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The FLUXNET͸Ͷͷͻ dataset and the 
ONEFlux processing pipeline for 
eddy covariance data
Gilberto Pastorello et al.#

The FLUXNET͸Ͷͷͻ dataset provides ecosystemǦscale data on CO͸ǡ waterǡ and energy 
exchange between the biosphere and the atmosphereǡ and other meteorological and 
biological measurementsǡ from ͸ͷ͸ sites around the globe ȋover ͷͻͶͶ siteǦyearsǡ up to 
and including year ͸ͶͷͺȌǤ These sitesǡ independently managed and operatedǡ voluntarily 
contributed their data to create global datasetsǤ Data were quality controlled and processed 
using uniform methodsǡ to improve consistency and intercomparability across sitesǤ 
The dataset is already being used in a number of applicationsǡ including ecophysiology 
studiesǡ remote sensing studiesǡ and development of ecosystem and Earth system modelsǤ 
FLUXNET͸Ͷͷͻ includes derivedǦdata productsǡ such as gapǦƤlled time seriesǡ ecosystem 
respiration and photosynthetic uptake estimatesǡ estimation of uncertaintiesǡ and metadata 
about the measurementsǡ presented for the Ƥrst time in this paperǤ In additionǡ ͸Ͷͼ of these 
sites are for the Ƥrst time distributed under a Creative Commons ȋCCǦBY ͺǤͶȌ licenseǤ This 
paper details this enhanced dataset and the processing methodsǡ now made available as 
openǦsource codesǡ making the dataset more accessibleǡ transparentǡ and reproducibleǤ

Background Ƭ Summary
For over three decades, the eddy covariance technique1 has been used to measure land-atmosphere exchanges 
of greenhouse gases and energy at sites around the world to study and determine the function and trajectories 
of both ecosystems and the climate system. he technique allows nondestructive measurement of these luxes at 
a high temporal resolution and ecosystem level, making it a unique tool. Based on high frequency (10–20 Hz) 
measurements of vertical wind velocity and a scalar (CO2, H2O, temperature, etc.), it provides estimates of the 
net exchange of the scalar over a source footprint area that extends up to hundreds of meters around the point 
of measurement. Soon ater the irst consistent measurement sites were operational, regional networks of sites 
were formed in Europe2 and the US3,4, followed by similar initiatives in other continents5–7. Networks enabled the 
use of eddy covariance data beyond a single site or ecosystem for cross-site comparisons and regional-to-global 
studies8–15. hese regional networks have evolved into long-term research infrastructures or monitoring activities, 
such as ICOS, AmeriFlux, NEON, AsiaFlux, ChinaFLUX, and TERN-OzFlux.

FLUXNET was created as a global network of networks16–18, a joint efort among regional networks to har-
monize and increase standardization of the data being collected. It made possible the creation of global eddy 
covariance datasets. he irst gap-illed, global FLUXNET dataset, which included derived, partitioned luxes 
like photosynthesis and respiration, was the Marconi dataset19 in 2000, with 97 site-years of data, followed by the 
2007 Lahuile dataset20 with 965 site-years of data, and inally in 2015 the FLUXNET2015 dataset18,21 (hereater 
FLUXNET2015) with 1532 site-years of data. Two main factors limited the numbers of sites and years included 
in each dataset: data policy and data quality. Willingness to share data under the selected data policy is a major 
reason why FLUXNET2015 likely only includes between 10–20% of existing sites globally–the total number of 
existing sites is still unknown. hen there is the evolution of processing pipelines and quality controls, leading to 
new issues being identiied in the data that, if not solved in time, led to leaving out that data. he Lahuile dataset 
had a more restrictive policy and, in a few cases, previously undiscovered data issues, leading to fewer sites being 
included in FLUXNET2015.

#A full list of authors and their aƥliations appears at the end of the paperǤ 
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FLUXNET2015 includes for the irst time sites with records over two decades long (Fig. 1). he dataset was 
created through collaborations among many regional networks, with data preparation eforts happening at site, 
regional network, and global network levels. he global coordination of data preparation activities and data pro-
cessing was done by a team from the AmeriFlux Management Project (AMP), the European Ecosystem Fluxes 
Database, and the ICOS Ecosystem hematic Centre (ICOS-ETC). his team was responsible for the coding 
eforts, quality checks, and execution of the data processing pipeline. hese combined eforts led to a dataset that 
is standardized with respect to the (1) data products themselves, (2) data distribution formatting, and (3) data 
quality across sites. he wide application of these datasets in global synthesis and modeling activities highlights 
their value. At the same time, however, heterogeneity in the data–caused mainly by diferences in data collection, 
lux calculations, and data curation before submission–highlights the need for estimates of data uncertainty and 
uniform evaluation of data quality.

he data processing pipeline uses well-established and published methods, with new code implemented for 
this release as well as code adapted from implementations by the community. he main products in this pipeline 
are: (1) thorough data quality control checks; (2) calculation of a range of friction velocity thresholds to ilter low 
turbulence periods, allowing an estimate of the uncertainty from this iltering along with the random uncertainty; 
(3) gap-illing of meteorological and lux measurements, including the use of a downscaled reanalysis data prod-
uct to ill long gaps in meteorological variables; (4) partitioning of CO2 luxes into respiration and photosynthesis 
(gross primary productivity) components using three distinct methods; and (5) calculation of a correction factor 
for energy luxes estimating the deviation from energy balance closure for the site. Two features of this pipeline 
are the ranges of friction velocity thresholds, and the multiple methods for partitioning CO2 luxes. Both features 
support a more thorough evaluation of the uncertainty introduced by the processing steps themselves. Our imple-
mentation of this pipeline is available as an open-source code package called ONEFlux (Open Network-Enabled 
Flux processing pipeline)22. he goal of this paper is to describe FLUXNET2015 and additional products, present 
the details about this processing pipeline, and document the methods used to generate the dataset. Doing so will 
provide the community of FLUXNET end-users with the technical and practical knowledge necessary to harness 
the full potential of the FLUXNET data, including data from the FLUXNET2015 release, and data submitted to 
the network since.

Data Processing Methods
he data contributed by site teams for inclusion in FLUXNET2015 encompassed luxes, meteorological, envi-
ronmental, and soil time series at half-hourly or hourly resolutions. Contributed data underwent a uniform 
data quality control process, with issues addressed in consultation with site teams. Data were then processed 
using the pipeline (Fig. 2) described in this section. he resulting data products were distributed through the 
FLUXNET-Fluxdata web portal23, where the usage of the dataset is tracked through a registration of all the 

Fig. 1 Map of 206 tower sites included in this paper from the 212 sites in the February 2020 release of the 
FLUXNET2015 dataset. he size of the circle indicates the length of the data record. he color of the circles 
represents the ecosystem type based on the International Geosphere–Biosphere Programme (IGBP) deinition. 
When overlapping, locations are ofset slightly to improve readability. Numbers in parentheses indicate 
the number of sites in each IGBP group. he inset shows the distribution of data record lengths. See also 
Supplementary Fig. SM4 for continental scale maps of Australia, Europe, and North America.
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requests and details about the user and the data use plan. his information is crucial to better understand the user 
needs and the impact of the dataset.

Data sourcesǤ he irst level of processing was completed by the site teams, including the calculation of 
half-hourly or hourly turbulent luxes from high-frequency wind and concentration measurements, the aver-
aging of meteorological variables sampled at shorter temporal resolutions, and the site team’s own quality con-
trol procedures. he contributed luxes were required to be submitted separately as turbulent and storage luxes 
(components to be added for total lux), and not gap-illed or iltered for low turbulence conditions–see Aubinet 
et al.24 for details. Control checks were implemented to ensure that this was the case, and to detect additional 
inconsistencies that site teams were asked to address, for example coherence of the timestamps, consistency across 
correlated variables, etc25. Starting from these data, we applied the same set of methods for all the remaining pro-
cessing steps (from iltering to gap-illing and partitioning), increasing uniformity, and allowing quantiication 
of the uncertainty introduced by the processing. he harmonization of data–especially of data quality–was a high 
priority while creating the dataset, and therefore extensive interaction with the site teams was necessary. Data 
were contributed through a regional network, and the formats provided by the networks were converted into a 
standard input for processing. his FLUXNET dataset led to the creation of a new cross-network speciication for 
standard site data and metadata submission formats, now adopted by diferent regional networks.

