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Abstract—Filtering involves predicting the future state of a
space object in orbit about the earth given observations (e.g.
angles-only or radar measurements) about its current and past
states. The task is simplest when the identity of the object
is known. A recently developed “Adapted STructural (AST)”
coordinate system enables the task to be carried out in a compu-
tationally efficient manner. Propagation for a single state (or a
small number of sigma points) can be carried out using Keplerian
dynamics or using a numerically more expensive propagator to
accommodate perturbation effects. In either case, the uncertainty
can be represented in AST coordinates as Gaussian to a high
level of accuracy. An Unscented Kalman Filter (UKF) has been
developed in this situation; in particular, there is no need to use
particle filters.

However, when object custody is uncertain, i.e. when the latest
observation might correspond to two or more objects in a catalog,
the filtering task is more complicated. In this case we propose a
mixture of Gaussians in AST coordinates to represent the state.
The paper will demonstrate the feasibility of this approach.

Index Terms—AST coordinates, Unscented Kalman Filter,
mixture modeling

I. INTRODUCTION

Uncertainty propagation is a fundamental issue in orbital

mechanics for the purpose of object tracking and association

problems. For example, Junkins, Akella, and Alfriend [2]

studied nonlinear characteristics of the propagated uncertainty

under different coordinate systems. They used a Monte Carlo

simulation based approach. Park and Scheeres [8] used a

mixture (hybrid approach) of a simplified dynamic system

(SDS) model and the state transition tensor (STT) model to

propagate and model the uncertainty. Vittaldev, Russell and

Linares [9] proposed a mixture of polynomial chaos expansion

and Gaussian Mixture Models (GMM). Horwood and Poore

[4] proposed a Gauss von Mises (GVM) filter. Further, the

paper by Hintz [10] provides a concise summary on different

coordinate systems. However, these papers mainly used a fixed

coordinate system to perform uncertainty analysis.

The problem of space debris tracking can be viewed as an

example of Bayesian filtering [1]. Examples of such filters

include the classic Kalman filter, together with nonlinear

variants such as the extended and unscented Kalman filters,

and the computationally more expensive particle filters. We

have shown in earlier work that with a careful choice of

coordinate system, the uncertainty in the space debris tracking

problem can often be formulated in terms of a multivariate

normal distribution [5]. Hence when object custody is not in

doubt, filtering can be carried out using the Unscented Kalman

Filter (UKF) [6]. The purpose of this paper is to extend the

analysis to the setting where object custody is ambiguous,

using a mixture of multivariate normal distributions.

Up to perturbation effects, an object in orbit around the

earth follows an elliptical path. The simplest way to de-

scribe the orbit is in terms of Cartesian coordinates (more

specifically, Earth-Centered Inertial or ECI coordinates), a six-

dimensional state vector for the position and velocity of the

object. However, even if the initial uncertainty of the state

is normally distributed, following the orbital path for several

periods into the future leads to a propagated uncertainty which

is distinctly non-normal [2], [3]. The other ingredient in the

filtering problem is a set of measurements, taken here to be a

set of directions at successive times seen by an observer on

the surface of the earth.

In general, the filtering problem is simplest when the joint

distribution of the state vector and the observation vector is

normally distributed. To achieve this goal, we have introduced

in earlier work [5] an “Adapted STructural (AST)” coordinate

system to describe the orbiting object. AST coordinates are

essentially a type of tangent coordinates to represent the

uncertainty in a point cloud about a “central state”. The AST

coordinate system contains 6 coordinates:

(a) three coordinates to describe an ellipse in a 2-dimensional

plane,

(b) two coordinates to describe the normal direction to the

elliptical plane, and

(c) one coordinate, the mean anomaly, to describe the loca-

tion of the object along the ellipse. If we keep track of the

winding number (thus turning an angle into a real num-

ber), then the unwrapped mean anomaly is approximately



normally distributed, even under substantial dispersion.

AST coordinates have been defined and studied in some of

our earlier papers, especially [1], [5]. One purpose of the

current paper is to make their definition more explicit and to

confirm their good properties under more extreme initial con-

ditions. The second purpose is to demonstrate the usefulness

of AST coordinates when object custody is ambiguous.

Ambiguity in custody occurs when an angles-only obser-

vation at a particular time say t0, can be associated with

the states for two or more objects in a catalog or library.

For each object in the catalog, there is a predicted state and

associated uncertainty at time t0. The corresponding predicted

value for the angles-only position and associated uncertainty

can be represented by a point cloud or by a probability density

function, typically following an approximate bivariate normal

distribution tangent to the unit sphere.

