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Linear system identification versus physical

modelling of lateral-longitudinal vehicle dynamics
Bernardo A. Hernandez Vicente, Sebastian S. James and Sean R. Anderson

Abstract—Accurate physical modelling of vehicle dynamics
requires extensive a-priori knowledge of the studied vehicle. In
contrast, data-driven modelling approaches require only a set of
data that is a good account of the vehicle’s driving envelope.
In this paper we compare, for the first time, the prediction
capabilities of both approaches applied to a large-scale real
world driving data set. The data set contains several cornering
manoeuvres, acceleration and deceleration stages and was col-
lected over public roads. Linear and nonlinear physical models
were identified through nonlinear optimisation of their unknown
parameters. Closed-form subspace identification methods were
used to initialise the estimate of a linear state space model, and
the initialisation was then refined through nonlinear optimisation.
The optimised models were validated against 59 kilometres of
independent driving data. The model fits, in the longitudinal
velocity were 68.9% versus 80.2% for the nonlinear physical
model and linear data driven (second order) model respectively,
and in the yaw rate were 43.0% versus 63.5%. These results
show that, for this vehicle, a simple linear data-driven model
outperformed both linear and nonlinear physical models under
real world driving conditions. This has important implications
for control design approaches in autonomous vehicles.

Index Terms—Nonlinear parameter estimation, system iden-
tification, vehicle dynamics, subspace identification, state space
modelling.

I. INTRODUCTION

The last two decades have seen a steep increase in research

efforts to deploy (semi) autonomous ground vehicles both for

private and commercial use [1]–[3]. An important part of

these efforts has focused on devising mathematical models

of vehicle dynamics for the purpose of control design [4]–

[8]. Dynamic models for control design are often permitted to

be relatively simple approximations because feedback control

methods are highly tolerant of model error – a key advantage

of using feedback. We suggest here that commonly used non-

linear physically-derived vehicle models are overcomplicated,

difficult to tune appropriately, and unnecessary for the task of

control design, and that simple linear models can capture the

same basic dynamic behaviour, to a similar level of accuracy.

This would be highly advantageous because linear control

design methods could be confidently used in place of nonlinear

methods, with key potential benefits in simplicity, robustness,

stability guarantees and ease of implementation.

Physical models are usually a combination of Newton’s

second law and empirical understanding of certain driving con-

ditions, which makes them easy to understand. Most physical
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models are nonlinear, due to the complexity of the process they

attempt to simulate [9]. Linear physical models are assumed,

in certain cases, to be accurate enough [10], and their validity

on the extremes of the driving envelope can be boosted by

allowing some of their parameters to vary in time [6], [11].

Given that even simplified physical models usually contain

a high number of parameters, most approaches assume only

a subset of them is unknown. In [12]–[15], for example,

observer-based techniques are employed to estimate tyre forces

and road friction coefficients, while in [16] related parameters

are estimated through linearisation and least squares, and in

[17] a particle-filtering approach is employed to obtain a

Bayesian estimate of linear cornering stiffness values. In [18],

[19], the focus is placed on identifying inertial parameters such

as CoG position, while friction coefficients and suspension

stiffness are assumed known. In the same context, usually

only one main dynamic is studied, either longitudinal such

as in [20]–[22] or lateral as in [6], [7], [23]–[25].

Whether linear or nonlinear, physically-derived models suf-

fer from several shortcomings. They can only simulate the

dynamics that they were derived for, hence only well defined

experimental data is useful for the purpose of parameter

estimation. It is usually complex to estimate appropriate value

ranges for the model’s unknown parameters without consider-

able a-priori knowledge of vehicle characteristics and in view

of the bias introduced by modelling simplifications. Moreover,

even linear models are usually nonlinear in the parameters,

resulting in computationally expensive and time consuming

estimation procedures.

Data-driven modelling techniques, on the other hand, result

in models that best represent the entire set of available data.

This allows for more flexibility in experiment design and/or

data preprocessing. Moreover, the parameters of data-driven

models do not necessarily represent any true physical quantity,

hence rendering a-priori estimates unnecessary. Nevertheless,

data-driven approaches are less abundant in the literature,

including linear parameter varying methods to map steering

angle to yaw rate and lateral acceleration [11], [26], linear

transfer function and iterative learning methods with constant

velocity assumptions [27], and subspace methods for longitu-

dinal dynamics only [28], [29] and lateral dynamics only [30],

[31].