Data processing pipeline overviewǤ he data processing pipeline (Fig. 2) is divided into four main pro-
cessing blocks. he irst one is the data quality assurance and quality control (QA/QC) activities our team applied 
to data from all sites. his part was done with a combination of automated procedures and manual checks for all 
the variables in the contributed data. he next three blocks were all part of an automated pipeline that was exe-
cuted separately for each site: the Energy & Water Fluxes processing block encompasses sensible and latent heat 
variables; the Carbon Fluxes processing block handles the variables for CO2 luxes like net ecosystem exchange 
(NEE); and, the Meteorological Variables processing block deals with all the meteorological measurements that 
are also used in the processing of luxes and other products. At each processing step, a set of automated pre- and 
post-conditions are enforced, making sure the inputs and outputs of each step are within the expected behavior. 
he inal step involved merging all the products generated at previous steps, and adding daily through yearly 
temporal aggregations of most of the variables in the dataset and related quality lags. At this step, automated 
checks were performed on all the variables to ensure consistency, and the inal iles with all the contributed and 
derived data products to be distributed are created. Supplementary Fig. SM2 shows the general steps involved in 
the processing in the sequence organized in the code, as available in the ONEFlux package22. All the steps have 
been implemented in the shared code except the Sundown partitioning (see Implementation Approach section 
for details).

Ensemble of resultsǤ he adoption of multiple methods for the same step (e.g., two methods for USTAR 
threshold calculation, or two or three methods for CO2 lux partitioning, see below in this section for details) 
is motivated by the existence of diferent methods in the literature, using diferent assumptions and potentially 

Fig. 2 he logic of the data processing steps for FLUXNET2015 (details about the diferent steps and meaning 
of abbreviations in the text).
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having diverging results26,27. On the one hand, this lack of uniformity can represent a problem for synthesis stud-
ies. On the other hand, adopting a single method could lead to biases and underestimation of the uncertainty in 
the methodology. he approach taken here, which simultaneously adopts multiple methods, allows the creation 
of an ensemble, helping assess uncertainty, and also the suitability of individual methods to a site’s conditions.

Data quality assurance and quality controlǤ Prior to the processing that generated the derived data 
products (hereater called post-processing), the data for each site went through QA/QC checks following Pastorello 
et al.25. All variables included in the dataset underwent checks, and critical variables underwent further scrutiny. 
hese additional checks targeted variables critical to the processing, e.g., lux variables, meteorological variables 
used in gap-illing, and variables used by uncertainty estimation procedures. he processing did not proceed for 
sites with pending issues in critical variables.

Critical metadata variables for the post-processing:

•	 he site FluxID in the form CC-SSS (two character country code, three character site identiier within coun-
try) – e.g., US-Ha1

•	 he latitude and longitude for the site in the WGS 84 decimal format with at least four decimal points resolu-
tion – e.g., 42.5378/−72.1715

•	 Time zone of the site (time series, if time zone changed; timestamps are all local standard time, no daylight 
savings) – e.g., UTC-5

•	 Height of the gas analyzer – e.g., 30.0 m

Critical data variables for the post-processing, averaged or integrated over 30 or 60 minutes (*required):

•	 *CO2 (µmolCO2 mol−1): Carbon Dioxide (CO2) mole fraction in moist air
•	 *FC (µmolCO2 m

−2 s−1): Carbon Dioxide (CO2) turbulent lux (without storage component)
•	 *SC (µmolCO2 m

−2 s−1): Carbon Dioxide (CO2) storage lux measured with a vertical proile system, optional 
if tower shorter than 3 m

•	 *H (W m−2): sensible heat turbulent lux, without storage correction
•	 *LE (W m−2): latent heat turbulent lux, without storage correction
•	 *WS (m s−1): horizontal wind speed
•	 *USTAR (m s−1): friction velocity
•	 *TA (deg C): air temperature
•	 *RH (%): relative humidity (range 0–100%)
•	 *PA (kPa): atmospheric pressure
•	 G (W m−2): ground heat lux, not mandatory, but needed for the energy balance closure calculations
•	 NETRAD (W m−2): net radiation, not mandatory, but needed for the energy balance closure calculations
•	 *SW_IN (W m−2): incoming shortwave radiation
•	 SW_IN_POT (W m−2): potential incoming shortwave radiation (top of atmosphere theoretical maximum 

radiation), calculated based on the site coordinates22

•	 PPFD_IN (µmolPhotons m−2 s−1): incoming photosynthetic photon lux density
•	 P (mm): precipitation total of each 30 or 60 minute period
•	 LW_IN (W m−2): incoming (down-welling) longwave radiation
•	 SWC (%): soil water content (volumetric), range 0–100%
•	 TS (deg C): soil temperature

File format standardization. To process hundreds of sites, we needed consistent ile formats that supported the 
input data and metadata. his led to multi-network agreements and creation of formats for data and metadata 
contribution to the regional networks28,29. hese formats have now been adopted by networks in Europe and the 
Americas and by some instrument manufacturers, and are under consideration by other regional networks. In 
addition, automated extraction and conversion tools for direct format translation were implemented to work with 
data in older formats.

Data QA/QC steps. Data quality was checked before the processing started. If issues were identiied that could 
not be resolved by the network-level data team, the site team was asked to suggest a course of action or send a 
new version of the data addressing the quality issue identiied. he main data QA/QC steps were: single-variable 
checks, multi-variable checks, specialized checks, and automatic checks. Single-variable checks look at patterns 
in the time series of one variable at a time, for long- and short-term trends and other issues. Multi-variable checks 
look at the relationships among correlated variables (e.g., diferent radiation variables) to identify periods with 
disagreements. Specialized checks test for common issues in EC and meteorological data, like timestamp shits 
or sensor deterioration. During this phase, a time series of top-of-the-atmosphere potential radiation (SW_IN_
POT) is also computed, using latitude/longitude coordinates and time22. hese three types of checks are detailed 
in Pastorello et al.25. he automated checks apply variable-speciic despiking routines adapted from Papale et al.30 
and apply a set of range controls per variable. his last step creates a series of lags that were discussed with the site 
managers for corrections and resubmissions and then used to ilter the data in subsequent steps.

Meteorological productsǤ he main processing applied to meteorological data was gap-illing by two inde-
pendent methods: Marginal Distribution Sampling31 (MDS) and ERA-Interim32. Data gap-illed by MDS (applied 
to all variables that are gap-filled) are identified by the _F_MDS suffix. Data gap-filled using ERA-Interim 
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downscaling (six variables that are available in the reanalysis dataset) have a _F_ERA suix. he inal gap-illed 
time series for variables combines both of these methods (indicated by an unqualiied _F suix), following a 
data-quality-based selection approach (see below). For SW_IN, in case of gaps or in case the variable was not 
measured, we performed a calculation from PPFD_IN when available, calculating the conversion factor from the 
periods of overlap of the two measurements (and assuming a factor 0.48 J (µmol photon)−1 when the sensors did 
not run in parallel at the site).

MDS. he MDS method, introduced in Reichstein et al.31, is applied to all variables that may be gap-illed. It 
works by seeking meteorological conditions physically and temporally similar to the ones for the missing data 
point(s). he restrictions on the size of the time window and which variables must be available are incrementally 
relaxed until a suitable set of records is found to ill the gap in the target variable. All values of the target variable 
satisfying the current set of conditions are averaged to generate the ill value. he method was applied as described 
in the original implementation31, using SW_IN, TA and VPD as drivers. he basic three scenarios for the time 
when the target variable is missing are: (i) all three drivers are available; (ii) only SW_IN is available; and (iii) all 
three drivers are missing. Based on the available co-located variables, a search for similar conditions is started, 
keeping the searching window as small as possible to avoid changes in other slow-changing drivers (phenology, 
water availability, etc.). he more variables missing and the larger the time window, the lower the conidence indi-
cated by the _F_MDS_QC lag. he values for this lag are (0–3): _F_MDS_QC = 0 (measured); _F_MDS_QC = 1 
(illed with high conidence); _F_MDS_QC = 2 (illed with medium conidence); _F_MDS_QC = 3 (illed with 
low conidence). For details on the implementation, see the original paper31 and the ONEFlux source code22.