For instance, suppose an angles-only observation x (a unit

vector in R
3) may be associated with one of J possible

objects in a catalog, with densities fj(x), j = 1, . . . , J . The

maximum likelihood rule for discriminant analysis says to

allocate x to the population for which fj(x) is largest. Further,

if we assume each population has equal prior probability, then

the posterior probability that x comes from population j is

pj(x) =
fj(x)

∑J
j′=1

fj′(x)
, j = 1, . . . , J.

Fig 1 illustrates some of the issues that can arise. Assume

a library of two objects (A and B) and three potential obser-

vations (1,2 and 3).

Fig. 1. Two overlapping distributions A and B for the angles-only part of a
state vector. The distributions are represented by point clouds in the tangent
plane to the unit sphere in terms of latitude and longitude in degrees. In
addition three possible observations, labeled 1,2,3, have been highlighted.

Point 1 lies in the main body of the distribution for object

A, but not for object B. Hence the posterior probability that

point 1 comes from object A is large. Point 2 is more closely

associated with B than A, but lies far enough from B that

is might be considered incompatible with either object. Point

3 lies midway between the two principal axes, but is close

enough to the common mode to be compatible with both

distributions. In particular, the posterior probabilities will be

nearly equal.

II. AST COORDINATES

Before describing the construction of AST coordinates, it

is helpful to recall some standard results from the orbital

mechanics [7]. The cross product of x(t) and ẋ(t) is called

the “specific angular momentum vector” and often represented

using the alphabet “h”. Let n represent the unit vector

proportional to h. Other standard notation includes r for the

altitude at time t, e for the eccentricity vector, e for the

eccentricity, rp and ra for the radius from perigee and apogee

respectively, a for the semi-major axis, b for the semi-minor

axis and finally T for the orbital time period. These quantities

are given by

h = x(t)× ẋ(t), h =
√
h · h,

n = h/h, r =
√

x(t) · x(t),

e =
1

µ
(ẋ(t)× h− µ

x(t)

r
), e =

√
e · e,

rp =
h2

µ

1

1 + e
, ra =

h2

µ

1

1− e
,

a =
1

2
(rp + ra), b =

a
√
1− e2

, T =
2π
√
µ
a3/2,

where µ is the standard gravitational constant. Under Keplerian

dynamics (i.e. no perturbation effects), apart from r all these

parameters are time invariant.

The standard coordinate systems to represent the state of an

orbiting object include the following:

• Cartesian-ECI: A state is represented by a three-

dimensional position vector and a three-dimensional ve-

locity vector.

• Keplerian orbital elements: A state is the represented

using the semi-major axis (a), eccentricity (e), inclination

(i), RAAN (Ω), argument of perigee (ω) and wrapped true

anomaly (M0).

• Equinoctial orbital elements: A state is represented

using a, h = e sin(Ω + ω), k = e cos(Ω + ω), p =
tan(i/2) sin(Ω), q = tan(i/2) cos(Ω) and λ = Ω+ ω +
M0.

Next we describe the construction of AST coordinates. This

task requires care because the purpose of AST coordinates is

to describe the uncertainty in the state of an orbiting object.

Suppose uncertainty is described in terms of a point cloud of

possible states (xj(t), ẋj(t)), for j = 1, . . . , N where N is a

large number of possible states. It should be emphasized that

the point cloud is only for visualization purposes. For analytic

work, the point clouds will be approximated by multivariate



normal distributions and summarized by a collection of sigma

points.

Suppose that a “central state” (xc(t), ẋc(t)) sitting near the

middle of the point cloud at time t = 0 has been highlighted.

The central state will be used as a “base” for our coordinate

system about which certain “tangent coordinates” will be

constructed.

There are several steps in the construction of AST co-

ordinates. During the construction, it will be helpful to let

Q(w) denote the 3× 3 rotation matrix which takes w to the

north pole [0, 0, 1]T and which keeps the cross product fixed,

Q(w)u = u, where u = w × [0, 0, 1]T .

(a) Rotate the unit normal vector of the central configuration

nc, say, to the north pole. Let R1c = Q(nc) be the

desired rotation and use dashed notation

x
′

c(t) = R1cxc(t), x
′

j(t) = R1cxj(t), j = 1, . . . , N

to denote the rotated central state and the rotated point

cloud at time t..
(b) The normal directions of the rotated point cloud will lie

near the north pole so that the first two elements, of n′

j =
[n′

j1, n
′

j2, n
′

j3]
T will be close to 0. The first two elements

n′

j1, n′

j2 are two of the AST coordinates.

(c) Let R2j = Q(n′

j) be the rotation taking each dashed

normal vector n
′

j in the point cloud to the north pole.