It is clear that although several different modelling tech-

niques have been employed to obtain physical and data-driven

models of a vehicle’s dynamics, much less attention has been

given to their comparison. The focus of this paper, therefore,

is to compare the prediction capabilities of nonlinear physical

and data-driven models in both the velocity and displacement

spaces. The models are identified and evaluated on a large-
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scale real-world driving data set.

The rest of the paper is organized as follows. In Section II

modelling assumptions are put forward and the selected model

structures introduced. The identification methods are presented

in Section III and Section IV briefly summarizes the data

employed. Section V presents and compares the optimised

models and their prediction capabilities. Finally, conclusions

are drawn in Section VI.

II. VEHICLE DYNAMICS

A. Nonlinear physical modelling

In order to represent the nonlinear dynamics of the vehi-

cle, a coupled (longitudinal-lateral) four-wheel model is used

(Figure 1). We make a small steering angle assumption but

only for the longitudinal dynamics. In practice this means

that we decouple the longitudinal dynamics by neglecting the

effect of the lateral forces on the longitudinal force equation,

nevertheless we do observe the effect of the longitudinal forces

on the lateral dynamics. We do this to reduce the complexity

of the parameter estimation procedure, yet retaining some of

the important coupling effects.

The variables lf and lr are the longitudinal distances

between the vehicle’s centre of gravity (CoG) and its front

and rear axles respectively, while W is the axle track. The

velocity of the CoG is described in the vehicle’s body frame

by vx and vy; the vehicle is also subject to a yaw rate ψ̇
with corresponding yaw angle ψ. The steering angle of the

front axle, δ, is assumed equal for both wheels. Each tyre is

subject to longitudinal Flon,ij and lateral forces Flat,ij , where

i = f(front), r(rear) and j = l(left), r(right), and the

vehicle’s CoG is assumed to be subject to a dissipative force

Fd. If the mass of the car is m and its yaw moment of inertia

is Iz , then the vehicle’s dynamics are governed by

m
(

v̇x − vyψ̇
)

= Flon,fl + Flon,fr + Flon,rl + Flon,rr − Fd

(1a)

m
(

v̇y + vxψ̇
)

= Fy,fl + Fy,fr + Fy,rl + Fy,rr (1b)

Izψ̈ = (Fy,fl + Fy,fr) lf − (Fy,rl + Fy,rr) lr

+ (Fx,fr − Fx,fl + Fx,rr + Fx,rl))W/2.
(1c)

The geometric relation between the longitudinal/lateral forces

and F(x,y),ij follows from Figure 1 and is omitted for brevity.

For simplicity, it is assumed throughout this paper that the

longitudinal forces affecting the tyres are produced exclusively

by the engine torque (Fe) and the brakes (Fb). This is due to

the availability of such measurements and previous identifica-

tion experiments performed on the data set [28]. The vehicle

under study is front-wheel-drive, hence the engine torque is

equally distributed amongst the two front wheels, whilst the

brake force is assumed equally distributed among all tyres.

The lateral forces are considered a function (to be defined)

of the corresponding tyre side-slip angle, while tyre aligning

torques [10] are neglected. Finally, the dissipative force Fd is

assumed to be composed of aerodynamic drag, rolling friction

and the mass component due to road slope (γ).
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Figure 1. Diagram of the four-wheel car model.

1) Longitudinal dynamics: We employ the longitudinal

model described in [28]. The force transmitted from the engine

to the wheels is modelled by Fe = κeTe, where Te is the

engine’s delivered torque post gear-box and κe groups engine

and transmission efficiencies and the driveline gear ratio. The

brake force is defined in terms of the brake system pressure Pb
by Fb = κbPb. The dissipative force due to the road’s slope is

Fs = mgγ where g is the gravitational constant and γ is the

slope angle (assumed small). The friction force neglects road

slope and hence is defined by Ff = mgµ where µ is the road-

wheel static friction coefficient (assumed constant). Finally, the

air drag force is modelled by a standard quadratic equation

FD = κDv
2
x. In this model κe, κD and µ are unknown.

