location cannot be kept too close or too far. The
optimal grid points location is proposed as a function of the
lengthscale hyperparameter in [39]. Similarly, the accuracy
of the developed approaches is sensitive to the parameter d.
Previously, sparse GP methods have been proposed for the
automatic selection of the inducing points [40] and choice
of the parameter d [41]. A comprehensive review of these
methods is given in [42]. In this article, the parameter d is
selected by the trial and error approach. In future, automatic
selection can be introduced to improve the robustness of the
approach with respect to d.

I[V. PERFORMANCE VALIDATION

The proposed approach has been validated over chal-
lenging maneuvering scenarios presented in this section.

A. Compared Methods

Different model-based and model-free filters described
below are compared.

F1) CV. A KF with state transition modeled us-
ing a nearly constant velocity (NCV) [2] model.
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The process noise variance is set to gncy =
10 m?/s*.

F2) Fixed grid interacting multiple model (FGIMM).
An FGIMM [43] is implemented using three KFs.
The grid consists of an NCV and two coordi-
nated turn models. The rate of turns are set to
{—15, 15}°/s. The Markov transition probability of
the same mode is set to 0.9 and for changing the
mode is 0.05, the initial model probability vector is
{0.15, 0.7, 0.15} and the process noise variance is
set to 26 m? /s* for each model. This is an optimum
process noise variance for a target moving with
200 m/s according to [44].

F3) Singer. A KF designed using a Singer [20] state
transition model. The model parameters are set as
follows; maximum possible acceleration is set to
Amax = 8 m/s?, probability of no-acceleration is set
to Py = 0.4, probability of maximum acceleration
is set to P, = 0.1 and man oeuvre time constant
is setto 7, = 8 s.

F4) GPMT, FO-GPMT. A GPMT and FO-GPMT [21]
with depth set to d = 10 samples.

F5) CGPMT, FOCGPMT. A constant (hyperparame-
ters) GPMT and FOGPMT with depth set to d =
10 samples. The hyperparameters are initialized
using the first d measurement samples and are kept
constant there after.

F6) RGPMT, RDGPMT. A filter based on RGP. The
learning is ML-based and the depth is set to d =
10 samples.

F7) RGP*MT, RDGP*MT, and RGP*MS, RDGP*MS.
The proposed filter and smoother with depth set to
d = 10 samples. The smoother is denoted as S*7.

Filters (F1), (F2) and (F3) are chosen to compare the
proposed approach against the model-based filtering meth-
ods. Filter (F4) is chosen to study the effect of proposed
changes in the training (inducing points instead of mea-
surements) and learning (recursive instead of ML). Filter
(F6), which adopts the same training process as the pro-
posed approach, is introduced to study the performance of
different learning approaches, ML in (F6) versus recursive
in the proposed (F10). Finally, filter (F5) is introduced to
study the performance degradation if the hyperparameters
are not learned.

B. Testing Scenarios

The above mentioned approaches are compared on the
following six challenging scenarios.

S1) Uniform. The target velocity is kept nearly con-
stant. This scenario represents the commonly ob-
served trajectory of airliners.

S2) Gradual Coordinated Turns. The target motion
is modeled using the left and right coordinated
turns (15°/s for 10 s) and the CV motion models.
This scenario represents maneuverable targets dy-
namics, less agile than those in scenario (S3).
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TABLE 1
Match Mismatch Matrix

S1 | S2 | S3 | S4 | S5 | S6

F1
F2
R -
F4
F5
Fo6
F7
F8
F9

[ Mis-match

Matched model [l Matched model and parameters

S3) Sharp Coordinated Turns. This is similar to (S2)
except the turn rates are set to (30°/s for 9 s). This
scenario represents highly maneuverable targets
dynamics such as military aircrafts.

S4) Singer Lazy. The target motion is modeled using
the Singer acceleration model. The parameters are
chosen the same as those of the Singer filter (F3).