This will be a small rotation and is determined by the two

elements n′

j1, n′

j2. Use double-dashed notation x
′′

j (t) =
R2jx

′

j(t) to denote the double rotated states. The purpose

of these second rotations is to ensure that all of the orbital

planes are the same as one another (namely, the horizontal

plane).

(d) Finally, after rotation by R1c and R2j , let δ′′j denote the

angle of perigee of the elliptical orbit in the horizontal

plane for the jth state in the point cloud, measured relative

to the positive X-axis.

(e) The final AST coordinate is a version of the mean

anomaly. The mean anomaly is usually defined in terms

of the angular position of the orbiting object measured

with respect to perigee. Here, in double-dashed coordi-

nates, the mean anomaly is defined in terms of the angular

position of the orbiting object measured with respect

to the positive X-axis, and denoted ξ′′j (t) mod 2π, say.

Further, although the (wrapped) mean anomaly is usually

treated as an angle, it is also helpful to consider an

unwrapped version for which ξ′′j (t) is treated as a number

(so ξ′′j (t) is an increasing real-valued continuous function

of t ≥ 0). This unwrapped mean anomaly records both

the angular position of the object along its orbit, plus the

whole number of orbits completed.

In summary, the six AST coordinates are

1/aj + 1/bj , ej cos δ
′′

j , ej sin δ
′′

j , n′

j1, n′

j2, ξ′′j (t).

• For t = 0 these coordinates give a representation of the

initial point cloud. For a wide range of circumstances

(different values of e and different initial variances in

ECI coordinates) they will be approximately Gaussian

for t = o and remain approximately Gaussian for t >
0. In particular, their behavior does not depend on the

inclination angle of the central state.

• In Keplerian dynamics, the first five AST coordinates

remain fixed under propagation. Only the mean anomaly

changes; both the location and the spread of the point

cloud for mean anomaly increase with time.

• In perturbed dynamics, the first five coordinates vary

slowly with time.

III. POINT CLOUD PROPAGATION IN DIFFERENT

COORDINATE SYSTEMS

Example 1. To illustrate the behavior of the different coor-

dinate systems under propagation, consider an orbital object

(eccentricity = 0.72 and orbital period = 628 minutes) whose

initial state in Cartesian-ECI coordinate system is uncertain,

with standard deviation = 10 km for each location coordinate

and 0.2 km/sec for each velocity coordinate, where the uncer-

tainties in all 6 coordinates are independent. The state of the

object has been propagated for 20.2 days (approximately 46.31

orbits for the central state) following Keplerian dynamics, and

the uncertainty in the final state has been summarized with 6-

dimensional pairs plots in different coordinate systems. This

example has been chosen to highlight non-normal behavior in

the standard coordinate systems and also to confirm approxi-

mately normal behaviour in the AST coordinates system.

Fig. 2. Example-1: Propagated point cloud (N = 2000) in ECI coordinates
for the three position and three velocity coordinates.

(a) In ECI coordinates (Fig. 2), all the bivariate scatter plots

exhibit extreme non-normal behaviour.

(b) In Keplerian coordinates (Fig. 3), element 3 (inclination

angle) is skew (a bounded range issue since the lower

limit of the inclination angle is 0o), and elements 4 and

5 are angles showing bimodal behavior. The scatter plots

in the final column show a superimposition of a con-

centrated circular cluster and a longer thinner elliptical

cluster; this is a winding number problem.



Fig. 3. Example-1: Propagated point cloud (N = 2000) in Keplerian
coordinates.

Fig. 4. Example-1: Propagated point cloud (N = 2000) in equinoctial
coordinates

Fig. 5. Example-1: Propagated point cloud (N = 2000) in AST coordinates.

(c) In Equinoctial coordinates (Fig. 4), element 1 (length

of the major axis) is skewed. The scatterplot of element 1

vs. element 2 shows some curvature. The scatter plots in

the final column have the same problem as for Keplerian

coordinates.

(d) In AST coordinates (Fig. 5), all the elements are approx-

imately normally distributed.

To summarize, ECI and Keplerian coordinates are not

useful for propagation as they often exhibit extreme non-

normal behavior. Further, ECI and Keplerian coordinates show

noticeable curvature and non-normal behaviour even for a

small propagation time with a moderate amount of initial un-

certainty in position and velocity components [5]. Equinoctial

coordinates are better, but still not as good as AST coordinates.

AST coordinates preserve normality under a wide range of

conditions for the size of the initial uncertainty, ellipticity and

propagation time [5].