ERA-Interim. his method is based on the ERA-Interim (ERA-I) Reanalysis global atmospheric product33,34 
created by the European Centre for Medium‐Range Weather Forecasts (ECMWF)–ERA stands for ECMWF 
Re-Analysis. Applied to the subset of variables that are also available in the ERA-Interim product, the method 
involves a spatial and temporal downscaling process using the measured variable at the site. he ERA-I variables 
that were used are: air temperature at 2 m (t2m, K), incoming shortwave solar radiation at the surface (Sw, W m−2), 
dew point temperature at 2 m (dt2m, K), wind speed horizontal components at 10 m (u10 and v10, m s−1), total 
precipitation (Pr, m of water per time step), and incoming longwave solar radiation at the surface (Lw, W m−2).  
he gap-illing procedure harmonizes units, identiies periods that are long enough to allow a linear relationship 
to be built, a simple debiasing of the linear relationship, evaluation of the diurnal cycle in the subset of variables, 
and other evaluations of the results to identify potential missing or incorrect information (e.g., coordinate or tem-
poral mismatches). he linear relationships are built taking into account instantaneous and averaged variables, 
and then applied to the whole ERA-I record, generating the spatially (coordinate-based) and temporally (diurnal 
cycle-based) downscaled version of each variable. he method was applied as in the original implementation; 
additional details can be found in Vuichard and Papale32.

Final gap-illed product. Measured or high quality gap-illed records using MDS (_F_MDS_QC < 2) are used 
in the inal gap-illed products (_F suixed variables, without _MDS or _ERA). If the variable has a low quality 
gap-ill lag (2 or 3), the ERA-I product is used instead. he inal quality lag (_F_QC) is 0 for measured, 1 for 
high quality ill using MDS, and 2 for data gap-illed with the ERA-I downscaled product. A gap-illed version 
of CO2 concentration is also generated (CO2_F_MDS) using the MDS method as described above, including the 
corresponding quality lag.

Energy and water productsǤ The main data products associated with energy and water fluxes are the 
gap-illed versions of the data and the estimation of a version ensuring the energy balance closure and estimating its 
uncertainty–for a description of the issue see Stoy et al.35 Turbulent energy luxes (sensible and latent heat, H and LE, 
respectively) are gap-illed using the MDS method31 described above. From LE, it is possible to calculate the water 
lux (evapotranspiration) using the latent heat of vaporization. An energy balance corrected version of LE and H is 
also created, a data product oten needed when data are used in model parameterization and validation for which the 
closure of the energy balance is prescribed. here is no general agreement on the reasons and approaches to correct 
the imbalance in the energy budget within EC measurements. In this product, the methodology used to calculate 
the energy balance corrected luxes is based on the assumption that the Bowen ratio is correct36. Fluxes are corrected 
by multiplying the original, gap-illed LE and H data by an energy balance closure correction factor (EBC_CF, in the 
dataset). he correction factor is calculated starting from the half-hours where all the variables needed to estimate 
energy balance closure are available (measured NETRAD and G, and measured or good-quality gap-illed H and 
LE). he correction factor for each single half-hour is calculated as in Eq. (1), but is not applied directly.

= − +EBC CF NETRAD G H LE_ ( )/( ) (1)

First, to avoid transient conditions, the calculated EBC_CF time series is iltered by removing values outside 
of 1.5 times its own interquartile range. hen, the correction factor used in the calculations is obtained using one 
of three methods, applied hierarchically (see also diagram in Supplementary Fig. SM3):

•	 EBC_CF Method 1: For each half-hour, a sliding window of ±15 days (31 days total) is used to select 
half-hours between time periods 22:00–02:30 and 10:00–14:30 (local standard time). hese time-of-day 
restrictions aim at removing sunrise and sunset time periods, when changes in ecosystem heat storage (not 
measured) are more signiicant, preventing energy balance closures. For all half-hours meeting these criteria, 
the corresponding EBC_CFs are selected and used to calculate the corrected values of H and LE for the half-
hour processed (center of the sliding window), generating a pool of values for each of these two variables. 
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From each of these two pools, the 25th, 50th (median), and 75th percentiles are extracted for their corre-
sponding variables, generating the values for H_CORR25, H_CORR, H_CORR75 and LE_CORR25, LE_
CORR, LE_CORR75. If fewer than ive EBC_CF values are present in the sliding window, Method 2 is used 
for the half-hour. (Note on temporal aggregations: for DD the sliding window size is ±7 days and the EBC_CF 
are calculated from the daily average values of G, NETRAD, H and LE. For WW, MM, and YY the EBC_CFs are 
calculated from corresponding average luxes of the period analysed, but no percentiles are computed. For WW, 
MM, and YY, Method 1 fails if less than 50% of half-hours within the window have measured values for all four 
component variables.)

•	 EBC_CF Method 2: For the current half-hour, EBC_CF is calculated as the average of the EBC_CF val-
ues used to calculate the H_CORR and LE_CORR with Method 1 within a sliding window of ±5 days and 
±1 hour of the time-of-day of the current timestamp. H_CORR and LE_CORR are calculated and the cor-
responding _CORR25 and _CORR75 percentiles are not generated. If no EBC_CF is available, Method 3 is 
used for the current half-hour. (Note on temporal aggregations: difering sliding windows are: DD: ±2 weeks, 
WW: ±2 weeks, MM: ±1 month, and YY: ±1 year.)

•	 EBC_CF Method 3: An approach like Method 2 is applied but using a sliding window of ±5 days for the same 
half-hour in the previous and next years, with the current EBC_CF being calculated from the average of the 
EBC_CF values used to calculate the H_CORR and LE_CORR. H_CORR and LE_CORR are calculated and 
the corresponding _CORR25 and _CORR75 percentiles are not generated. In case this method also cannot 
be applied due to missing values, the energy balance closure corrected luxes are not calculated. (Note on tem-
poral aggregations: difering sliding windows are: DD: ±2 weeks, WW: ±2 weeks, MM: ±1 month, and YY: ±2 
years.)

H and LE Random Uncertainty. he random uncertainty for H and LE is also estimated at half-hourly resolu-
tion, based on the method introduced by Hollinger & Richardson37 and then aggregated at the other temporal 
resolutions. he random uncertainty (indicated by the suix _RANDUNC) in the measurements is estimated 
using one of two methods, applied hierarchically:

•	 H-LE-RANDUNC Method 1 (direct standard deviation method): For a sliding window of ±5 days and 
±1 hour of the time-of-day of the current timestamp, the random uncertainty is calculated as the standard 
deviation of the measured luxes. he similarity in the meteorological conditions evaluated as in the MDS 
gap-illing method31 and a minimum of ive measured values must be present; otherwise, method 2 is used.

•	 H-LE-RANDUNC Method 2 (median standard deviation method): For the same sliding window of ±5 
days and ±1 hour of the time-of-day of the current timestamp, random uncertainty is calculated as the 
median of the random uncertainty (calculated with H-LE-RANDUNC Method 1) of similar luxes, i.e., 
within the range of ±20% and not less than 10 W m–2.

he joint uncertainty for H and LE is computed from the combination of the uncertainty from the energy 
balance closure correction factor and random uncertainty.

= +





−

.






H CORR JOINTUNC H RANDUNC
H CORR H CORR

_ _ _
_ 75 _ 25

1 349 (2)

2
2

hese variables are identiied by the _JOINTUNC suix and are computed for H as in Eq. (2), and similarly for 
LE. (Note on temporal aggregations: joint uncertainties for H and LE are recomputed at HH and DD resolutions 
separately, and not generated for WW, MM, and YY resolutions.)

CO͸ productsǤ he processing steps applied to CO2 luxes were: calculation of net ecosystem exchange (NEE) 
from CO2 turbulent and storage luxes, applying a spike detection algorithm, iltering for low turbulence con-
ditions using multiple friction velocity (USTAR) thresholds, gap-illing of all NEE time series generated by an 
ensemble of USTAR thresholds, estimation of random uncertainty, and partitioning of NEE into its ecosystem 
respiration (RECO) and gross primary production (GPP) components.

Calculation of NEE. CO2 storage luxes (SC) express the change of CO2 concentration below the measurement 
level of the eddy covariance system within the half-hour. NEE was calculated as the sum of the CO2 turbulent 
luxes (FC) and SC. Both FC and SC are part of the required data contributed by site teams. SC is usually esti-
mated using a proile system38. If SC was not provided or missing, two cases were implemented: for measurement 
heights lower than 3 m and short canopies, the SC term was considered to be 0; for taller towers/canopies, a dis-
crete estimation based on the top measurement of CO2 concentration was used to compute SC39.

Despiking of NEE. Although the processing of high frequency data into half-hourly luxes usually includes steps 
to remove spikes from instantaneous measurements, spikes can also occur in the half-hourly data. he method 
described in Papale et al.30, based on the median absolute deviation (MAD) with z = 5.5, was applied to ilter NEE 
for residual spikes that were removed.