S5) Singer Agile. This scenario is similar to (S4), except

the maximum acceleration is increased to A2, =

50 m?/s*. As compared to (S4), an agile target is

simulated in this test scenario.

GP. The target motion is modeled using two zero

mean GPs, each for the x and y coordinate, respec-

tively. The squared exponential covariance kernel
is adopted for both GPs. The hyperparameters are
kept constant. The magnitude of variance is set to

0., = le7 m* and length-scale is set to [y, = 10 s.

S6)

The target velocity is initialized randomly in the
range 150 < vy < 250 m/s for model-based scenarios (S1)
to (S5). The total time of trajectory is 100 s. The mea-
surement noise standard deviation is set to o = 25 m. The
simulated scenarios cover a wide range of maneuvering
trajectories depicted by the aerial targets. Each scenario is
matched, in terms of the structure and the parameters, to at-
least one of the filters. This provides a rigorous performance
evaluation for each approach. The matrix for the match and
mismatch among the filters and the scenarios is depicted in
Table I.

Scenarios (S5) and (S6) represent highly maneuvering
target trajectories which are not matched to any of the
compared filters. A sample trajectory of each scenario is
shown in Fig. 2. The filters are initialized using the mea-
surement data. The hyperparameters vector is initialized by
maximizing likelihood of first d measurement samples for
filters (F6) and (F7). The position and velocity root mean
square errors (RMSE) are plotted in the figures showing
performance graphs. The mean-RMSE errors of the position
and velocity are given in the performance tables. The RMSE
and mean-RMSE in Nyic Monte—Carlo simulation runs are
evaluated as

Nuc

1
kK A N2
rmse’ = | — E (Gik — Gix) (75)
4q Nwme = '
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Fig. 2. Sample Trajectory. The figure shows a sample trajectory of each
scenario. The initial position is indicated by a small circle. (a) S1: CV.
(b) S2: Gradual CT. (c) S3: Sharp CT. (d) S4: Singer lazy. (e) S5: Singer
Agile. () S6: GP.

Nwe K

K]\IJMC Z > (Gik = Gix?

i=1 k=1

(76)

mean rmse =

where rmse'; and mean rmse represent, respectively, the
RMSE and the mean RMSE, ¢ is the true value, gy is the
filter output, and K is the total number of samples.

C. Implementation Details

The implementation details of the proposed approach
are given in this section. The state vector (excluding the hy-
perparameters) and the measurement data are scaled down
at the input and upscaled at the output of the filter. The
scaling is set to %. The first two inducing points for the
DGP are initialized to the same value. The mean hyper-
parameters vector is initialized using the ML of the first
d measurement samples. Let the initial hyperparameters
vector is given as uf = [02,, 1, 0%]7, where o, and [ are
the kernel variance and lengthscale hyperparameters and
o? is the noise variance hyperparameter. The correlation

between the noise variance hyperparameter and f (u{ ) is
necessary for its learning in (36) and (37). As proposed
in [29], this correlation is attained by correlating the noise
variance hyperparameter with the remaining hyperparam-
eters. To achieve this, the terms in the covariance of the
hyperparameters relating to the noise variance hyperparam-
eter matrix are set to nonzero values. The initial covariance
matrix is

2 a

A Oker 0 4_9
=10 1 2| a7

o2 o2 o2

30 30 20
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Fig. 3.

Prediction RMSE. The figure shows the prediction performance in 10 000 Monte Carlo runs based on RMSE. An incomplete plot (such as

Fixed Grid Interacting Multiple Model (FGIMM) in S6) means that the corresponding filter sometimes diverges after that time. The Y-axis is set to log
scale for readability. (a) S1: CV. (b) S2: Gradual CT. (c) S3: Sharp CT. (d) S4: Singer lazy. (e) S5: Singer Agile. (f) S6: GP.

The cross-covariance matrix between the initial inducing
points and the hyperparameters is set to a zero matrix

¢’ —o.