2) Tyre lateral force model: The lateral force acting on

the tyres depends on several factors including road condition,

fabrication material, inflation pressure, etc. [4], [14]. If those

parameters are fixed, however, the current magnitude of the

lateral load varies only owing to the vertical load on the

tyre and the tyre’s side-slip angle. The latter is the angle

formed between the the tyre’s longitudinal symmetry plane

and its velocity vector. Considering the CoG’s velocity and

the vehicle’s yaw rate, the side-slip angle of each tyre can be

easily defined

αfl(r) = arctan

(

vy + ψ̇lf

vx − (+)ψ̇W/2

)

− δ (2a)

αrl(r) = arctan

(

vy − ψ̇lr

vx − (+)ψ̇W/2

)

. (2b)

There exist several models that relate the side-slip angle to

the tyre’s lateral force [9], [10], [32]–[34]. Among them, a

popular semi-empirical one is the so called Magic Formula

[10]. This can be cast with several degrees of complexity

by increasing the number of its parameters. It is, however,

difficult to provide an a-priori estimate to most of these

parameters without in-depth knowledge of the tyres and the

road; henceforth we assume all tyres are identical and employ
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a simplified version to avoid overfitting

Flat,ij = Fz,ijµy sin (C arctan (Bαij)) , (3)

where µy , C and B are unknown parameters.

3) Tyre vertical force model: In uniform-motion (zero ac-

celeration), the vertical forces acting on each wheel depend

only on the mass distribution of the vehicle; in accelerated

motion, however, they also depend on the current acceleration

experienced by the CoG. In this study we compute the vertical

force acting over each wheel with a zero-order model assuming

the front and rear axles are mechanically decoupled.

Fz,fl(r) = lrmg/2l− hmax/2l

− (+)lrh1may/lW + (−)
[

K̄φ,r
h2may/W

]

(4a)

Fz,rl(r) = lfmg/2l+ hmax/2l

− (+)lfh1may/lW + (−)
[

K̄φ,f
h2may/W

]

(4b)

where the variables K̄φ,f and K̄φ,r represent the ratio of

the axle stiffness, and they are unknown. We cast the model

in terms of the ratios rather than the absolute values (also

unknown) in order to improve the model’s identifiability.

B. Linear physical modelling

A linear model of the vehicle’s dynamic can be obtained

from (1) through several simplification/assumption steps. First

we assume small steering and wheel side-slip angles, and also

vx ≫ ψW/2, which allows a simplification of (2) to

αfl(r) =
vy + ψ̇lf

vx
− δ, αrl(r) =

vy − ψ̇lr
vx

,

and also of the geometric relationship between the longitudi-

nal/lateral forces and F(x,y),ij .

The second assumption is related to the tyre lateral force

model. Since the side-slip angles are assumed small, the lateral

force remains in the linear range of the Magic Formula, hence

(3) is simplified to

Flat,ij = Ciαij ,

where Ci is referred to as the cornering stiffness [10]. This

parameter is unknown and allowed to be different for each

axle but not for each wheel in the axle, neglecting some of

the effects of load transfer due to lateral acceleration in the

linear range. Finally, the drag force term in the longitudinal

dynamics is replaced by a linear function FD = κ̄Dvx.

These simplifications result in a model that, except for the

side-slip angle dependency on vx, uncouples longitudinal and

lateral dynamics. The model can be written in the standard

state space form ẋ = Ax + Bu + d with state vector x =
[vy ψ̇ vx]

⊤, input vector u = [Teδ Pbδ δ Te Pb γ]
⊤

matrices

A =





2(Cf+Cr)/mvx 2(Cf lf+Crlr)/mvx − vx 0
2(Cf lf+Crlr)/Izvx 2(Cf l

2
f+Crl

2
r)/Izvx 0

0 0 κ̄D/m





(5a)

B =





κe/m −κb/2m −2Cf/m 0 0 0
κelf/Iz −κblf/2Iz −lfCf/Iz 0 0 0

0 0 0 κe/m −κb/m −g



 ,

(5b)

and disturbance d = −gµ representing the constant friction.

The model described by (5) is nonlinear, since all the lateral

entries of the state transition matrix depend on the longitudinal

velocity of the vehicle, vx. To obtain a linear time-invariant

(LTI) physical model for comparison to the LTI data-driven

model we treat vx in these matrix entries as an unknown

constant and estimate it along with the other parameters.

In certain (extreme) driving conditions, the performance of

the linear model can degrade due to the omission of coupling

between lateral and longitudinal dynamics. Therefore, we

also estimate coupled versions of the LTI physical model.

To do so, we directly modify (5) by allowing some of its

coupling parameters to be non-zero. In order to provide a fair

comparison with the nonlinear physical model, we consider

the same one-way coupling scenario in which lateral dynamics

are affected by longitudinal dynamics but not the other way

around. In practice, this means that the state-transition matrix

is modified by allowing the elements A1,3 and A2,3 to be

non-zero, where subindices indicate (row, column) position.