USTAR threshold estimation and iltering. Filtering for low turbulence conditions is necessary when there is not 
enough turbulence, causing the ecosystem lux to be transported by advective lows and missed by both the eddy 
covariance system and the storage proile, resulting in underestimated luxes. Despite diferent approaches having 
been tested to measure and quantify horizontal and vertical advection40, the most oten used method to avoid the 
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underestimation of luxes is removing the data points potentially afected by strong advection1. hese points are 
identiied using the friction velocity (USTAR) as an indicator of turbulence strength, deining a threshold value 
under which NEE measurements are discarded and replaced by gap-illed estimates.

his USTAR threshold is linked to the canopy structure, measurement height, wind regimes, and other factors 
speciic to an individual site. It is estimated using nighttime NEE measurements (only ecosystem respiration), 
based on the dependency between USTAR and NEE at similar temperatures and periods of the year (main driv-
ers of ecosystem respiration). Under these conditions, NEE is assumed (and expected) to be independent from 
USTAR, which is not a driver of respiration. However, in most sites below a certain USTAR threshold value, NEE 
is found to increase with USTAR; this USTAR value is selected as the threshold to deine conditions with reduced 
risk of lux underestimation. Diferent methods have been proposed to estimate the USTAR thresholds and the 
related uncertainty as to how the approach works at a speciic site1.

CP and MP USTAR threshold methods. Two methods to calculate USTAR thresholds were used: 
change-point-detection (CP) proposed by Barr et al.41 and a modiied version of the moving-point-transition 
(MP) described originally by Reichstein et al.31 and Papale et al.30. Both methods are similar in terms of data 
selection, preparation and grouping and aim to estimate the USTAR threshold value. Measurements collected 
when USTAR is below the threshold are removed. he diference between these methods is in how this threshold 
value is estimated. For both methods, the nighttime data of a full year are divided in four three-month periods 
(seasons) and 7 temperature classes (of equal size in terms of number of observations). For each season/temper-
ature group the data are divided into 20 USTAR classes (also with equal number of observations) and the average 
NEE for each USTAR class is computed. he calculation of the threshold uses each of the methods (see below for 
details on their diferences). For each season, the median value of the 7 temperature classes is calculated and a 
inal threshold is deined by selecting the maximum of the 4 seasonal values.

he CP method uses two linear regressions between NEE and USTAR, the second with an imposed zero slope. 
he change point is deined as where the two lines cross, i.e., constraining the shape of the NEE-USTAR depend-
ency. he method is extensively used to detect temporal discontinuities in climatic data. Details can be found in 
Barr et al.41.

For the MP method30,31, the mean NEE value in each of the 20 USTAR classes is compared to the mean NEE 
measured in the 10 higher USTAR classes. he threshold selected is the USTAR class in which the average night-
time NEE reaches more than 99% of the average NEE at the higher USTAR classes. An improvement of the MP 
method was implemented here for robustness over noisy data, by adding a second step to the original MP imple-
mentation: when a threshold is selected, it was tested to ensure it was also valid for the following USTAR class. In 
other words, assuming that Eq. (3) holds, where x is one of the 20 USTAR classes and NEE USTAR x_ ( ) is the 
average NEE for that USTAR class.

NEE USTAR x MEAN NEE USTAR x

NEE USTAR x NEE USTAR x

_ ( ) 0 99 ( _ ( 1),

_ ( 2), , _ ( 10)) (3)

> . × +

+ ... +

he USTAR value associated to the xth-class was selected as threshold only if Eq. (4) also holds, to conirm 
that the plateau where NEE is USTAR-independent was reached. If not, the search for the plateau and threshold 
continued toward higher USTAR values.

+ > . × +

+ … +

NEE USTAR x MEAN NEE USTAR x

NEE USTAR x NEE USTAR x

_ ( 1) 0 99 ( _ ( 2),

_ ( 3), , _ ( 11)) (4)

Bootstrapping USTAR threshold estimation. For each of the two methods, a bootstrapping technique was used. 
he full dataset (year of measurement) was re-sampled 100 times with the possibility to select the same data point 
multiple times (i.e., with replacement), creating 100 versions of the dataset. he threshold values were calculated 
for each of them, obtaining 100 threshold values per method (CP and MP) and year, for a total of 200 USTAR 
threshold estimates for each year. his process and next steps are illustrated in Fig. 3. hese 200 threshold values 
represent the uncertainty in the threshold estimation that could also impact the uncertainty of NEE. It is worth 
noting that there is not always a direct relationship between the threshold and NEE uncertainties. It is possible, 
for instance, that a small variability in the thresholds has a strong efect on NEE or, conversely, with NEE almost 
insensitive to the threshold value. his is related to the site characteristics (USTAR variability) and to the level of 
diiculty in illing the gaps created by the iltering.

here are cases where not enough data are present to calculate a USTAR threshold (for both the CP and MP 
methods) or where it is not possible to identify a clear change point (CP method only). his leads to the uncer-
tainty being underestimated (fewer or no USTAR threshold values available). his should be considered as a gen-
eral indication of diiculties in the application of the USTAR iltering for the speciic sites or years. Sites and years 
where these conditions occurred are reported in the SUCCESS_RUN variable in the AUXNEE product (values 1: 
threshold found, 0: failed/no threshold found).

Variable and constant variants of the USTAR threshold methods. To calculate the uncertainty in NEE due to the 
uncertainty in the selected USTAR threshold, all the threshold values obtained with the two methods and the 
bootstrapping were pooled together, from which 40 representative values were extracted: from the percentile 1.25 
of the series to the percentile 98.75, with a step of 2.5, i.e., [1.25:2.5:98.75]. When long time series (multi-years) 
are processed, it is possible to extract the 40 representative thresholds for each of the years. he threshold is 
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a function of slow-changing dynamics (height of canopy, height of measurement, roughness), but a threshold 
changing every year could introduce false interannual variability. On the other hand, a constant threshold across 
all the years would not represent changes in the ecosystem structure and EC system setup. For this reason, two 
approaches were implemented:

•	 Variable USTAR hreshold (VUT): he thresholds found for each year and the years immediately before 
and ater (if available) have been pooled together, and from their joint population, the inal 40 thresholds 
extracted. With that, the USTAR thresholds vary from year to year; however, they are still inluenced by 
neighboring years. his is identiied in FLUXNET2015 variables by the “_VUT” suix;

•	 Constant USTAR hreshold (CUT): Across years, all the thresholds found have been pooled together and 
the inal 40 thresholds extracted from this dataset. With that, all years were iltered with the same USTAR 
threshold. his is identiied in FLUXNET2015 variables by the “_CUT” suix.

If the dataset includes up to two years of data, the two methods give the same result, and only the _VUT is 
generated.

For both the VUT and CUT approaches, 40 NEE datasets have been created, iltering the original NEE time 
series using 40 diferent USTAR values estimated as explained above. he values of the thresholds are reported 
in the AUXNEE product ile. hese 40 NEE versions have been used as the basis for all the derived variables pro-
vided. An example of the variability of the two methods (CP and MP) is shown in Fig. 4, contrasting the distribu-
tion of the bootstrapped results for each method, showing comparable values for some years and divergent values 
for other years (of the same site). his highlights the importance of applying both methods in this ensemble-like 
way.

Filtering NEE based on USTAR thresholds. he USTAR thresholds are applied to daytime and nighttime data, 
removing NEE values collected when USTAR is below the threshold and removing also the irst half-hour with 
high turbulence ater a period of low turbulence to avoid false emission pulses due to CO2 accumulated under 
the canopy and not detected by the storage system (in particular, when a proile is not available at the site). he 
USTAR iltering is not applied to H and LE, because it has not been proved that when there are CO2 advective 
luxes, these also impact energy luxes, speciically due to the fact that when advection is in general large (night-
time), energy luxes are small. Figure 5 shows the range of thresholds found (interquartile ranges) across sites in 
FLUXNET2015. While some sites had low thresholds and low variability in the USTAR thresholds, others show 
large ranges of values in some more extreme cases (indicating diiculties in estimating the “real” threshold).

Fig. 3 To identify and remove data collected under low turbulence conditions, under which advective luxes 
could lead to an underestimation of luxes, iltering based on the USTAR threshold was used. In order to 
estimate the uncertainty in the USTAR threshold calculation, a bootstrapping approach was implemented, 
with a selection of values representative of the distribution included in the inal data products. From the (up 
to) 200 thresholds from the combined bootstrapping of the two methods, 40 percentiles are extracted. All the 
subsequent steps of the pipeline are applied to all 40 versions. For each of the inal output products (e.g., NEE, as 
illustrated here), seven percentiles representative of the distribution are included.
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Gap-illing of NEE. Existing gaps from instrument or power failures are further increased ater QC and USTAR 
iltering. he time series with gaps need to be illed, especially before aggregated values can be calculated (from 
daily to annual). Mofat et al.26 compared diferent gap-illing methods for CO2 concluding that most of the 
methods currently available perform suiciently well with respect to the general uncertainty associated with the 
measurements. he method implemented here is the Marginal Distribution Sampling (MDS) method already 
described in the meteorological products.