D. Results

The results are obtained from 10 000 Monte Carlo runs
for each scenario. The accuracies of the prediction and
filtering steps are evaluated separately. The graphical and
numerical comparisons of the prediction process are given
inFig. 3 and Table I, respectively. It can be observed that the
GPMT (F4), the proposed RGP*MT (F7) and, a variation of
the proposed approach, RGPMT (F6) have comparable per-
formance in all scenarios. This shows that the performance
of real-time RGP*MT, using the inducing points and online
learning, is as good as ML-based nonreal-time GPMT. The
CGPMT (F5) performs poorly during the scenarios (S1) and
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TABLE 11

Prediction Mean RMSE (NAN Means Filter Diverged)
F1 F2 F3 F4 | F5 F6 | F7
s1 L% 13 19 24 22 41 17 28
T 3 9 10 10 31 5 13
sz L% 230 34 181 | 72 | 113 | 148 | 87
z | 123 32 130 | 83 119 98 67
s3 L% 365 208 303 | 69 71 82 79
z | 203 150 224 | 82 79 55 66
s4 LT 35 28 27 27 45 35 30
T 15 16 13 15 35 13 15
S5 | © 203 109 77 46 | 164 69 55
[ T 94 96 51 40 | 167 40 37
S6 [ xz | 407 | NAN | 176 | 43 55 51 44
[ [ 175 | NAN 98 36 43 30 30

(S5). This is due to the absence of learning in this filter. The
RMSE increases with time, which is not a desirable property
for filters. The filter FGIMM (F2) sometimes diverges in
scenario (S6), which is also not a desirable property. The
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Fig. 4. Filtering and Smoothing RMSE. The figure shows the filtering and smoothing performance in 10 000 Monte Carlo runs based on RMSE. An
incomplete plot (such as FGIMM in S6) means that the corresponding filter sometimes diverges. The Y-axis is set to log scale for readability. (a) S1:

CV. (b) S2: Gradual CT. (c) S3: Sharp CT. (d) S4: Singer lazy. (e) S5: Singer Agile. (f) S6: GP.

Singer KF (F3) performance degrades during the scenarios
(S2), (S3), and (S6). The performance of the CV filter (F1)
is not satisfactory for (S2), (S3), (S5), and (S6).

The graphical and numerical comparisons of the filter-
ing process are given in Fig. 4 and Table III, respectively. A
comparison similar to the prediction process can be done.
It can be concluded that the model-based filters and a
constant hyperparameters based GPMT are not suitable
for predicting a wide range of target trajectories. Three
highly maneuvering and mismatched scenarios, (S3), (S5),
and (S6), are considered to study the effects of the mismatch.

For scenario (S3), the proposed approach provides a per-
formance improvement of % x 100 = 80% in position

and 45111818 100 = 62% in velocity filtering as compared
to the best model-based filter (F2). For scenario (S5), the
proposed approach provides a performance improvement

TABLE III
Filtering Mean RMSE (NAN Means Filter Diverged)
F1 F2 F3 [ F4 | F5 | F6 | F7 | S¥7
R 11 13 16 5] 19| 12 | 17 10
T 2 6 8 8 18 5 12 7
sz L% 140 18 83 20 | 30 | 49 | 23 19
z | 106 25 98 38 | 61 | 87 | 48 48
s3 L% 221 109 139 | 19 | 21 | 22 | 22 19
z | 175 118 174 | 38 | 39 | 47 | 45 73
s4 L2 23 16 17 16 | 20 | 22 | 17 11
T 12 11 10 10 120 [ 13 ] 13 8
S5 L% 123 48 37 19 | 44129 | 19 14
z | 75 67 37 24 185 [ 35129 28
R 247 | NAN | 81 18 | 23 | 22 | 20 13
z | 137 | NAN | 64 26 | 30 | 29 | 27 26
f 23 x 100 = 22%

in velocity filtering as compared to the best model-based

filter (F3).
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name of the approach represents the scenarios, i.e., the postfix numeric 1 corresponds to 25 m standard deviation in measurement noise while 2 and 3
represent, respectively, 40 and 50 m standard deviations. (a) Prediction. (b) Filtering.