C. Data-driven model

For the data-driven model, we employ a subspace system

identification technique [35] to estimate an LTI state space

model that best explains the data. The model has the following

structure

ẋd =Adxd +Bdud (6a)

yd =Cdxd + v, (6b)

where ud is the input, v is measurement noise and yd is the

measured output. In the physical modelling case, the matrices

A and B are defined by the physics of the system, while

C is the identity of appropriate dimension. In the subspace

approach, on the other hand, input and output are chosen

by the user depending on their understanding of the system’s

dynamics; however the size and contents of the model matrices

are chosen by the algorithm to best simulate the output of the

system given the inputs applied. Hence the state vector, and its

dimension nd, do not necessarily have any physical meaning.

For the data-driven model we chose yd = [vx ψ̇]⊤ and

ud = [Te Pb γ δ]
⊤

, in order to match the inputs used in the

linear physical model (5).

III. SYSTEM IDENTIFICATION PROCEDURE

A. System identification of physically-derived models

The estimation of the unknown parameters in the physically-

derived models was performed through a least squares ap-

proach. The overall procedure is as follows:

i. Estimate the parameters of the independent nonlinear

longitudinal model κe, κD and µ (done in [28]).

ii. Estimate the parameters of the linear longitudinal model

κ̄D.

iii. Estimate the parameters of the coupled nonlinear lateral

model µy , C, B, K̄φ,f and K̄φ,r.

iv. Estimate the parameters of the uncoupled linear lateral

model Cf , Cr and v̄x.
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v. Estimate the parameters of the one-way coupled linear

lateral model Cf , Cr, v̄x, A1,3 and A2,3.

Note that step (ii) does not re-estimate the parameters κe and

µ to avoid biases due to linearization. Also note that, although

coupling is allowed in step (v), the longitudinal parameters are

not re-estimated to provide a fair midpoint for comparison with

the nonlinear model.

In all of the cases listed above, the procedure to obtain an

estimate of the parameters is the same and similar to that in [5].

Define θ0 as the vector containing the true model parameters.

The corresponding estimate θ̂ is obtained by solving the

following optimisation problem

P = min
θ∈Θ

J (θ) , (7)

The set Θ in (7) is particular to each estimation exercise

and is defined by a set of box constraints imposed over

each parameter. This is done to guarantee that the obtained

parameters have a physical meaning. The cost function is

defined as

J (θ) =
N
∑

k=1

(

h(tk)− ĥ(tk, θ)
)⊤

Υ
(

h(tk)− ĥ(tk, θ)
)

, (8)

where h(tk) is a vector of measured outputs at time tk and

ĥ(tk, θ) is the vector of corresponding simulated values at the

same time instant given a vector of candidate parameters θ.

The matrix Υ is a diagonal matrix composed of weights used

to normalize the different variables in the output vector h. The

definition of h depends, again, on the particular estimation

being carried out. In the longitudinal case, h = vx and in the

uncoupled and one-way coupled lateral cases h = ψ̇.

B. Data-driven system identification

The identification of the data-driven model was performed

in two stages. First, a closed-form subspace identification

method was employed to initialise state space models of

different orders (different number of states). The reader is

referred to [35] for a detailed description of such methods. In

the second stage, the parameters of the state space models were

refined through a single implementation of (7) with h = yd and

θ a vector containing all the parameters in the model matrices

Ad, Bd and Cd. Note that, since the initialisation is performed

in closed-form, the procedure to obtain the data-driven models

does not require multiple starts.

C. Parameter estimation

Since no particular model is attached to measurement noise,

all the physically-derived models are nonlinear in the param-

eters. It follows that the minimisation of the least squares

functional is a nonlinear optimisation problem. In this case,

we used a constrained interior-point method implemented in

the fmincon function in MATLAB to solve (7). To avoid local

minima of bad quality, each identification experiment was

repeated 1000 times with different starting values within the

constraint set Θ, except for the data-driven models where the

parameters are estimated in a single instance of optimisation.

The optimal vector of parameters amongst the 1000 results

was chosen as the one with lowest cost function (8). Despite

the 1000 starts it is not possible to guarantee that the chosen

parameters are indeed the true vehicle parameters, nor the

global optimum to our optimisation problem. This is one of

the difficulties in estimating the parameters of a physically-

derived model when there is little a-priori knowledge on the

vehicle’s characteristics.