Selection of reference NEE variables. Ater iltering NEE using the 40 USTAR thresholds and gap-illing, 40 
complete (gap-free) NEE time series were available for each site. For each half hour, it is possible to use the 40 
values to estimate the NEE uncertainty resulting from the USTAR threshold estimation (reported as percentiles 

Fig. 4 Example of the distribution of USTAR thresholds calculated for each year using the MP30 method in 
blue and CP41 method in green for the US-UMB site (dark green where they overlap). All these thresholds were 
pulled together to extract the CUT inal 40 thresholds, while for the VUT thresholds, each year was pulled with 
the two immediately before and ater (e.g., 2005 + 2006 + 2007 to extract the 40 thresholds to be used to ilter 
2006). Note that the level of agreement between methods and between subsequent years is variable, justifying 
the approach that propagates this variability into uncertainty in NEE.

Fig. 5 Ranked USTAR thresholds based on median threshold and error bars showing 25th to 75th percentiles of 
the 40 thresholds calculated with the Constant USTAR hreshold (CUT) method – only computed for sites with 
3 or more years, so only 177 sites out of the 206 are shown. Colors show diferent ecosystem classes based on the 
site’s IGBP.
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of the NEE distribution, identiied by the “_XX” numeric suix) and the average value (identiied in the dataset 
by the “_MEAN” suix). Since the average value has a smoothing efect on the time series, an additional reference 
value of NEE was selected and identiied in FLUXNET2015 variables by the “_REF” suix, in an attempt to iden-
tify which of the 40 NEE realizations was the most representative of the ensemble. he “_REF” NEE was selected 
among the 40 diferent NEE instances in this way: (1) the Nash–Sutclife model eiciency coeicient42 was calcu-
lated between each NEE instance and the remaining 39; (2) the reference NEE has been selected as the one with 
the highest model eiciency coeicients sum, i.e., the most similar to the other 39. Note that determining the 
reference NEE is done independently for variables using VUT and CUT USTAR thresholds, as well as for each 
temporal aggregation. herefore, the version selected as REF could be diferent for diferent temporal resolutions. 
For instance, NEE_VUT_REF at half-hourly resolution might have been generated using a diferent USTAR 
threshold than NEE_VUT_REF at daily resolution. Information on which threshold values were used for each 
version and temporal aggregation can be found in the auxiliary products for NEE processing (AUXNEE). In addi-
tion to the reference NEE, the NEE instance obtained by iltering the data with the median value of the USTAR 
thresholds distribution is also included. his NEE is identiied in FLUXNET2015 variables by the “_USTAR50” 
suix (for both CP and MP methods, and both VUT and CUT approaches) and is stable across temporal aggre-
gation resolutions. Individual percentiles of the USTAR thresholds distribution are reported in the AUXNEE ile 
(40 instances for CUT and 40 per year for VUT).

Random uncertainty for NEE. In addition to the uncertainty estimates based on multiple thresholds for 
USTAR iltering, the random uncertainty for NEE is also estimated based on the method used by Hollinger & 
Richardson37. Variables expressing random uncertainty are identiied by the suix _RANDUNC. One of two 
methods are used to estimate random uncertainty, applied hierarchically:

•	 NEE-RANDUNC Method 1 (direct standard deviation method): For a sliding window of ±7 days and 
±1 hour of the time-of-day of the current timestamp, the random uncertainty is calculated as the standard 
deviation of the measured luxes. he similarity in the meteorological conditions evaluated as in the MDS 
gap-illing method31 and a minimum of ive measured values must be present; otherwise, method 2 is used.

•	 NEE-RANDUNC Method 2 (median standard deviation method): For a sliding window of ±5 days and 
±1 hour of the time-of-day of the current timestamp, random uncertainty is calculated as the median of the 
random uncertainty (calculated with NEE-RANDUNC Method 1) of similar luxes, i.e., within the range of 
±20% and not less than 2 µmolCO2 m

–2 s–1. (Note on temporal aggregations: difering sliding windows are: 
WW: ±2 weeks, MM: ±1 month, and YY: ±2 years.)

he joint uncertainty for NEE is computed from the combination of the uncertainty from multiple USTAR 
thresholds and random uncertainty. hese variables identiied by the _JOINTUNC suix and are computed for 
NEE iltered using the VUT method as in Eq. (5), and similarly for NEE iltered with the CUT method.

= +





− 


 (5)

NEE VUT REF JOINTUNC NEE VUT REF RANDUNC
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_ _ _ _ _ _
_ _84 _ _16

2

2
2

he 16th and 84th percentiles are used because they are equivalent to ±1 Standard Deviation in case of a 
normal distribution. (Note on temporal aggregations: joint uncertainties for NEE are recomputed at all temporal 
resolutions.)

CO2 lux partitioning in GPP and RECO. Partitioning CO2 luxes from NEE into estimates of its two main com-
ponents, Gross Primary Production (GPP) and Ecosystem Respiration (RECO), was done by parameterizations 
of models using measured data. All sites were partitioned with the nighttime luxes method31 (_NT suixes) and 
the daytime luxes method43 (_DT suixes), while a third method, sundown reference respiration44 (_SR suixes), 
was applied to all sites meeting the method’s requirements (e.g., high quality storage measurement).

he nighttime method uses nighttime data to parameterize a respiration-temperature model that is then 
applied to the whole dataset to estimate RECO. GPP is then calculated as the diference between RECO and 
NEE. he parameterization uses short windows of time (14 days) to account for the dynamic of other important 
respiration drivers such as water, substrate availability, and phenology (see Reichstein et al.31 for details on the 
implementation and ONEFlux22 for the code).

he daytime method uses daytime and nighttime data to parameterize a model with one component based on a 
light-response curve and vapor pressure deicit for GPP, and a second component using a respiration-temperature 
relationship similar to the nighttime method. In this case, NEE becomes a function of both GPP and RECO, both 
of which are estimated by the model. Similarly to the nighttime method, the parameterization is done for short 
windows (8 days) to take into consideration other slower-changing factors (see Lasslop et al.43 for details on the 
implementation and ONEFlux22 for the code).

For forest sites where a CO2 concentration proile for storage luxes was available, an additional RECO esti-
mate was calculated using the method from van Gorsel et al.44, with variables identiied by the _SR suix. In this 
method, the parameterization of a respiration-temperature model is based solely on data acquired just ater sun-
down, aiming at excluding the measurements potentially afected by advection and also assuming that in the irst 
hour of the evening the advective transport is not yet established.

The sundown partitioning method requires that the NEE is not filtered for low turbulence conditions 
(USTAR), and for this reason it was applied only to the original time series. he nighttime and daytime methods 
instead require NEE iltered for low turbulence conditions. For this reason they were applied to all the 40 NEE 
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versions resulting from the 40 USTAR thresholds, obtaining 40 versions of GPP and RECO for each of the two 
partitioning methods, propagating the uncertainty from NEE to GPP and RECO. his has been done for both the 
CUT and VUT iltering methods.

Similarly to NEE, the 40 GPP and RECO estimates (for each method and for CUT and VUT) have been used 
to calculate the percentiles of their distribution for each timestep (describing their uncertainty due to the NEE 
uncertainty). he average value (_MEAN) and the reference value use the same model eiciency approach used 
for NEE for each temporal aggregation. Similarly, NEE iltered with the median USTAR value (_USTAR50) has 
been partitioned into GPP and RECO. Information on the threshold values used for all versions of GPP and 
RECO (_NT and _DT, _VUT and _CUT, HH to YY resolutions) are in the auxiliary iles for NEE processing 
(AUXNEE). Variables for reference GPP and RECO are also identiied by a _REF suix. he two methods for the 
partitioning (three for the cases in which the sundown method is applied) are not merged in any way, because 
their diference is informative with the respect to the uncertainty of the methods, as in the case of a model com-
parison exercise.