TABLE IV
Processing Time in Milliseconds

Method Time (msec)

CGPMT + FOCGPMT 0.01

CV 0.05

Singer 0.07

FGIMM 0.5

RGP*MT + RDGP*MT + RGP*MS + RDGP*MS 5
GPMT + FO-GPMT 41
RGPMT + RDGPMT + RGPMS + RDGPMS 52

For scenario (S6), the proposed approach provides a per-
formance improvement of 208_181 x 100 = 75% in position
and 276;464 x 100 = 58% in velocity filtering as compared
to the best model-based filter (F3). The smoothing perfor-

mance is also demonstrated in Fig. 4 and Table III.

E. Processing Time

The program was run on MATLAB R2018b on a Win-
dows 7 Home (64 bit) Laptop computer installed with an
Intel(R) Core(TM) i3-M350 CPU @ 2.27GHz(2 CPUs)
and 4GB RAM. The processing time of a single filter
iteration averaged over 500 Monte Carlo runs is given in
Table IV, sorted from fastest to slowest. Filters (F4) and
(F6) take maximum time per iteration due to the time taken
for ML-based learning. These are not suitable for real-time
processing. Filters (F1), (F3), and (F5) are the fastest among
the compared approaches. The combined processing time
for the proposed filter and smoother is around Sms. It is
almost 10 times slower than (F2). The processing time
can be improved further by optimization of the code or by
changing the platform to C++.

F. Impact of Increased Noise Variance on the
Performance

A simulation based study on the performance of the
proposed approaches with an increasing noise variance is
given in this section for x coordinate. Testing scenario (S6)
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TABLE V
Percentage Degradation

% Increment % degradation
Prediction Filtering
o pos | vel | pos | vel
Filter 60 51 25 66 22
100 92 42 127 | 40
60 - - 66 18
Smoother 100 130 [ 33

is considered for the evaluation. The results are obtained
for three different measurement noise standard deviations,
o, = {25, 40, 50} m. The position and velocity RMSE for
5000 Monte Carlo runs of the three test scenarios are given
in Fig. 5. It can be observed that the performance degrades
as the measurement noise variance increases. It is important
to note that no prior information regarding the change in the
noise variance is provided to the filter and smoother. The
proposed approaches adapt to the changing noise variance
scenarios through recursive estimation of the variance and
divergence is avoided. The percentage degradation in the
prediction, filtering, and the smoothing with respect to the
percentage increase in the noise variance is given in Table V.
It can be observed that the percentage degradation in the
position prediction, filtering, and smoothing is comparable
to the percentage increase in the noise variance, e.g., a 100%
increase in the noise variance degrades the position predic-
tion by 92%. The percentage degradation in the velocity
prediction, filtering, and smoothing is less as compared with
the percentage degradation of the position estimate, e.g., a
100% increase in the noise variance degrades the velocity
prediction by 42%.

V. CONCLUSION

Model-based approaches are well established and
widely used for state estimation. This article shows that
data-driven approaches can perform equally well and even
better than model-based approaches. A novel GP regres-
sion approach with learning is proposed for tracking and
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smoothing purposes. Thanks to recursive learning of the
hyperparameters of the GP, the approach is suitable for
online estimation. The performance evaluation, carried out
in challenging scenarios and compared with other online
model-based filters, shows that the proposed approach gives
overall the best performance for a wide set of target trajec-
tories. For the two highly maneuverable and mismatched
scenarios, (S3) CT and (S5) Singer, the proposed approach
provides 80% and 62% performance improvement in the
position estimates and 49% and 22% in the velocity esti-
mates, respectively, as compared to the best model-based
filter (F3), i.e., a Singer motion model based KF. The
flexibility provided by the proposed model-free approach
strongly advocates its preference over model-based ap-
proaches for applications involving a wide set of target
trajectories. Current work is focused on the performance
of GP approaches to quantify the impact of uncertainties
with information measures.
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