Finally, in both modelling approaches the focus of the

identification procedure was placed on simulation. This means

that ĥ was generated by simulating the entire length of the

studied data set from initial conditions, as opposed to a

prediction error approach in which measurements are used to

correct simulations at each time step.

D. Evaluation metrics

The models were evaluated using a normalised fit metric,

F [35],

F = 100
(

1− ||h−ĥ||2/||h−h̄||2
)

, (9)

where h̄ is the mean of measurements. A value of F = 100%

indicates a perfect fit, whilst a value of F = 0% indicates a

fit equivalent to the mean of the output data, and the F value

becomes negative for poor fits.

We also performed a correlation analysis between the mea-

sured outputs and the linear and nonlinear simulated ouputs.

This is characterised by the variance accounted for metric

(VAF)

V = 100
(

1− var(h−ĥ)/var(h)
)

. (10)

In this case, a value of V = 100% indicates that the model is

able to explain the entire variance of the measurements. This,

of course, is not expected since the model cannot account for

the variance introduced by measurement noise.

IV. EXPERIMENTAL DATA

The experimental data was gathered in a Lancia Delta car

during 108 km of driving on public roads in the Piemonte

region in Italy. The known vehicle parameters used in the

physical modelling are depicted in Table II. The route was

designed to include a typical selection of extra-urban and

urban roads, motorways, roundabouts and intersections, but

the driving itself was unscripted since it had to accommodate

for real-time traffic conditions. Figure 2 shows the driving

route. A single lap around the route was 54 km long and it

was circumnavigated twice. The longitude/latitude data was

collected by a GPS, and the position of the car, with respect

to a fixed set of coordinates, is computed by transforming the

longitude/latitude data into distance using the equirectangular

approximation.

The entire set of data was divided into training and valida-

tion portions as shown by the red line in Figure 2, with 2501

s of data for training and 2383 s for validation. The data was

originally sampled at 100 Hz, however the power spectrum of

the relevant measurements showed that over 99% of the power

was concentrated below 1 Hz. In view of this the data was

resampled at 20 Hz in order to decrease the computational load

of the parameter estimation algorithms. Figure 3 shows the

measurements employed to drive the identification procedure
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corresponding to 25% of the total training data set: (a) Longitudinal velocity,
(b) Yaw rate.

for a part of the training portion, while Figure 4 shows the

corresponding inputs.1

V. RESULTS AND DISCUSSION

For brevity we skip the training results. We place the focus

on the validation data set to make sure that there is no

overfitting in the data-driven models. Figures 5 to 9 show the

validation data set alongside the simulation of the different

estimated models, while Table I summarizes their performance

metrics. Note that Figures 5 and 7 show only subsections

of the entire validation data set for clarity. The values of

the optimised parameters for the physically-derived and data-

driven models can be found in the appendix in Tables III to

V.

A. Longitudinal dynamics

Identification of physically-derived longitudinal models led

to superior performance for the nonlinear physical model (fit

68.9%) when compared to the linearised physical model (fit

1For commercial confidentiality, we only report gas pedal and not engine
torque
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Figure 4. Input measurements acquired during the test route driving corre-
sponding to 25% of the total training data set: (a) Gas pedal position, (b)
Brake pressure, (c) Road slope angle, (d) Steering angle.

Table I
PERFORMANCE METRIC SUMMARY.

Physical models

vx (longitudinal) ψ̇ (lateral)
F% V % F% V %

Nonlinear 68.9 93.7 43.0 66.7
Linear 3.4 66.2 62.5 86.1

Data-driven models

vx (longitudinal) ψ̇ (lateral)
Order n F% V % F% V %

2 80.2 96.1 63.5 86.8
3 82.5 97.7 63.3 86.8
4 85.0 97.9 64.9 88.0

3.4%). Indeed, although the linear physical model is able to

simulate the general trend in velocity, it overestimates it by

5-10 m/s. On the other hand, the simplest data-driven model

(nd = 2) outperforms both physically-derived models with a

fit of 80.2%. Moreover, data-driven models of the longitudinal

dynamics show, as expected, a general increase in performance

as the order of the model grows, reaching 85.0% at nd = 4
(see Table I).

A comparison between the validation data and the prediction

of the several longitudinal models is shown in Figure 5 for one

lap, whilst comparison over the full validation data is given in

Figure 6 in the form of a correlation plot.