Implementation approachǤ To increase the traceability of changes between versions of datasets and 
reduce uncertainty stemming from choices made at implementation time, we favored using original code imple-
mentations or thoroughly validated re-implementations of original codes. hus, our code organization strings 
together loosely coupled components which implement each step, with clear-cut interfaces between steps. his 
modular approach eases the maintenance and change eforts for any individual step, but adds complexity to 
evaluating changes for the entire pipeline. Diferent programming languages (Python, C, MATLAB and IDL, plus 
PV-WAVE for FLUXNET2015) were used to implement the diferent steps, all connected using a controller code 
that makes appropriate calls in the correct order. he ONEFlux22 code collection replaced the PV-WAVE code 
with a re-implementation in Python, and also collates most of these steps into a cohesive pipeline (see also the 
Code Availability section). he IDL code, which applies the sundown partitioning method44, is not yet currently 
implemented in ONEFlux, because some additional testing and development are needed to make it robust and 
more suitable for general application. Implementation details of individual steps are discussed next, with refer-
ences to the outputs each step identiied by an execution sequential number and the step name–e.g., 01_qc_visual 
contains the results of the irst processing step, the visual check step. Each of these steps correspond to a code 
module. Supplementary Fig. SM2 shows the steps and their inter-dependencies.

Steps implemented in python. he main controller code for ONEFlux is implemented in Python. Besides being 
the glue code that executes each step, pre- and post-checks are also executed before and ater each step. hese 
checks guarantee that the input data meet the minimum requirements to run the step, that the minimum expected 
outputs were generated by the execution of the step, and that any errors or exception conditions were handled 
correctly. Information about execution is recorded in a log for the entire pipeline, along with logs for individual 
steps. Besides the controller code, two of the three lux partitioning steps were re-implemented in Python (the 
nighttime and daytime methods, 10_nee_partition_nt and 11_nee_partition_dt), together with other speciic 
steps such as data preparation for the uncertainty estimates (12_ure_input), and the creation and checking of 
inal products (99_luxnet2015). he original lux partitioning implementation in PV-WAVE was used for the 
Lahuile2007 and FLUXNET2015 datasets. Also, the tool for the downscaling of the ERA-I meteorological data 
is implemented in Python and runs on a server connected to the ERA data.

Steps implemented in C. Several steps are implemented in the C programming language, allowing better control 
over execution performance of these steps. hese steps include:

automated QA/QC lagging (02_qc_auto), USTAR threshold estimation using the MP method (04_ustar_
mp), the iltering and gap-illing of meteorological data, including the merging with the ERA-I downscaled data 
(07_meteo_proc), the iltering and gap-illing of CO2 luxes (08_nee_proc), the iltering, gap-illing, and energy 
corrections of energy luxes (09_energy_proc), and the computation of uncertainty products (12_ure). he source 
codes and the compiled executables are provided for steps implemented in C, as well as build procedures in make/
Makeile format.

Steps implemented in MATLAB. he estimation of USTAR thresholds using the CP method (05_ustar_cp) is the 
only step implemented in MATLAB. It is distributed both as source code and compiled code to be used with the 
MATLAB Runtime Environment, such that it does not require a license purchase.

Data records
he FLUXNET2015 portion presented in this paper contains 1496 site-years of data from 206 sites45–250, charac-
terizing ecosystem-level carbon and energy luxes in diverse ecosystems across the globe (Fig. 1, Supplementary 
Fig. SM1251,252), spanning from the early 1990s to 2014, with 69 sites having decade-long records. he dataset 
covers the distribution of ecosystem luxes as reported in the recent meta-analyses253,254 (Fig. 6).

he dataset is distributed in iles separated by sites, by temporal aggregation resolutions (e.g., hourly, weekly), 
and by data products (e.g., FULLSET with all the variables and SUBSET designed for less experienced users). All 
data iles for a site are available for download as a single ZIP ile archive with site-speciic DOI. he ile-naming 
conventions details these options for each ile (Table 1). Site metadata are also available as a single ile containing 
metadata for all sites, detailed later in this section and Supplementary Table SM8. Note that DOIs are assigned at 
the site level, one DOI per site for all of that site’s products. A DOI was not assigned to the whole FLUXNET2015 
dataset, since this would make citation and assigning credit imprecise and hard to track.

he FLUXNET2015 dataset provides data at ive temporal resolutions. Site teams contribute either half-hourly 
(HH) or hourly (HR) datasets, depending on the integration/aggregation time decided by the site managers and 
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function of the characteristics of the turbulence. References to half-hourly in this paper also apply to hourly 
data, unless explicitly stated otherwise. Half-hourly data are the basis of all the processing done for this dataset 
and are the inest grained temporal resolution provided. Coarser aggregations are generated uniformly from 
half-hourly data within the data processing pipeline. he other standard temporal aggregations are: daily (DD), 
weekly (WW), monthly (MM), and yearly (YY).

he complete output from the data processing pipeline includes over 200 variables–among which are meas-
ured and derived data, quality lags, uncertainty quantiication variables, and results from intermediate data pro-
cessing steps. he variable names follow the naming conventions of <BASENAME>_<QUALIFIER>, where 
BASENAME describes the physical quantities (e.g., TA, NEE, Table 2) and QUALIFIER describes the informa-
tion of processing methods (e.g., VUT, CUT), uncertainties (e.g., RANDUNC), and quality lags (e.g., QC) (see 
Supplementary Table SM1).

To serve the users with an easier-to-use data product, we created two variants with diferent selections of 
variables for data distribution: the FULLSET with all the results and variables; and the SUBSET, designed to help 
non-expert users, with a reduced set of variables that should it most needs.

•	 FULLSET: variables generated by the processing such as uncertainty quantiication variables, all variants of 
the data products, all quality information lags, and many variables generated by intermediate processing 
steps to allow in-depth understanding of individual processing steps and their efect in the inal data prod-
ucts. A summary of the main variable basenames is in Table 2, while a full list of variables is provided in 
Supplementary Table SM1. Key features of the FULLSET version are:

Fig. 6 Distribution of the yearly (a) net ecosystem exchange (NEE), (b) gross primary production (GPP), 
and (c) ecosystem respiration (RECO) in FLUXNET2015. Only data with QC lag (NEE_VUT_REF_QC) 
higher than 0.5 are shown here. he values are reference NEE, GPP, and RECO based on the Variable USTAR 
hreshold (VUT) and selected reference for model eiciency (REF). GPP and RECO are based on the nighttime 
partitioning (NT) method. he grey histogram (bin width 100 gC m−2 y−1) shows the lux distribution in 1224 
of the available site-years; negative GPP and RECO values are kept to preserve distributions, see Data processing 
methods section for details. Black lines show the distribution curves based on published data253,254. he boxplots 
show the lux distribution (i.e., 25th, 50th, and 75th percentiles) for vegetation types deined and color-coded 
according to IGBP (International Geosphere–Biosphere Programme) deinitions. Circles represent data points 
beyond the 1.5-times interquartile range (25th to 75th percentile) plus the 75th percentile or minus 25th 
percentile (whisker). Numbers in parentheses indicate the number of site-years used in each IGBP group. he 
NO-Blv site from the snow/ice IGBP group is not shown in the boxplots.
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•	 Meteorological variables filled with multiple gap-filling methods (e.g., MDS, ERA) are provided 
separately.

•	 NEE versions iltered with two diferent methods of extracting the USTAR thresholds (i.e., CUT, VUT) 
are provided. Multiple percentiles and reference NEE are also provided.

•	 GPP and RECO partitioned from NEE iltered with VUT and CUT methods, using both daytime and 
nighttime partitioning methods (i.e., NT, DT). Multiple percentiles and reference GPP and RECO are 
provided.

•	 LE and H gap-illed, adjusted and non-adjusted for energy balance closure, are both provided.
•	 Random, methodological, and joint uncertainties for NEE, GPP, RECO, LE, and H are provided.

•	 SUBSET: Includes a subset of the data product. he selection of the variables for this data product was done 
based on the expected usage for most users and to help less experienced users. Although the number of 
variables used is reduced, they are still accompanied by a set of quality lags and uncertainty quantiication 
variables essential to correctly interpret the data. Key features of the SUBSET version are:

•	 Only the consolidated gap-illed meteorological variables are provided.
•	 Only the REF version of NEE iltered with the VUT method is provided. Selected percentiles and ref-

erence NEE are also provided.
•	 GPP and RECO (only REF versions) partitioned from NEE iltered with only the VUT method, using 

both daytime and nighttime partitioning methods, are provided. Selected percentiles and reference 
GPP and RECO are also provided.

File Name Conventions

FLX_[SITE_ID]_FLUXNET2015_[DATA_PRODUCT]_[RESOLUTION]_[FIRST_YEAR]-[LAST_YEAR]_
[SITE_VERSION]-[CODE_VERSION].[EXT]

Field Deinition Possible options

SITE_ID
FLUXNET site ID in the format CC-SSS (CC is 
two-letter country code, SSS is three-character 
site-level identiier)

DATA_PRODUCT Grouping of variables from release included in ile.