IV. MIXTURE MODELING IN AST COORDINATES

The main purpose behind the development of AST coor-

dinates is to facilitate the tracking of space objects. Assume

that the observations take the form of angles-only position

measurements. Consider first the case of unambiguous cus-

tody. We propose using an unscented Kalman filter (UKF) [6]

in AST coordinates. Each step of UKF-AST filter takes the

following form.

(a) At time tn, the uncertainly in the state is approximately

normally distributed in AST coordinates. This distribution

can be summarized using 13 sigma points.

(b) Each sigma point can be propagated to time tn+1 either

using Keplerian dynamics, or incorporating perturbation

effects.

(c) An angles-only observation is made at time tn+1. The

update step of the Kalman filter involves re-weighting

the sigma points and summarizing the updated state

distribution by a new multivariate normal distribution. In

addition the central state for the AST representation is

updated.

When object custody is ambiguous, some modification to

this procedure is needed. Suppose an object can be associated

with two or more objects in a catalog at time tn. Then the state

distribution at time tn is a mixture of two multivariate normal

distributions. Sigma points are constructed and propagated for

each component of the mixture. The update step involves re-

weighting the sigma points as before, after which the updated

state distribution is approximated by a new mixture of two

multivariate normal distributions.

Example 2. To illustrate the procedure consider a situation

with two objects at time t0. The first object is same as in

the previous section (eccentricity = 0.72 and orbital period =

628 minutes). The second object is also located in a HEO orbit

(eccentricity = 0.67 and orbital period = 542 minutes). The two

normal directions to the orbital planes are assumed to be the

same. The uncertainties are represented in ECI coordinates by

isotropic normal distributions for position (standard deviation



= 20 km) and velocity (standard deviation = 0.1 km/sec). The

initial state vectors are represented in ECI, Equinoctial and

AST coordinates in Figs 6-8. In general the one-dimensional

plots are either unimodal or bimodal, depending on the extent

of overlap of initial conditions.

Fig. 6. Example-2: Initial point clouds (NA = 2000 and NB = 2000) for
objects 1 and 2 represented in ECI coordinates.

Fig. 7. Example-2: Propagated point clouds (NA = 2000 and NB = 2000)
for objects 1 and 2 represented in Equinoctial coordinates.

Fig. 8. Example-2: Propagated point clouds (NA = 2000 and NB = 2000)
for objects 1 and 2 represented in AST coordinates.

Next consider what happens to the updated state distribu-

tions after two possible time intervals. In the first case an

observation is made after 2 hours (Fig. 10); in the second case

an observation is made after 21 hours (Fig. 11). The updated

angles-only part of the state distributions are summarized in

Figs. 10-11.

Fig. 9. Example-2: Angles-only representation of the point cloud at t = 0.
The blue cluster indicates the distribution associated with the first object (A)
and the green cluster represents the second object (B). The red dot is the
central state. Note the high degree of overlap between the two distributions.

Fig. 10. Example-2: Updated angles-only state distribution for an observation
after 2 hours. The point cloud for the first object (A) is represented using
blue dots and for the second object (B) using green dots. The observation is
represented by a red dot.

In Fig. 10, the angles-only state distributions after 2 hours

are plotted. These distributions are highly overlapping and the

object custody remains ambiguous. The posterior probabilities

for the two groups are nearly equal, pA = 0.57, pB = 0.43).

In Fig. 11, the angles-only state distributions after 21 hours

are plotted. These distributions are now well-separated and

the object custody has now been resolved. The posterior

probabilities for the two groups are now very different, pA =
1.000, pB = 1e− 21).

V. CONCLUSION

In earlier work we showed how the standard coordinate

systems were all unsuitable to a greater or lesser extent for the

filtering problem. On the other hand, starting from an initial

multivariate normal distribution in ECI coordinates, AST co-

ordinates retain an approximate multivariate normal behavior

after propagation in a wide variety of circumstances. Thus,

when object custody is not ambiguous, it is straightforward to

implement a version of the UKF in AST coordinates.

In this paper we have shown that the filtering methodology

extends in a natural way to the setting where object custody is

ambiguous. If an observation can be associated with one of J
possible objects at an initial time, the initial uncertainty is now

represented by a mixture of multivariate normal distributions

with J equally likely components. Each component can be

propagated separately. If the different objects have sufficiently



Fig. 11. Example-2: Updated angles-only state distribution for an observation
after 21 hours. The point cloud for the first object (A) is represented using
blue dots and for the second object (B) using green dots. The observation is
represented by a red dot. The observation is now clearly associated with the
object A.

different state distributions, the updated state distribution will

eventually home in on the correct object.
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