The data-driven model is also able to explain more of

the measurement variances, with a variance accounted for

that is 2.4% and 32% larger when compared to that of the

nonlinear and linear physical models (respectively). Note that

the nonlinear physical model presents a higher correlation

in the high velocity range, however the data-driven model

performs better throughout the entire driving envelope (see

Figure 6). This can be explained by some of the modelling

assumptions used in the physical nonlinear model such as the

simplified drag and friction forces.
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Figure 9. Model comparison in the displacement space with T = 2 s (prediction horizon of 40 samples) for an illustrative cornering manoeuvre.

B. Lateral dynamics

The estimation of physically-derived lateral models yielded

an opposite result to that of the longitudinal case, with the lin-

ear physical model showing a considerably better performance

(fit 62.5%) than the nonlinear physical model (fit 43.0%). The

data-driven model, nd = 2 (fit 63.5%) performed marginally

better than the linear physical model. A comparison between

the validation data and the prediction of the several lateral

models is shown in Figure 7 for one lap.

The poor performance of the nonlinear physical model is

attributed to its complexity. Indeed, although the nonlinear

model is in principle a more accurate representation of the

vehicle’s lateral dynamics, finding the true values of its pa-

rameters without extensive a-priori knowledge of the vehicle’s

characteristics is a difficult computational task. Although we

performed 1000 different optimisation attempts (with different

parameter initialisations), there is no guarantee that the optimal

values chosen are indeed an accurate approximation of the true

physical values.

Both linear models (physically-derived and data-driven)

present similar correlation to data throughout the driving

envelope with variance accounted for metrics of 86.1% and

86.8% respectively. Comparison over the full validation data

is given in Figure 6 in the form of a correlation plot. At low

levels of yaw rate the linear models (physically-derived and

data-driven) underestimate the yaw rate, while the nonlinear

model overestimates it. This can be explained by the model

structure. The nonlinear physical model simulates the lateral

forces using the Magic formula, which given the optimised

values of its parameters, presents a slope that is an order of

magnitude higher than Cf,r in the vicinity of the origin.

C. Performance in the displacement space

Finally, we studied the performance of the models in the

displacement space and along prediction horizons usually

employed by predictive controllers. The vehicle’s displacement

was simulated in a receding horizon fashion over a horizon of

T = 2 s.

Figure 9 shows the results from the receding horizon

simulation for a representative cornering manoeuvre within

the validation data set. As expected given their fit metrics, the

physically-derived models produced predictions with several

instances in which the vehicle veered outside the driving lane,

particularly during sharp turns. On the other hand, the data

driven model was able to predict the vehicles displacement

accurately enough to ensure the vehicle stayed inside the road.

Note that this is true despite the fact that the data-driven model

entirely neglects lateral velocity.

VI. CONCLUSIONS

In this paper we explored the potential of data-driven linear

models for simulating longitudinal velocity and yaw rate of a

ground 4-wheeled vehicle, and compared its performance with

physical linear and nonlinear models. The results show that,

under normal driving conditions, simple data-driven models

are able to match and surpass the simulation capabilities of the

physically-derived models, whilst being considerably simpler

than the nonlinear physical model. In particular, a second-

order state space model is able to predict velocity and yaw

rate accurately enough such that, within the usual horizon

lengths of model-based controllers, the predicted position of

the vehicle stays close to its true position and remains inside

the driving lane.
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APPENDIX

Table II
LANCIA DELTA PHYSICAL PARAMETERS.

Body dimensions Roll axis Inertia

lf 1.09 m h 0.6 m Iz 1260 kg/m2

lr 1.61 m h1 0.4 m m 1550 kg
W 1.53 m h2 0.2 m
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Table III
PARAMETER ESTIMATES FOR THE PHYSICALLY-DERIVED LONGITUDINAL

DYNAMIC MODELS.

κe µ κD
Nonlinear 11.696 0.017 0.311

Linear 11.696 0.017 6.457

Table IV
PARAMETER ESTIMATES FOR THE PHYSICALLY-DERIVED LATERAL

DYNAMIC MODELS.

K̄φ,f K̄φ,r B C µy
Nonlinear 0.415 0.585 66.158 4.000 0.402

Cf Cr ṽx A13 A23

Linear one-way coupled -63719 -43321 5.450 1.074 -0.001

Table V
PARAMETER ESTIMATES FOR THE SECOND ORDER DATA-DRIVEN MODEL.

A =

[

−401.072 328.759
−481.589 394.758

]

B =

[

0.038 1.323 63.921 2333.403
0.045 1.591 76.856 2801.894

]

C =

[

93.156 −77.582
0.346 −0.284

]
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