•  SUBSET: Core set of variables with quality and uncertainty 
information needed for general uses of the data
•  FULLSET: All variables, including all quality and uncertainty 

information, and key variables from intermediate processing 
steps
•  AUXMETEO: Auxiliary variables related to meteorological 

downscaling
•  AUXNEE: Auxiliary variables related to NEE, RECO, and 

GPP processing
•  ERAI: Full record (1989–2014) of ERA-Interim downscaled 

meteorological variables for the site

RESOLUTION Temporal resolution of data product

• HH: Half-Hourly time steps
• HR: Hourly time steps
• DD: Daily time steps
• WW: Weekly time steps
• MM: Monthly time steps
• YY: Yearly time steps

FIRST_YEAR
LAST_YEAR

First and last years of eddy covariance lux data

SITE_VERSION
CODE_VERSION

Version string in integer. SITE_VERSION 
indicates the version of the original dataset for the 
site used; CODE_VERSION indicates the version 
of the code of the data processing pipeline used to 
process the dataset for the site

EXT File extension
• csv: Comma-separated values in a text ile (ASCII)
•  zip: Archive ile with all temporal resolutions for the same 

site and data product

Examples of ile names and structures:
FLX_US-Ha1_FLUXNET2015_FULLSET_HH_1992-2012_1-3.zip

- FLX_US-Ha1_FLUXNET2015_FULLSET_HH_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_FULLSET_DD_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_FULLSET_WW_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_FULLSET_MM_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_FULLSET_YY_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_ERAI_HH_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_ERAI_DD_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_ERAI_WW_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_ERAI_MM_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_ERAI_YY_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_AUXMETEO_1992-2012_1-3.csv
- FLX_US-Ha1_FLUXNET2015_AUXNEE_1992-2012_1-3.csv

Table 1. he template of ile naming conventions, including the ield, ield deinition, and the possible options. 
Examples of ile names from a zipped ile of a single site are provided.
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•	 LE and H gap-illed, adjusted and non-adjusted for energy balance closure, are both provided.
•	 Random and methodological uncertainties for NEE, GPP, RECO, LE, and H are provided.

he variable proposed in the SUBSET product is NEE_VUT_REF since it maintains the temporal variability 
(as opposed to the MEAN NEE), it is representative of the ensemble, and the VUT method is sensitive to possible 
changes of the canopy (density and height) and site setup, which can have an impact on the turbulence and conse-
quently on the USTAR threshold. he RECO and GPP products in SUBSET are calculated from the correspond-
ing NEE variables iltered with the VUT method, generating RECO_NT_VUT_REF and RECO_DT_VUT_REF 
for RECO, and GPP_NT_VUT_REF and GPP_DT_VUT_REF for GPP. It is important to use both daytime (DT) 
and nighttime (NT) variables, and consider their diference as uncertainty.

Auxiliary data products provide extra information on speciic parameters of the data processing pipeline. he 
groups of products are:

•	 AUXMETEO: Auxiliary data product containing information about the downscaling of meteorological var-
iables using the ERA-Interim reanalysis data product (TA, PA, VPD, WS, P, SW_IN, and LW_IN). Variables 
in these iles relate to the linear regression and error/correlation estimates for each data variable used in the 
downscaling.

Basename Description

Units by Resolution

HH/HR DD WW MM YY

TA Air temperature deg C

SW_IN_POT
Shortwave radiation, 
incoming, potential (top of 
atmosphere)

W m−2

SW_IN Shortwave radiation W m−2

LW_IN
Longwave radiation, 
incoming

W m−2

VPD
Vapor Pressure saturation 
Deicit

hPa

PA Atmospheric pressure kPa

P Precipitation mm mm d−1 mm y−1

WS Wind speed m s−1

WD Wind direction Decimal degrees n/a

RH Relative humidity % n/a

USTAR Friction velocity m s−1

NETRAD Net radiation W m−2

PPFD_IN
Photosynthetic photon lux 
density, incoming

µmolPhoton m−2 s−1

PPFD_DIF
Photosynthetic photon lux 
density, difuse incoming

µmolPhoton m−2 s−1

PPFD_OUT
Photosynthetic photon lux 
density, outgoing

µmolPhoton m−2 s−1

SW_DIF
Shortwave radiation, difuse 
incoming

W m−2

SW_OUT
Shortwave radiation, 
outgoing

W m−2

LW_OUT
Longwave radiation, 
outgoing

W m−2

CO2 CO2 mole fraction µmolCO2 mol−1

TS Soil temperature deg C

SWC Soil water content %

G Soil heat lux W m−2

LE Latent heat lux W m−2

H Sensible heat lux W m−2

NEE Net Ecosystem Exchange µmolCO2 m
−2 s−1 gC m−2 d−1 gC m−2 

y−1

RECO Ecosystem Respiration µmolCO2 m
−2 s−1 gC m−2 d−1 gC m−2 

y−1

GPP Gross Primary Production µmolCO2 m
−2 s−1 gC m−2 d−1 gC m−2 

y−1

Table 2. List of the variable basenames, descriptions, available resolutions and units. Separate units are listed if 
diferent units are used in diferent temporal aggregation resolutions. n/a indicates a variable is not provided at 
the speciied resolution.
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•	 Parameters:
•	 ERA_SLOPE: the slope of linear regression
•	 ERA_INTERCEPT: intercept point of linear regression
•	 ERA_RMSE: root mean square error between site data and downscaled data
•	 ERA_CORRELATION: correlation coeicient of linear it

•	 AUXNEE: Auxiliary data product with variables resulting from the processing of NEE (mainly related to 
USTAR iltering) and generation of RECO and GPP. Variables in this product include success/failure of exe-
cution of USTAR iltering methods, USTAR thresholds applied to diferent versions of variables, and percen-
tile/threshold pairs with best model eiciency results.

•	 Variables:
•	 USTAR_MP_METHOD: Moving Point Test USTAR threshold method run
•	 USTAR_CP_METHOD: Change Point Detection USTAR threshold method run
•	 NEE_USTAR50_[UT]: 50th percentile of USTAR thresholds obtained from bootstrapping and 

sed to generate NEE_USTAR50_[UT] (with UT either CUT or VUT)
•	 NEE_[UT]_REF: USTAR threshold used to calculate the reference NEE, using model eiciency 

approach (with UT either CUT or VUT)
•	 [PROD]_[ALG]_[UT]_REF: USTAR threshold used to ilter the NEE that was used to produce 

the reference product PROD (RECO or GPP), selected using model eiciency approach, using 
algorithm ALG (NT, DT) (with UT either CUT or VUT)

•	 Parameters:
•	 SUCCESS_RUN: 1 if a run of a method (USTAR_MP_METHOD or USTAR_CP_METHOD) 

was successful, 0 otherwise
•	 USTAR_PERCENTILE: percentile of USTAR thresholds from bootstrapping at USTAR iltering 

step
•	 USTAR_THRESHOLD: USTAR threshold value corresponding to USTAR_PERCENTILE
•	 [RR]_USTAR_PERCENTILE: percentile of USTAR thresholds from bootstrapping at USTAR 

iltering step at resolution RR (HH, DD, WW, MM, YY)
•	 [RR]_USTAR_THRESHOLD: USTAR threshold value corresponding to USTAR_PERCEN-

TILE at resolution RR (HH, DD, WW, MM, YY)

•	 ERAI: Auxiliary data product containing full record (1989–2014) of downscaled meteorological variables 
using the ERA-Interim reanalysis data product, including TA, PA, VPD, WS, P, SW_IN, and LW_IN.

The FLUXNET2015 metadata are included in a single file (FLX_AA-Flx_BIF_[RESOLUTION]_
[YYYYMMDD].xlsx) for all sites for each data product resolution (see Table 1 for resolution options). he meta-
data follow the Biological, Ancillary, Disturbance, and Metadata (BADM255,256) standards and are provided in 
the BADM Interchange Format29 (BIF). Table 3 illustrates the type of metadata included with selected metadata 
variables (See full lists and descriptions of the metadata in Supplementary Tables SM2–SM7). Height and instru-
ment models for the lux variables, as well as soil temperature and moisture depths, are reported in the Variable 
Information metadata.

Technical Validation
Eddy covariance measurements ofer a direct method to estimate trace gas or energy exchanges between sur-
face and atmosphere at an ecosystem scale (approximately up to 1 km around the measurement point). his 
makes eddy covariance diicult to compare with other methods. Nonetheless, eddy covariance data have been 
extensively used in numerous scientiic papers and studies that indirectly validate their reliability and usefulness. 
Hundreds of articles have been published based on eddy covariance measurements; examples of multi-site studies 
using FLUXNET2015 data include Jung et al.15, Tramontana et al.257, and Keenan et al.258.

Eddy covariance data were evaluated with respect to other methods such as inventory and chambers by 
Campioli et al.259, who showed that “EC [eddy covariance] biases are not apparent across sites, suggesting the 
efectiveness of standard post-processing procedures. Our results increase conidence in EC …”. he approach 
of Campioli et al.259 requires sites that have several additional (and rare) pieces of information; therefore, it is not 
generally applicable, particularly not across the sites used in this study. However, the eddy covariance site teams 
co-authoring this paper have compared and technically validated their measurements with respect to knowledge 
of their site. Unavoidably, measurement and processing uncertainties exist, and can be large for certain sites and 
ecosystem conditions. However, in general, lux values provided in this dataset are consistent with expectations, 
and eddy covariance remains one of the more reliable techniques for assessing land-air exchanges at ecosystem 
scales.

Usage Notes
Detailed documentation on how to use and interpret FLUXNET2015 is available online at https://luxnet.lux-
data.org/data/luxnet2015-dataset/. Here, we present some of the main points to guide the usage of the data.

risks in the application of standard proceduresǤ When standardized procedures are applied across 
diferent sites, the possible diferences owing to data treatment are avoided or minimized; this is one of the main 
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goals of FLUXNET2015 and ONEFlux. However, there is also the risk and possibility that the standard methods 
don’t work properly or as expected at speciic sites and under certain conditions. his is particularly true for the 
CO2 lux partitioning, which as with all models is based on assumptions that could not always be not valid. For 
this reason, it could be necessary to contact the site PIs that are listed in Supplementary Table SM9.

Using the QC ƪagsǤ here are quality-control lag variables in the dataset to help users ilter and interpret 
variables, especially for gap-illed and process knowledge-based variables. hese lags are described in the variable 
documentation (Supplementary Table SM1). It is highly recommended that one carefully considers the QC lags 
when using the data.

Percentile variants for ƪuxes and reference valuesǤ For most lux variables, there are reference val-
ues and percentile versions of the variables to help understand some of the uncertainty in the record. For NEE, 
RECO, and GPP, the percentiles are generated from the bootstrapping of the USTAR threshold estimation step, 
i.e., they characterize the variability from a range of values obtained as USTAR thresholds. In addition, three 
diferent reference values are provided (“_MEAN”, “_USTAR50” and “_REF”) in order to cover diferent user 
needs. In general the “_REF” version should be the most representative, particularly if related to the percentiles. 
It is, however, important to clearly refer to which NEE version is used in order to ensure reproducibility. For the 
energy balance corrected H and LE variables, the percentiles indicate the variability due to the uncertainty in the 
correction factor applied. Similarly to NEE, there are gap-illed and energy balance corrected versions of H and 
LE variables; therefore, it is also important to clearly refer to which version is used. he SUBSET version of the 
dataset includes a reduced number of variables, selected for non-expert users. We encourage users to carefully 
evaluate their requirements and options in the dataset, and if needed to contact regional networks, site teams, or 
even co-authors of this article for help and recommendations. For more detail, see the Methods section above.

Temporally aggregated resolutionsǤ All data products are provided at multiple temporal resolutions 
where feasible. he inest resolution is either hourly or half-hourly (indicated by the ilename tags HR and HH, 
respectively). hese data are then aggregated into daily (DD), 7-day weekly (WW), monthly (MM), and yearly 
(YY) resolutions, with appropriate aggregations for each variable, such as averaging for TA and summation for P.

TimestampsǤ Timestamps in the data and metadata iles use the format YYYYMMDDHHMM, truncated at 
the appropriate resolution (e.g., YYYYMMDD for a date or YYYYMM for a month). Two formats of time associ-
ated with a record are used: (1) single timestamp, where the meaning of the timestamp is unambiguous, and, (2) 
a pair of timestamps, indicating the start and end of the period the timestamps represent.

Time zonesǤ To allow more direct site comparability, all time variables are reported in local standard time 
(i.e., without daylight saving time). he time zone information with respect to UTC time is reported in the site 
metadata.

Numeric resolutionǤ he loating point numbers are maintained at their original resolution throughout 
processing steps, using double precision for the majority of cases, and are truncated at up to nine decimal places 
in the distributed iles for numbers between 0.0 and 1.0, and at up to ive decimal places for larger numbers.

Metadata Type Selected Metadata Variables

Site General Info
(25 variables)

SITE_ID: Unique site identiier (CC-sss, where CC is the country code)
SITE_NAME: Site name
SITE_DESC: Site description
LOCATION_LAT: Latitude of site
LOCATION_LONG: Longitude of site
FLUX_MEASUREMENTS_VARIABLE: Flux variables measured at the site
IGBP: Vegetation type based on International Geosphere-Biosphere Programme classiication
UTC_OFFSET: Ofset from UTC of site data
TEAM_MEMBER_NAME: Team member name
MAT, MAP: Mean annual temperature and precipitation
TOWER_TYPE, TOWER_POWER: Type of tower and power type

DOI
(12 variables)

DOI: Digital Object Identiier (DOI) for the lux-met data product
DOI_CONTRIBUTOR_NAME: Name of contributor to the development of data (and associated info)
DOI_ORGANIZATION: Organization contributing to the data

Reference publications
(4 variables)

REFERENCE_PAPER: Reference for understanding the site
REFERENCE_DOI: DOI of the reference
REFERENCE_USAGE: Suggested usage of the reference

Canopy Height
(2 variables)

HEIGHTC: Canopy height. In a forest ecosystem, canopy height is the distribution of overstory trees 
that see light at the top of the canopy.
Note: he reported value is representative of the mean of such a distribution.
HEIGHTC_DATE: Date of canopy height observation

Variable Information
(5 variables)
Note: Variable Information groups are 
only reported for variables with data.

VAR_INFO_VARNAME: Variable name
VAR_INFO_UNIT: Variable unit
VAR_INFO_DATE: Start date for reported variable information
VAR_INFO_HEIGHT: Height/depth of observation (meters)
VAR_INFO_MODEL: Model(s) used to collect observation.

Table 3. Metadata types and selected variables. See Supplementary Tables SM2–SM7 for a full list of metadata 
with descriptions. Variables collected from or generated for all sites are in bold.
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Column orderingǤ he order of columns is not always the same in diferent iles (e.g., diferent sites). User 
data-processing routines should use the variable label (which is always consistent) and not the order of occur-
rence of that variable in the ile. Timestamps are the only exception and will always be the irst variable(s)/
column(s) of the data ile. his applies to text ile data representations (i.e., CSV formatted).

Missing dataǤ Missing data values are indicated with −9999, without decimal points, independent of the 
cause of the missing value.

Known issuesǤ A list of known issues and limitations relevant to the dataset is maintained online: http://
luxnet.luxdata.org/data/luxnet2015-dataset/known-issues/.

releases of the FLUXNET͸Ͷͷͻ datasetǤ he original FLUXNET2015 release was in December 2015, 
followed by incremental releases in July 2016 and November 2016, and, inally, a release in February 2020 with 
ixes and additional metadata as described in this paper. More information on the releases can be found in the 
online change log: http://luxnet.luxdata.org/change-log/. A newer release replaces all previous ones, and only 
the newest release is available for direct download. Access to previous versions can be obtained upon request.

Support to FLUXNET͸Ͷͷͻ data usersǤ Scientists and staf responsible for the creation of the dataset ofer 
support to data users and can be reached at luxdata-support@luxdata.org.

Updates and future versionsǤ here is strong interest and engagement in order to ensure the availability 
of new data (new sites and new years), keeping the open policy and the high quality data that we tried to reach 
with this work. We expect that the processing pipeline and QA/QC procedures will continue evolving, in support 
of new products. However, the amount of both technical and coordination work, along with diiculty securing 
long-term international funding, hamper creation of new versions of the dataset. here are ongoing discussions 
among regional networks and FLUXNET on this coordination, but currently there is no plan for a follow-up 
version of FLUXNET2015.

Code availability
he ONEFlux collection of codes used to create data intercomparable with FLUXNET2015 has been packaged 
to be executed as a complete pipeline and is available in both source-code and executable forms under a 3-clause 
BSD license on GitHub: https://github.com/AmeriFlux/ONEFlux. The complete environment to run this 
pipeline requires a GCC compatible C compiler (or capability to run pre-compiled Windows, Linux, and/or Mac 
executables), a MATLAB Runtime Environment, and a Python interpreter with a few numeric and scientiic 
packages installed. All of these can be obtained at no cost.
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